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Enlarged perivascular spaces (EPVS), specifically in stroke patients, has been shown to strongly 
correlate with other measures of small vessel disease and cognitive impairment at 1 year follow‑up. 
Typical grading of EPVS is often challenging and time consuming and is usually based on a subjective 
visual rating scale. The purpose of the current study was to develop an interpretable, 3D neural 
network for grading enlarged perivascular spaces (EPVS) severity at the level of the basal ganglia 
using clinical‑grade imaging in a heterogenous acute stroke cohort, in the context of total cerebral 
small vessel disease (CSVD) burden. T2‑weighted images from a retrospective cohort of 262 acute 
stroke patients, collected in 2015 from 5 regional medical centers, were used for analyses. Patients 
were given a label of 0 for none‑to‑mild EPVS (< 10) and 1 for moderate‑to‑severe EPVS (≥ 10). A three‑
dimensional residual network of 152 layers (3D‑ResNet‑152) was created to predict EPVS severity 
and 3D gradient class activation mapping (3DGradCAM) was used for visual interpretation of results. 
Our model achieved an accuracy 0.897 and area‑under‑the‑curve of 0.879 on a hold‑out test set of 
15% of the total cohort (n = 39). 3DGradCAM showed areas of focus that were in physiologically valid 
locations, including other prevalent areas for EPVS. These maps also suggested that distribution 
of class activation values is indicative of the confidence in the model’s decision. Potential clinical 
implications of our results include: (1) support for feasibility of automated of EPVS scoring using 
clinical‑grade neuroimaging data, potentially alleviating rater subjectivity and improving confidence 
of visual rating scales, and (2) demonstration that explainable models are critical for clinical 
translation.

Enlarged Perivascular Spaces (EPVS) is a key, but understudied, component in assessing cerebral small vessel 
disease burden after stroke (CSVD). While EPVS has been associated with worse cognition, depression, and 
neurodegenerative disorders, its full prognostic significance is  unknown1. A key limitation is the use of visual 
rating scales used to grade EPVS severity with poor inter-rater reliability, limiting internal and external valid-
ity of  findings2. Development of accurate, reliable, and interpretable automated EPVS scoring based on clinical 
data could circumvent this issue, aiding research on mechanisms of EPVS, improving knowledge of clinical 
significance, and assisting large studies assessing EPVS as a biomarker for clinical  outcomes2. Interpretability is 
vital to translational aspects of deep learning models, including model verification, enhancing trust in model 
predictions, and fixing errors leading to  misclassifications3,4.
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The clinical significance of the current study is two-fold. First, EPVS rating, specifically in the basal ganglia, 
has been shown to correlate strongly with other measures of CSVD, cognitive impairment at 1 year after ischemic 
stroke, and stroke risk factors in hemorrhagic stroke  cohorts5,6. Additionally, previous studies have found that 
EPVS rating scores in the basal ganglia are commonly not normally distributed and have found that a meaningful 
categorization for logistic regression to be 10 punctate EPVS, where < 10 is considered none-to-mild and ≥ 10 
is considered moderate-to-severe7. Using this dichotomy, EPVS was shown to be associated with EPVS in the 
centrum semiovale and atrophy.

The second point of clinical significance of the current study is the utility of an automatic stratification tool 
(low-risk vs high-risk for CSVD) for clinical grade imaging. Because speed of acquisition is the primary goal 
of an acute clinical scan, the slice thickness acquired is usually much thicker than research-grade imaging. For 
the present study, the average slice thickness of the scans used was 4 mm, whereas EPVS are usually defined as 
punctate fluid-containing spaces < 3 mm when measured perpendicular to the  vessel8. While the axial resolution 
of the scan is high enough to capture these, the limited slice thickness means that some EPVS may not be able to 
be resolved clearly, making it much harder to delineate single points in the 5-point EPVS rating scale. Having a 
tool that can automatically, and quickly, identify patients with moderate-to-severe EPVS would greatly facilitate 
studies of CSVD since this delineation has been shown to correlate with the other markers of total CSVD burden.

Previous attempts to segment or classify EPVS have limited generalizability due primarily to data quality 
and cohort selection. Prior studies have used ultra-high filed MRI (7 T), which is rarely available for clinical 
use, with high-resolution scans that require a very long scan time. Additionally, the cohorts used in these stud-
ies have been volunteers, greatly reducing the chance of excessive image noise/artifact9–13. The purpose of the 
current study was to develop an interpretable and clinically generalizable 3D neural network for grading EPVS 
severity using clinical-grade imaging in an acute stroke cohort. Studies attempting to grade EPVS typically use 
research-grade images that do not generalize well to standard-of-care protocols. We hypothesized that we could 
achieve an accuracy of at least 76%, based on previous studies of EPVS scoring inter-rater  reliability1 and that 
network visualizations would be physiologically plausible.

The strength of the current study compared to previous studies is that results will be maximally generalizable 
because: (1) EPVS rating was assessed by 5 central readers, accounting for biases that may arise from reader 
tendencies, (2) images were collected at multiple sites, accounting for site-specific variation in data collection, (3) 
the images used were clinical-grade images that may feasibly be collected at any site capable of MRI, and (4) the 
study cohort included all types of strokes, including imaging-negative trans-ischemic attack (TIA) patients, so 
the results should generalize to various patient populations. This study was designed, and manuscript prepared 
according to the checklist for artificial intelligence in medical imaging (CLAIM)14.

Results
Data. There were 143 patients with none-to-mild EPVS and 119 patients with moderate-to-severe EPVS. 
Demographic information can be found in Supplementary Table 1. Notably, this cohort included patients with 
various types of strokes, including those who had imaging negative transient ischemic attacks. This suggests 
results may be generalizable to non-stroke patients as well.

Model performance. Our final model, ResNet-152, achieved an accuracy/AUC of 0.802/0.834 on the train-
ing set, 0.768/0.847 on the validation set, and 0.897(95% CI = [0.758, 0.971])/0.879 on the test set (Fig. 1, left 
panel) for detection of none-to-mild versus moderate-to-severe EPVS. The positive class is defined as moderate-
to-severe EPVS and the negative class is defined as none-to-mild EPVS. On the held-out test set, specificity was 

Figure 1.  Assessment of model performance. The model achieved an Accuracy/AUC of 0.897/0.879 on the test 
set (left panel). In the confusion matrix (right panel), 0 indicates none-to-mild EPVS and 1 indicates moderate-
to-severe EPVS. Out of 39 samples, there were 3 false positives and 1 false negative.
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0.96, sensitivity was 0.80, and F1 was 0.86. The model had a positive predictive value of 92.31% and a negative 
predictive value of 88.46%. Accuracy was significantly higher than the NIR (NIR = 0.617; p < 0.001). There were 3 
false negatives and 1 false positive (Fig. 1, right panel). In the false positive case, the model picked up on remote 
infarcts that resemble EPVS. Mean CLEVER score for the test set was 5.76, indicating that the model was sub-
stantially robust to noise. Supplementary table 2 shows the comparison of validation loss and accuracy for the 
three models that were tested (ResNet-50, ResNet-101, ResNet-152). For the best model from this process, drop-
out was tuned to maximize validation accuracy. The best network based on fivefold cross-validation accuracy 
was ResNet-152 with 40% dropout (Supplementary Table 2).

3DGradCAM revealed that midline regions, including midbrain, basal ganglia, and centrum semiovale, with 
high-valued activations (> 7) were indicative of severe EPVS (Fig. 2, top panel). In none-to-mild examples, fewer 
regions had high activations, and these lower-valued activations localized in non-relevant hyperintense tissue 
(Fig. 2, bottom panel). Misidentified examples suggested the distribution of class activations was the primary 
cause of error. In the false positive case, more tissue was resolved in the high range than in the true negative 
cases (Fig. 3, top row). For false negatives, less areas were resolved in the high range than in the true positive 
cases (Fig. 3, bottom 3 rows).

Discussion
We demonstrate that an explainable deep learning model can feasibly classify patients with moderate-to-severe 
EPVS using only standard-of-care T2-weighted imaging. The model performed as hypothesized, and activation 
maps were consistent with expected anatomy. While only EPVS scores at the level of the basal ganglia were used, 
the model focused on both basal ganglia and other relevant regions, indicating possible correlative abnormalities. 
Activations were high in much of the white matter, but the highest activations (most yellow regions in Fig. 3, 
top row) were in regions most associated with EPVS (centrum semiovale, basal ganglia, midbrain). While there 
have been attempts to quantify and segment EPVS and the neural network architecture we employed is not 
unique, no prior studies have used the approach of the current study because: (1) prior studies have used high-
resolution imaging (0.5 × 0.5 × 0.8 mm) and complex preprocessing pipelines that cannot generalize to clinical 
imaging, (2) used patches of tissue centered around regions-of-interest instead of the whole brain and/or, (3) 
used multimodal imaging  data2,15–17. While these studies have provided finer details on the nature of EPVS, high 
resolution imaging is simply not possible in many acute settings. The key contribution of this study is that the 
current model could be used for efficient patient risk stratification, in the context of total CSVD burden, using 
only a clinical T2-w image.

As previously mentioned, prior studies involving automated pipelines for EPVS classification/segmentation 
are not necessarily clinically generalizable since the methods used may not be feasible in all clinical situations. 
For example, two recent studies adequately segmented EPVS, with Dice score ranging from 0.62 to 0.66 for 
unimodal imaging, and up to 0.77 for multimodal imaging. However, the clinical utility, including for clinical 

Figure 2.  3D gradient class activation maps (3DGradCAM) showing prototypical activations for examples 
in each classification (positive versus negative). Positive examples showed high activation in several relevant 
midline regions, including midbrain, basal ganglia, and centrum semiovale (top panel). Negative examples had 
fewer activations in the high activation range (> 7) and smaller activations localized in non-relevant (random) 
areas (bottom panel).
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trials, is severely limited as these studies were performed on data collected on 7 T scanners, which are widely 
not available, with high-resolution protocols that take more than 10 min per acquisition, on average, leading to 
unfeasible scan  times9–13.

Removal of the “black box” with explainable AI models is important for clinical translation. 3DGradCAM 
maps indicating activation distribution plays an important role in model classification. By providing the model 
prediction, along with a saliency map and statistics of the activation distribution, a radiologist would be better 
able to interpret the model output. These activation maps allow understanding of which parts of the image are 
being used by the model. A moderate-to-severe EPVS prediction with a physiologically viable saliency map and 
negatively skewed activation distribution would give the radiologist more confidence in the decision. One expla-
nation for false positive findings, apparent in the analysis of misclassified images, is the presence of hyperintense 
lacunar infarcts that resemble and often coexist with EPVS. This insight can be used to inform ongoing training 
of the model and improve its clinical applicability.

Our study has important limitations including the size of the test set, which may skew model evaluation. 
However, since this set was not observed until the final evaluation, the performance is still substantial. Model 
performance will continue to be evaluated as new data are collected. Another limitation is data were not strati-
fied by more variables. Future analyses will determine whether this has a significant impact. Another potential 
limitation is the image preprocessing necessary for adequate model performance. The ground truth was derived 
from the original images. The purpose of the preprocessing, especially registration, was to limit the search space 
of the network, reducing the need for more data. Preprocessing was minimal and takes only ~ 3 min per subject, 
so the utility for quick stratification is not lost with its inclusion. But future studies will consider this limitation 
and aim to have adequate sample sizes so less preprocessing is necessary for good model generalization.

It is also notable that the test set accuracy/AUC were slightly higher than the validation set. This is likely due 
to more noise/variability in the validation set compared to the test set. With a bigger sample size, this difference 
should normalize so that values are comparable. Finally, this study included patients only from an acute stroke 
cohort. Future studies will include other populations, such as typical aging, to validate findings.

In conclusion, we show that explainable models are feasible and provide information that increase confidence 
in the model’s decision, allowing for use in a clinical setting. While the strict dichotomization of EPVS into the 
two groups used here is not necessarily clinically meaningful, the insights gained from model interpretation 
potentially are. Additionally, the ability to quickly randomize patients into those with and without significant 
EPVS severity, based on previous CSVD burden literature. This would facilitate large-scale clinical trials of EPVS 
and total CSVD burden, which are much needed. Future studies will use larger datasets to explore methods to 
improve upon the current results and use probabilistic modeling to quantify model confidence.

Methods
Study design. A retrospective cohort from an ongoing population-based acute stroke study (APRISE; R01 
NINDS NS103824-01) was used. A convenience subset of 348 patients was selected based on: (1) presence of an 
axial T2-weighted image and (2) grading of EPVS severity score at the level of the basal ganglia. T2-w images 
were chosen as they are the most used modality to grade EPVS and were the most prevalent scan in each dataset. 
Due to the acute nature of the scans, there is typically very limited time to collect data, therefore making higher 
resolution scans unfeasible. Additionally, many of the scans had significant motion artifact. After excluding 
scans of poor quality, 262 unique patients remained. Scans were removed if there was enough noise in the image 

Figure 3.  Analysis of misclassified patients. In the false positive case, the network seems to have picked up 
on remote infarcts that often resemble EPVS. In the false negative cases, there were less activations in the high 
range (> 7), i.e. activations were more homogenous.
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to obscure judgement of EPVS rating in the basal ganglia, as determined by visual inspection. This may be able 
to be automated in future studies but is most reliably done manually. Since this is a proof-of-concept study, 
we wanted to include only scans that were of adequate quality, determined by image clarity. A flowchart of the 
patients that were included is provided in supplementary Fig. 1. This study was approved by the local Institu-
tional Review Board of the University of Cincinnati and consent waived due to the retrospective nature of the 
study. All study activities were carried out in accordance with the Declaration of Helsinki and all data analyzed 
was anonymized.

Data preprocessing. T2-weighted scans were collected from 5 different sites, including academic and com-
munity hospitals, all consistent in sequence type and axial resolution. Data were stored and de-identified using 
AMBRA (http:// ambra health. com). Scans were rigidly aligned to a base image, chosen as a high-quality example 
that had a median number of slices (range = 24–36, median = 32), resampled, and skull removed. Alignment and 
skull stripping were performed with  AFNI18. Next, images were scaled, windowed, and cropped to include only 
the middle 16 slices. We chose to include only the middle 16 slices because, upon visualization of all participants, 
this range completely captured the basal ganglia for all scans while excluding extraneous slices. After visualizing 
all datasets, the optimal intensity contrast was determined to be between 82 and 90% quantiles. The process for 
determining this threshold range was: (1) several lower thresholds were tested until EPVS were thresholded out 
for any single participant and (2) several upper thresholds were tested until EPVS were clearly distinguishable 
from adjacent intensity values for every participant. These preprocessing steps narrowed the search space for the 
final model and were performed in R 4.0.319.

Ground truth. Ground truth was determined by 5 expert neuroradiologists, based on a previously published 
EPVS rating  scale1. All readers were initially assigned the same set of 30 training cases to assess inter-rater reli-
ability. After training to resolve discrepancies, a further 15 cases were assigned. Inter-rater reliability for EPVS 
scoring was 0.64 (Gwet’s AC2 statistic for ordinal score). While this reliability score is in the good range, it is 
important to keep in mind that this rating came from 5 neuroradiologists who subsequently discussed the cases 
in which there was a major disagreement (2 or more points on the rating scale). Therefore, agreement is likely 
greater than this initial assessment and there feasibly exists a latent “truth” for each of these ratings, if averaged 
across all readers. However, future studies will seek to address the determination of an optimal ground truth for 
this task.

Data partitions. Data were split into training and test sets by an 85%-15% split, stratified by EPVS severity 
(0 for < 10, 1 for ≥ 10). Binarizing the data was necessary primarily due to data quality, the amount of data avail-
able, and the relevance to the prediction of CSVD. Since the spatial resolution of the images are not optimal, it is 
difficult to classify each category of the 5-point rating scale used to grade EPVS. This binarization is consistent 
with the definition of EPVS in the calculation of total  CSVD20. The training set was split into training and valida-
tion sets by a 75%-25% split, stratified by the same criteria, resulting in training, validation, and test sets of 167, 
56, and 39, respectively. Data also varied by central reader, study site, and stroke subtype, but the limited sample 
size did not allow for stratification by these variables.

Model. A 3D-152-layer Residual Network (ResNet) was used for  classification21. Input (512 × 512 × 16 × 1) 
was fed into an initial 3D-convolutional layer (64 filters, kernel size = 7 × 7 × 7, strides = 2), followed by batch nor-
malization, rectified linear unit (ReLu) activation, and max pooling (pool size = 3, stride = 2). Then came a series 
of 50 residual units (3 with 64 filters, 8 with 128 filters, 36 with 256 filters, and 3 with 512 filters). Strides were 
set to 2 for the first residual unit and when filter size increased, and 1 otherwise. Each residual unit consisted of 
three 3D-convolutional layers, the first two with kernel size of 3 × 3 × 3 and the last with kernel size of 1 × 1 × 1. At 
the end of each residual unit, the input was passed through the last layer and added to the output. Output from 
the last residual unit was fed into a global average layer, flattened, and passed to a fully-connected dense layer 
with 1 output and sigmoid activation (Fig. 4). ReLu activation and batch normalization were implemented after 
each convolutional layer. Before the final layer, dropout of 40% was used to decrease overfitting. Glorot uniform 
initialization was used for all layers. TensorFlow in R was used for modeling.

Training. An Adam optimizer (learning rate = 0.001) was used on binary cross-entropy during  training22. 
Overfitting was reduced by model checkpointing, which monitored validation area-under-the-curve (AUC) and 
reducing the learning rate by a factor of 0.1 when validation loss plateaued for 10 epochs. Batch size was equal 
to 20. A total of 3 models were tested (ResNet-50, ResNet-101, and ResNet-152) and dropout was tuned on the 
final model. The final model and dropout rate used for this model were selected using stratified cross-validation. 
Results from this procedure can be found in supplementary Table 2. Final model selection was based on results 
that best balanced training and validation AUC.

Evaluation. Accuracy and AUC were used for model evaluation. The ‘no-information rate’ (NIR) was used 
to determine whether model accuracy was statistically significant, and a binomial test was used to compute 
95% confidence intervals. Average Cross-Lipschitz Extreme Value for Network Robustness (CLEVER) score was 
calculated for the ℓ2-norm set to assess  robustness23. 3D gradient class activation mapping (3DGradCAM) was 
used to produce normalized saliency maps (range = 0–10)24.

http://ambrahealth.com
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Code availability
Code can be found at: https:// github. com/ willi 3by/ PVSNet. Model weights can be provided upon request.
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