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In‑silico phenotype prediction 
by normal mode variant analysis 
in TUBB4A‑related disease
Avi Fellner1,2*, Yael Goldberg1,3, Dorit Lev3,4,5, Lina Basel‑Salmon1,3,6, Oded Shor2,3,6,7 & 
Felix Benninger2,3,6,7

TUBB4A‑associated disorder is a rare condition affecting the central nervous system. It displays 
a wide phenotypic spectrum, ranging from isolated late‑onset torsion dystonia to a severe early‑
onset disease with developmental delay, neurological deficits, and atrophy of the basal ganglia and 
cerebellum, therefore complicating variant interpretation and phenotype prediction in patients 
carrying TUBB4A variants. We applied entropy‑based normal mode analysis (NMA) to investigate 
genotype–phenotype correlations in TUBB4A‑releated disease and to develop an in‑silico approach 
to assist in variant interpretation and phenotype prediction in this disorder. Variants included in our 
analysis were those reported prior to the conclusion of data collection for this study in October 2019. 
All TUBB4A pathogenic missense variants reported in ClinVar and Pubmed, for which associated 
clinical information was available, and all benign/likely benign TUBB4A missense variants reported 
in ClinVar, were included in the analysis. Pathogenic variants were divided into five phenotypic 
subgroups. In‑silico point mutagenesis in the wild‑type modeled protein structure was performed for 
each variant. Wild‑type and mutated structures were analyzed by coarse‑grained NMA to quantify 
protein stability as entropy difference value (ΔG) for each variant. Pairwise ΔG differences between 
all variant pairs in each structural cluster were calculated and clustered into dendrograms. Our 
search yielded 41 TUBB4A pathogenic variants in 126 patients, divided into 11 partially overlapping 
structural clusters across the TUBB4A protein. ΔG‑based cluster analysis of the NMA results revealed 
a continuum of genotype–phenotype correlation across each structural cluster, as well as in transition 
areas of partially overlapping structural clusters. Benign/likely benign variants were integrated 
into the genotype–phenotype continuum as expected and were clearly separated from pathogenic 
variants. We conclude that our results support the incorporation of the NMA‑based approach used 
in this study in the interpretation of variant pathogenicity and phenotype prediction in TUBB4A-
related disease. Moreover, our results suggest that NMA may be of value in variant interpretation in 
additional monogenic conditions.

Hypomyelinating leukodystrophies comprise a heterogeneous group of hereditary disorders, characterized by 
abnormal myelin development and typical brain MRI  findings1,2. Of these disorders, the ones associated with het-
erozygous pathogenic variants in TUBB4A demonstrate a broad phenotypic spectrum, including primary dysto-
nia (DYT4; Autosomal dominant torsion dystonia-4; MIM#128101), isolated hypomyelination, hypomyelination 
with atrophy of the basal ganglia and cerebellum (H-ABC; Hypomyelinating leukodystrophy 6; MIM#612438), 
as well as early infantile  encephalopathy2.

TUBB4A encodes Tubulin beta-4A protein, which constitutes a principal part of microtubules, together 
with Tubulin-alpha3. It is expressed predominantly in the CNS, especially in the cerebellum, white matter and 
 putamen4. Over 40 disease-associated TUBB4A pathogenic variants have been identified, all of which are mis-
sense variants (Hamilton et al.3 and ClinVar 2019 (https:// www. ncbi. nlm. nih. gov/ clinv ar)). Previous reports 
have suggested a possible genotype–phenotype correlation in TUBB4A-related disease. At the milder end of the 
phenotypic spectrum the p.Arg2Gly and p.Ala271Thr variants are associated with adult-onset DYT4  dystonia4,5. 
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At the most severe end of this spectrum the p.Asn414Lys variant is associated with infantile-onset encephalopathy 
and early  death2,6. H-ABC patients with the most common TUBB4A disease-associated variant (p.Asp249Asn) 
have a less severe clinical course compared to other H-ABC presentations associated with this  gene2,3. Moreover, 
several TUBB4A pathogenic variants result in hypomyelination with no atrophy of the basal ganglia.

Interpretation of the effect of genetic variants at the protein level can be assisted by computational approaches. 
Over the last two decades, many in silico tools were developed for that end and were used to investigate the effects 
of gene variants in human  disease7–11. Despite the multitude of computational tools available, only a few newer 
methods exploit the 3D protein structure to include dynamic aspects of proteins in the prediction of genetic 
variants  impact7. Normal mode analysis (NMA) is one of the main approaches that enable the incorporation 
of dynamic parameters of protein structure into the investigation of genetic  variants7. In this study, we utilize 
an in-silico approach using NMA to investigate the effect of disease-associated TUBB4A missense variants on 
the encoded protein and their associated phenotype. This approach can be used in the classification of known 
missense variants and possibly predict the effect and phenotype of new variants of uncertain significance (VUS).

Subjects and methods
TUBB4A variants included in the analysis. We performed a search in ClinVar and in Pubmed for 
reported disease-associated TUBB4A variants. This search was concluded in October 2019. We included in the 
analysis all disease-associated variants reported, for which associated clinical phenotypic information was avail-
able. Cases of mosaicism in affected parents were not included in the analysis. Pathogenic missense variants 
were included in the analysis, as well as benign and likely benign TUBB4A missense variants reported in ClinVar 
prior to the conclusion of data collection for this study in October 2019. In addition, we searched the GnomAD 
database for common TUBB4A missense variants in the general population in order to include them in the 
analysis as well.

Clinical phenotype distribution. We subdivided the included patients into five subgroups accord-
ing to their clinical phenotype: DYT4 dystonia (group-1), H-ABC with a milder course associated with the 
p.Asp249Asn variant (m-H-ABC; group-2), hypomyelination with no basal ganglia atrophy (HM; group-3), 
classical H-ABC (c-H-ABC; group-4) and early infantile encephalopathy associated with the p.Asn414Lys vari-
ant (EIE; group-5). Group-3 was further subdivided into group-3a that includes cases with infantile disease 
onset and severe progressive motor impairment, and group-3b that includes patients who had a prolonged, less 
severe clinical course following either a later disease onset in teenage years or an infantile/childhood disease 
onset with achievement of unassisted walking.

In‑silico analysis. The structure of the Tubulin-Stathmin-like domain complex was taken from the Protein 
Data Bank (PDB-101; accession numbers PDB: 1FFX)12. The crystal structure of the A and C chains is identical 
to the Tubulin alpha-1A chain of Sus scrofa (P02550-TBA1A_PIG). Their amino-acid sequence is identical with 
the human Tubulin alpha-1A chain and we considered them as homologous to the human Tubulin alpha-1A 
structure and retained them unchanged in our model structure. The B and D chains of the original structure are 
identical with the tubulin beta chain (P02554-TBB_PIG, from Sus scrofa) and we modified the B and D chain 
amino-acid sequences to be identical to the human TUBB4A as follows: We aligned the amino acid sequence 
of the human TUBB4A protein and chains B and D from TBB_PIG using BLAST (LASTP suite) resulting in 
97.19%  similarity13,14. Next, using the mutagenesis plugin in PyMol Molecular Graphics System Version 1.8 
(Schrödinger, LLC., Cambridge, MA) we performed in-silico mutagenesis of chains B and D of the original 
sequence (TBB_PIG) to replace non-identical amino acids with those of the human TUBB4A to obtain 100% 
identity with the human TUBB4A protein. It should be noted that homology modeling (for example by the Swiss 
model server) produces an over-optimized protein structure lacking the original 1FFX structure characteristics. 
This over-optimization is clearly demonstrated in the Ramachandran plot analysis when the homology mod-
eling is compared to the original protein structure and to the non-optimized structure produced by the PyMol 
mutagenesis approach used in this study (Supplementary Fig. 1). Therefore, the PyMol mutagenesis structure 
approach was used in order to retain the characteristics of the original structure.

We identified structural clusters of the TUBB4A variants based on the Euclidean distances between their 
three-dimensional (3D) positions. Clusters were defined based on a mean distance of less than 15 Å between all 
variants in a cluster and the cluster’s center of mass. Mutagenesis plugin in PyMol Molecular Graphics System 
Version 1.8 (Schrödinger, LLC., Cambridge, MA) was used to perform the appropriate in-silico point mutagenesis 
in the wild-type (WT) modeled structure. Using this structure, in-silico mutagenesis was performed for each 
variant to replace the amino acid in the corresponding position. In-silico mutation was done only in chain B, 
in order to comply with an autosomal dominant (heterozygous) heredity pattern. WT and mutated structures 
were analyzed by an ENCoM coarse-grained normal mode analysis (NMA) method, in order to evaluate the 
effect of the analyzed variants on the stability of the protein. This method is based on an entropic considerations 
C package of  ENCoM15 available at ENCoM development website. This package is compiled and used on an 
Ubuntu platform (Canonical Group, UK). For each analyzed variant, we calculated the entropy difference (ΔG) 
by subtracting the NMA-based variant’s entropic profile from the entropic profile of the WT structure model. 
This was done for each of the protein subunits except for the mutated B chain itself (chains A, C, D and E), as well 
as for the GTP bound to the protein (represented by subunit K). The calculation of the entropic difference (∆G) 
was done using MATLAB software (Mathworks, Natick, MA). Entropic ΔG pairwise cross correlation between 
all pairs of variants in each structural cluster was calculated for each of the four protein subunits, except for 
the mutated B chain itself. These pairwise cross correlations of ΔG values were clustered into a dendrogram for 
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each structural cluster of variants. Dendrograms were computed by the Ward algorithm with MATLAB software 
(Mathworks, Natick, MA). Our methodology is summarized in Fig. 1.

Standard protocol approvals, registrations, and patient consents. This study was based on in-
silico analysis of known genetic variants from public databases and the literature and did not involve patients. 
Therefore, it did not require an ethical committee approval or informed consent.

Results
Reported disease‑associated TUBB4A variants. Our ClinVar and Pubmed search yielded 41 TUBB4A 
(NM_006087.4) pathogenic variants for which associated clinical information was available, in 126 patients. All 
pathogenic variants were missense substitutions. These variants and their associated phenotype subgroups are 
detailed in Table 1. Our search in ClinVar for benign and likely benign missense variants in TUBB4A (canoni-

Figure 1.  Methodology summary. A step-by-step summary of the methodology used to investigate TUBB4A 
variants with normal mode analysis.
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cal transcript: NM_006087.4) yielded a single benign variant (c.238C > T p.Pro80Ser) and a single likely benign 
variant (c.667G > A p.Gly223Arg). These were included in the analysis. GnomAD database does not include 
polymorphisms (defined as missense variants with frequency ≥ 1.0% in the general population) in the canoni-
cal TUBB4A transcript (NM_006087.4). Yet, in order to add available data to our analysis, the most common 
TUBB4A missense variant found in the GnomAD browser (NM_006087.4: c.830G > C p.Gly277Ala, 30 carriers, 
minor allele frequency 0.012%) was included in the analysis as an additional benign variant. Other GnomAD 
missense variants in the canonical TUBB4A gene transcript are significantly rarer (of these, the most common 
variant, c.1331C > T p.Ala444Val, has a minor allele frequency of 0.005%), and therefore could not be undoubt-
edly included in the analysis as common benign variants in the general population.

Table 1.  TUBB4A pathogenic variants included in the analysis and their associated phenotypic subgroups. 
EIE early infantile encephalopathy, H-ABC hypomyelination with atrophy of the basal ganglia and cerebellum 
(c-H-ABC classical, m-H-ABC milder course), HM hypomyelination with no basal ganglia atrophy.

Group Variant Number of patients References

Group-1 (DYT4 dystonia)
c.4C > G p.Arg2Gly 12 Hersheson et al.4 and Lohmann et al.5

c.811G > A p.Ala271Thr 1 Lohmann et al.5

Group-2 (m-H-ABC) c.745G > A p.Asp249Asn 48 Hamilton et al.3, Simons et al.16, Miyatake et al. et al.17, Ferreira et al.18, Pizzino 
et al.19, Erro et al.20, Tonduti et al.21 and Delgado et al.22

Group-3a (HM)

c.467G > T p.Arg156Leu 1 Purnell et al.23

c.535G > C p.Val179Leu 1 Isakov et al.24

c.539T > G p.Val180Gly 1 Vanderver et al.25

c.538G > A p.Val180Met 1 Ji et al.26

c.568C > T p.His190Tyr 6 Kancheva et al.27 and Nicita et al.28

c.763G > A p.Val255Ile 1 Pizzino et al.19

c.785G > A p.Arg262His 5 Miyatake et al.17, Ferreira et al.18, Ji et al.26, Srivastava et al.29 and Shimojima 
et al.30

c.874C > A p.Gln292Lys 1 Pizzino et al.19

c.900G > T p.Met300Ile 3 Erro et al.20 and Pyle et al.31

c.1091C > A p.Ala364Asp 1 Pyle et al.31

c.1172G > A p.Arg391His 1 Pizzino et al.19 and Vanderver et al.25

Group-3b (HM with a less severe phenotype)

c.286G > A p.Gly96Arg 1 Lu et al.32

c.533C > T p.Thr178Met 1 Tonduti et al.21

c.845G > C p.Arg282Pro 2 Pizzino et al.19

c.937G > T p.Val313Leu 1 Macaron et al.33

c.1064A > T p.Asp355Val 1 Sagnelli et al.34

c.1228G > A p.Glu410Lys 3 Blumkin et al.35,  Miyatake et al.17 and Sasaki et al.36

Group-4 (c-H-ABC)

c.4C > T p.Arg2Trp 2 Hamilton et al.3

c.5G > A p.Arg2Gln 2 Hamilton et al.3 and Miyatake et al.17

c.533C > G p.Thr178Arg 2 Miyatake et al.17 and Joyal et al.37

c.544C > A p.Pro182Thr 1 Tonduti et al.21

c.716G > T p.Cys239Phe 2 Hamilton et al.3 and Ferreira et al.18

c.730G > A p.Gly244Ser 4 Hamilton et al.3 and Carvalho et al.38

c.731G > T p.Gly244Val 2 Hamilton et al.3 and Tonduti et al.21

c.731G > A p.Gly244Asp 3 Tonduti et al.21

c.743C > A p.Ala248Asp 1 Arai-Ichinoi et al.39

c.941C > T p.Ala314Val 1 Erro et al.20

c.968T > G p.Met323Arg 1 Hamilton et al.3

c.1054G > A p. Ala352Thr 2 Hamilton et al.3

c.1061G > A p.Cys354Tyr 1 Hamilton et al.3

c.1099T > C p.Phe367Leu 1 Hamilton et al.3

c.1099T > A p.Phe367Ile 1 Hamilton et al.3

c.1162A > G p.Met388Val 2 Hamilton et al.3 and Miyatake et al.17

c.1163T > C p.Met388Thr 2 Hamilton et al.3 and Tonduti et al.21

c.1164G > A p.Met388Ile 1 Hamilton et al.3

c.1181T > G p.Phe394Cys 1 Carvalho et al.38

c.1190G > T p.Trp397Leu 1 Ji et al.26

Group-5 (EIE) c.1242C > G p.Asn414Lys 1 Duncan et al.6
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NMA optimization through identification of structural clusters of variants. Investigation of 
potential genotype–phenotype correlation based solely on the position of each variant in the 3D protein model 
did not yield a significant correlation (Fig. 2A). While variants in several positions do correlate with a specific 
phenotypic subgroup, others in close Euclidean proximity to these variants are associated with a significantly dif-
ferent clinical consequence. Furthermore, when using only the calculated allosteric NMA thermodynamic fluc-
tuations of each variant, we noticed only a partial correlation with the clinical phenotypic subgroup (Fig. 2B). 
On the other hand, a combination of both Euclidean (positional) and thermodynamic (entropic) profiles of 
each variant revealed a partial structural local (Euclidean) dependance between each variant and the clinical 
consequence, as the allosteric thermodynamical fluctuations showed a unique correlation pattern in each local 
area of the structure. Thus, we first identified eleven partially overlapping structural clusters (hotspots) of the 
variants (Fig. 3, clusters a through k) to be used as the basis for the NMA described further on. The mean dis-
tances between all variants in each of these clusters are shown in Fig. 3A, the relative distances between the cor-
responding center of mass of each of the clusters (centers A through K) are shown in Fig. 3B, and the positions 
of the analyzed TUBB4A variants in the 3D protein structure are shown in Fig. 3C. Transition points, in which 

Figure 2.  Heatmaps of correlation between phenotype and either variant position or entropic profile. (A) 
Heatmap of pair-wise distances between positions of residues that are mutated in each variant. (B) Heatmap 
of pair-wise cross-correlation coefficient between entropic profile of residues that are mutated in each variant. 
Order of variants in both heatmaps (A,B) is set according to their phenotypic group and in each phenotypic 
group according to the residue numbers, which are shown across both axes of each heatmap.
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two structural clusters shared one or several overlapping variants, were found between clusters a and b, b and c, 
b and e, c and e, d and e, f and g, and h and i, as demonstrated in Fig. 4.

NMA results reveal genotype–phenotype correlation. Each of the above-mentioned structural clus-
ters included variants of at least two types of phenotypic subgroups, negating investigation of potential geno-
type–phenotype correlation based on structural clustering only. Plots of the entropic profiles (ΔG) obtained 
by NMA for each of the analyzed variants are shown in Supplementary Fig. 2. We identified a unique pattern 

Figure 3.  Eleven structural clusters of TUBB4A variants. (A) Mean distance between all mutated residues in 
the three-dimensional position in each of the 11 clusters of variants (clusters a–k). (B) Schematic representation 
of the tubulin structure with TUBB4A colored in light blue. The center of mass of each cluster of variants 
(centers A–K) is depicted by a red circle. Relative distances (in Å) between center of masses are represented by 
a dendrogram. (C) Structure of the 1FFX Tubulin:Stathmin-like domain complex. The positions of the analyzed 
TUBB4A variants are labeled in red.
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Figure 4.  Normal mode analysis results for the analyzed TUBB4A variants. ΔG cluster analysis results are shown in 
dendrograms of the eleven identified structural clusters of variants (marked a–k). Each variant’s phenotypic subgroup is 
indicated next to it (according to the phenotypic subgrouping detailed in Table 1: subgroups 1, 2, 3a, 3b, 4 and 5. Subgroup 
0 includes benign/likely benign variants from ClinVar and the p.Gly277Ala variant from GnomAD). (A) Separate standard 
dendrograms. ΔG distances between subgroups of variants in each structural cluster are represented by the corresponding 
cross-correlation coefficient differences in the Y-axis. Variants in each dendrogram are ordered in the X-axis according 
to their relative ΔG distance from the other variants in the corresponding structural cluster. (B) The eleven dendrograms 
(marked a–k) are shown with their shared variants and transition points. Variants shared by more than one structural cluster 
are shown in all their corresponding dendrograms. Each dendrogram is represented by a group of circles sharing a common 
axis through their diameters. The common axis of each of the dendrograms is marked by a dashed line and the variants 
in each corresponding structural cluster are indicated by lines perpendicular to that axis. Relative ΔG differences between 
subgroups of variants in each structural cluster are represented by the lengths of circles’ radii. The variants are ordered in each 
dendrogram according to their relative ΔG distance from the other variants in the corresponding structural cluster.
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correlating the entropic profile with the phenotypic subgroup. For each subunit in the protein structure (A, C, D, 
E and K) we noticed a unique pattern of correlation. Notably, some of the clusters had almost identical patterns 
over several subunits while others showed different patterns in different subunits of the structure. Yet, all eleven 
structural clusters had at least one subunit affected allosterically in such a way that yielded a correlation of the 
entropic profile gradient with the phenotypic subgroup gradient, as described hereinafter.

We analyzed the NMA results for each structural cluster (hotspot) separately, using ΔG distances-based 
clustering of the variants in each of the structural clusters and ordering them based on their relative ΔG cross-
correlation distances from one another. This analysis revealed a continuum of genotype–phenotype correlation 
across each of the structural clusters. Figure 4 shows these results in detail for all the variants analyzed. The results 
for several of these variants are elaborated here to highlight the main findings and their potential implications.

NMA-based differentiation of variants that impact the same amino acid position. Notable examples are the vari-
ants resulting in changes at amino acid position 2. Two of the three pathogenic variants affecting this position 
of the protein (p.Arg2Trp and p.Arg2Gln) are associated with the severe c-H-ABC phenotype, while the third 
(p.Arg2Gly) is associated with a different phenotype, DYT-4 dystonia (phenotypic groups 4 and 1 in Table 1, 
respectively). Correspondingly, NMA-based clustering showed that ΔG difference between p.Arg2Trp and 
p.Arg2Gln was smaller than the difference between p.Arg2Trp and p.Arg2Gly, as shown in Fig. 4. Furthermore, 
ΔG cross-correlation-based cluster analysis of the variants in structural cluster-d indicated that all three changes 

Figure 4.  (continued)
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at position 2 are clearly separated from the p.Arg156Leu variant, which is associated with phenotypic subgroup 
3a. These NMA-based relative ΔG cross-correlation distances between the four variants in structural cluster-d 
correlate with their associated phenotypes, yielding a genotype–phenotype continuum across this cluster. This 
finding demonstrates the potential prediction of phenotype by the NMA-based model, even for different vari-
ants affecting the same amino acid position.

NMA-based differentiation of the p.Asp249Asn variant. Additional analysis results of note are those of 
p.Asp249Asn, the most common pathogenic TUBB4A variant, which is associated with a milder H-ABC 
 course2,3. Accordingly, this variant was included in the analysis as a separate phenotypic group (m-H-ABC; 
phenotypic group 2 in Table 1). As shown in Fig. 4, ΔG cross-correlation-based cluster analysis of the variants in 
structural cluster-g yielded a notable separation of this variant from the other pathogenic variants in this struc-
tural cluster which are associated with other TUBB4A phenotypic subgroups, including the ones associated with 
the more severe H-ABC phenotype (c-H-ABC; phenotypic group 4 in Table 1). This finding clearly demonstrates 
that the NMA-based model we applied enables entropy-derived differentiation of variants associated with dif-
ferent phenotypic subgroups.

NMA-based differentiation of control variants. Control TUBB4A variants, which are not associated with disease 
(benign, likely benign and common variants), were clearly separated by the NMA-based analysis from the path-
ogenic ones. This is in accordance with the entropy-derived genotype–phenotype continuum found across struc-
tural clusters. ΔG-based cluster analysis of the variants in structural cluster-i disclosed that p.Ala271Thr, which 
is associated with phenotypic subgroup 1 (the milder DYT-4 dystonia phenotype), and the common GnomAD 
variant p.Gly277Ala, were clearly separated from variants p.Glu292Lys and p.Arg282Pro, which are associated 
with phenotypic subgroups 3a and 3b, respectively (dendrogram-i in Fig. 4). Similarly, in structural cluster-f, the 
ΔG difference between the control variants p.Pro80Ser (benign) and p.Gly223Arg (likely benign) was smaller 
than the difference between p.Gly223Arg and the third variant in this structural cluster, p.Cys239Phe, which is 
a pathogenic variant associated with phenotypic subgroup 4 (c-H-ABC in Table 1). This entropy-based order of 
the variants in structural cluster-f was in line with the genotype–phenotype continuum characterizing the other 
structural clusters. Yet, the small number of variants in this structural cluster limited the investigation of the 
genotype–phenotype transition from p.Pro80Ser to p.Cys239Phe (dendrogram-f in Fig. 4).

Continuum of genotype–phenotype correlation in transition areas shared by different structural clusters. The con-
tinuum of genotype–phenotype correlation based on ΔG cluster analysis, was kept also in most of the transition 
areas where variants are shared by different structural clusters. This finding further supports the NMA-based tool 
we utilized to predict genotype–phenotype associations in TUBB4A-related disorders (Fig. 4B). Nevertheless, 
this continuum was interrupted in two transition areas between structural clusters. The first is the overlap area 
between clusters a and b, which includes the variants p.Thr178Met and p.Thr178Arg, associated with phenotypic 
subgroups 3b and 4, respectively. The second is the transition area between clusters c and e, which includes the 
variants p.Glu410Lys and p.Asn414Lys, associated with phenotypic subgroups 3b and 5, respectively. In both 
these instances, the two variants are associated with different phenotypic subgroups although the ΔG difference 
between them is relatively small. These findings suggest that in these transitional areas there may be additional 
more predominant structural factors, as well as other variables, that affect the phenotypic consequence of these 
variants, overriding the effect measured by the entropy changes on which our analysis was based.

Discussion
Variant interpretation and investigation of genotype–phenotype correlation constitute major challenges in clini-
cal genetics. Many in-silico methods have been developed as part of the effort to overcome these challenges. 
Traditional computational techniques to study the effect of variants on protein structure are heavily based on 
protein sequence data analysis and do not consider the protein’s intrinsic  movements7. Therefore, much of the 
effect of genetic variants on the protein function is missed when using these approaches. The great progress in 
the characterization of the 3D structures of proteins lead to the development of new in-silico functional tools to 
improve genetic variant  interpretation40. Newer in-silico approaches combine protein structure and dynamics 
to investigate the impact of genetic variants on the protein stability. In this study we used an NMA-based in-
silico tool, which provides representation of intramolecular interactions, thereby representing more accurately 
the conformational changes in terms of calculated squared overlap. This approach introduces dynamic aspects 
of the protein into variant analysis. It was recently used successfully to categorize missense variants according 
to their effect on  entropy41,42. We demonstrate the applicability of an entropy-based in-silico NMA tool in the 
investigation of genotype–phenotype correlation and its potential use in variant interpretation and phenotype 
prediction in TUBB4A-related disease.

Position‑only, entropy‑only and combined position‑entropy approaches. We found that 
a method based exclusively on either  the variant’s position or the NMA-based thermodynamic fluctuations, 
yielded only partial or no variant-phenotype correlation. This finding lead us to combine the variant’s positional 
and entropic profiles by identifying eleven partially overlapping structural clusters of variants and analyzing 
each of these clusters separately, an approach which yielded a clear genotype–phenotype correlation. This find-
ing shows that neither the variant’s position nor the entropic profile can be used separately and that NMA-based 
investigation of TUBB4A variants is best utilized when analyzing variants impacting amino acid positions in 
relative proximity to one another in the 3D protein structure. Moreover, these results indicate that additional 
factors other than NMA-related ones have a greater impact on the phenotypic consequence when considering 
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protein variants located in greater physical distance from one another (i.e. variants not shared by the same struc-
tural cluster). Yet, these additional factors are not purely positional in nature, as our attempt to analyze TUBB4A 
variants based strictly on the position of each variant in the 3D protein model did not yield a significant geno-
type–phenotype correlation.

NMA results support genotype–phenotype correlation and can aid in phenotype prediction 
in TUBB4A‑related disease. Previous studies have reported the correlation between several TUBB4A 
pathogenic variants and their associated phenotype. At the less severe end of the phenotypic spectrum, the 
variants p.Arg2Gly and p.Ala271Thr are associated with DYT4, an adult-onset isolated  dystonia4,5. At the most 
severe end of the spectrum, the p.Asn414Lys is associated with a severe infantile-onset presentation, character-
ized by lack of brain myelination, cerebellar atrophy and preserved basal ganglia on neuroimaging and severe 
encephalopathy with early  death2,6. Between these two ends of the phenotypic spectrum, TUBB4A-related dis-
ease includes hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC), as well as cases of 
hypomyelination with no basal ganglia atrophy, both with different degrees of severity (Table 1). Of note, the 
most common TUBB4A pathogenic variant, p.Asp249Asn, is associated with a slower progression of the H-ABC 
 phenotype3. Based on these data, a potential disease continuum associated with TUBB4A pathogenic variants 
has been previously  suggested2,3. Yet, this suggestion was based on specific groups of TUBB4A variants and was 
not shown to apply for all reported disease-associated variants in this gene. The entropy-based in-silico NMA 
performed in this study revealed a continuum of genotype–phenotype correlations across each of the analyzed 
structural clusters of known pathogenic TUBB4A variants. Our results indicate that the higher the correlation 
of relative entropy difference between two variants in the same structural cluster, the higher is the likelihood 
these variants are associated with a similar phenotype. The previously suggested genotype–phenotype correla-
tion for some TUBB4A variants is further supported by our findings, which extend this correlation to include all 
reported disease-associated variants in this gene, demonstrating a continuum of genotype–phenotype correla-
tion across the structure of the encoded protein.

Notably, our analysis yielded genotype–phenotype correlation even for TUBB4A variants that are associated 
with conspicuously diverse clinical consequences although impacting the same amino acid position, as shown 
by the NMA results for variant substitutions of the Arginine at position 2 of the protein. It was previously sug-
gested that the change of Arg2 to the relatively inert Glycine may have a limited effect on the protein function 
compared to the variants substituting the positively charged Arg2 either with the larger polar Glutamine or the 
hydrophobic Tryptophan, which are likely to have a substantial impact on the protein structure, potentially 
accounting for the striking difference between the clinical outcome associated with p.Arg2Gln and p.Arg2Trp 
(c-H-ABC) and the one associated with p.Arg2Gly (DYT4 dystonia)3. Our results further support a structural 
impact as the possible explanation for this phenotypic difference, while adding considerations of protein dynam-
ics to the potential mechanism that may explain this observation.

As previously mentioned, a well-established genotype–phenotype correlation is the one associated with the 
most common pathogenic TUBB4A variant, p.Asp249Asn. This variant results in a relatively less severe disease 
course compared to other variants associated with the H-ABC  phenotype3. Our NMA results support this 
genotype–phenotype correlation, as they clearly separate this variant from other variants in the same structural 
cluster, including ones associated with a more severe course of H-ABC (Table 1, Fig. 4). Furthermore, consider-
ing that the genotype–phenotype correlation associated with the p.Asp249Asn variant is well-established, our 
results strongly support the potential of the approach used in this study to assist in phenotype prediction in 
TUBB4A-related disease.

In summary, the previously suggested genotype–phenotype correlation in TUBB4A-realted disease is sup-
ported by our NMA results, which extend this correlation to all disease-associated variants across the encoded 
protein. Furthermore, since our results yield a clear genotype–phenotype continuum across each structural 
cluster, the in-silico approach we used can aid in phenotype prediction for additional TUBB4A variants, based 
on their incorporation into this NMA-based continuum. Therefore, our results support the integration of the 
approach used in this study in the investigation of genotype–phenotype correlation and phenotype prediction 
in TUBB4A-related disease.

Application of NMA in the investigation of TUBB4A variant pathogenicity. The results of this 
study indicate the potential applicability of our methodology not only in the investigation of genotype–pheno-
type correlation, but also in the interpretation of pathogenicity of additional TUBB4A variants. The interpreta-
tion of the multitude of variants identified in the next-generation sequencing era is based on a combination of 
several parameters, including the variant’s frequency in the population, phylogenetic conservation, relevance 
of the gene to the phenotype, segregation of the variant in the pedigree, as well as information from different 
databases regarding the sequence alteration. In addition, different computational prediction tools are used to 
evaluate the expected impact of missense variants on protein function, and guidelines for the interpretation 
of sequence variants have been  issued43. Nevertheless, variant interpretation remains limited and potentially 
inaccurate. Moreover, the number of missense variants classified as ones of uncertain significance (VUS) is 
 increasing40,44. The gold standard evaluation of genetic variants is based on functional studies. Yet, these studies 
require considerable resources and time to be invested for each single variant investigated. Therefore, addi-
tional reliable and efficient tools are needed in order to improve variant interpretation in clinical genetics. Our 
ΔG-based cluster analysis showed that TUBB4A variants not associated with disease (control variants) were 
integrated into the genotype–phenotype continuum as expected and were clearly separated from pathogenic 
variants. This finding supports the potential contribution of our in-silico approach to the investigation of path-
ogenicity of additional TUBB4A variants. Moreover, our results support the potential implementation of the 
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methodology that was used in this study for missense variant interpretation in additional monogenic conditions. 
This should be further investigated in future studies.

Limitations. This study has several limitations. First, the number of analyzed TUBB4A pathogenic variants 
was small, as our search yielded only 41 such variants. The limited number of variants results in gaps in the 
information obtained by our analysis for each of the structural clusters identified, as well as for the parts of the 
protein that are not included in any of these clusters. Yet, we demonstrated a genotype–phenotype continuum 
across the informative parts, despite the small number of variants available for analysis.

Second, most of the TUBB4A pathogenic variants included in our analysis (25/41, 61.0%) are private muta-
tions (Table 1). This may yield potential inaccuracies in the phenotypic variant subgrouping our analysis was 
based on, as the phenotypic information available for many of the variants was based on single case reports. 
Nevertheless, each of the variants reported in multiple cases (including the most common disease associated 
TUBB4A variant p.Asp249Asn, among others) is associated with the same phenotypic subgroup in all its associ-
ated cases (Table 1) and had NMA results which were in line with the ΔG-based genotype–phenotype continuum 
revealed by our analysis. Incorporation of additional pathogenic TUBB4A variants and phenotypic data into the 
entropy-based model we used will enable further refinement of this model and will improve the investigation of 
variant pathogenicity and phenotype prediction with this in-silico tool.

Third, the phenotypic consequence of a pathogenic variant may be affected by additional structural variables 
as well as other factors, such as modifier genes. These additional factors may have a more predominant impact 
on the clinical consequence than the effect measured by the entropy change which was used as the basis for our 
analysis. This may limit phenotype prediction by our model, as exemplified in our study in the transition areas 
between clusters a and b and between clusters c and e. In this regard, variant interpretation should not be based 
solely on the approach presented in this study and should take into consideration additional bioinformatic data. 
Nevertheless, our results were consistent for the vast majority of the analyzed variants. Therefore, we propose 
the integration of the NMA-based approach that was used in this study into variant analysis, since it contributes 
invaluable information regarding variant pathogenicity and genotype–phenotype correlations, as demonstrated 
by our results.

Finally, it is notable that the NMA-based model we used in this study is appropriate only for missense variant 
analysis, negating its use for other types of genetic variants. However, all reported pathogenic TUBB4A vari-
ants reported thus far are missense variants, enabling an effective use of this model in TUBB4A-related disease. 
Moreover, as missense variants are more common than other variant  types44,45 and their interpretation constitutes 
a pivotal challenge in clinical  genetics40, our tool may have a significant contribution to variant interpretation 
and phenotype prediction in other monogenic conditions.

Future directions. Newer in-silico approaches that were developed in recent years exploit the availability of 
3D protein structures to add the dynamic features of proteins to computational prediction  tools7. To our knowl-
edge, our study is the first to integrate protein dynamics into the investigation of genotype–phenotype correla-
tion and variant pathogenicity in TUBB4A-related disease. The NMA-based genotype–phenotype continuum 
we found in this study should be updated periodically in the future to include additional TUBB4A variants and 
clinical data that will be reported further on. Additional data incorporated into this model will allow a more 
accurate investigation of TUBB4A variants by this tool. Future investigation of additional monogenic disorders 
with the NMA-based methodology we used in this study may further establish this approach as a tool for vari-
ant interpretation and phenotype prediction. Other future directions may include the application of additional 
approaches, other than NMA, that exploit protein dynamics in variant interpretation. This could be investigated 
in TUBB4A-related disease as well as in other monogenic conditions. Additional such approaches may include, 
for example, protein dynamics  simulations7. Moreover, comparing the results obtained by different protein 
dynamics-based approaches may shed light on the advantages and disadvantages of each of these approaches 
in TUBB4A-related disease and in additional monogenic disorders. Furthermore, we speculate that a combined 
approach using a multitude of tools that exploit protein dynamics may have a great contribution to phenotype 
prediction and variant interpretation in clinical genetics. This is a subject for further investigation in the future.

Conclusion
In this study we used an NMA-based in-silico tool to investigate genotype–phenotype correlations in TUBB4A-
related disease, thereby integrating protein dynamics in variant investigation. We demonstrate a continuum 
of genotype–phenotype correlation across each of the structural clusters analyzed. Our results support geno-
type–phenotype correlation in TUBB4A-related disease. Moreover, they suggest that application of the approach 
used in this study will aid in the interpretation of variant pathogenicity and in phenotype prediction in patients 
carrying TUBB4A variants. Additional TUBB4A pathogenic variants and phenotypic data that will be added to 
this model in the future will enable to improve and refine its use. Furthermore, our results suggest the potential 
utilization of the methodology used in this study in the investigation of variant interpretation and phenotype 
prediction in additional monogenic conditions.

Data availability
All data generated or analyzed during this study are included in this published article.
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