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Modeling of  CO2 adsorption 
capacity by porous metal organic 
frameworks using advanced 
decision tree‑based models
Jafar Abdi1, Fahimeh Hadavimoghaddam2, Masoud Hadipoor3 & 
Abdolhossein Hemmati‑Sarapardeh4,5*

In recent years, metal organic frameworks (MOFs) have been distinguished as a very promising and 
efficient group of materials which can be used in carbon capture and storage (CCS) projects. In the 
present study, the potential ability of modern and powerful decision tree‑based methods such as 
Categorical Boosting (CatBoost), Light Gradient Boosting Machine (LightGBM), Extreme Gradient 
Boosting (XGBoost), and Random Forest (RF) was investigated to predict carbon dioxide adsorption 
by 19 different MOFs. Reviewing the literature, a comprehensive databank was gathered including 
1191 data points related to the adsorption capacity of different MOFs in various conditions. The 
inputs of the implemented models were selected as temperature (K), pressure (bar), specific surface 
area  (m2/g) and pore volume  (cm3/g) of the MOFs and the output was  CO2 uptake capacity (mmol/g). 
Root mean square error (RMSE) values of 0.5682, 1.5712, 1.0853, and 1.9667 were obtained for 
XGBoost, CatBoost, LightGBM, and RF models, respectively. The sensitivity analysis showed that 
among all investigated parameters, only the temperature negatively impacts the  CO2 adsorption 
capacity and the pressure and specific surface area of the MOFs had the most significant effects. 
Among all implemented models, the XGBoost was found to be the most trustable model. Moreover, 
this model showed well‑fitting with experimental data in comparison with different isotherm models. 
The accurate prediction of  CO2 adsorption capacity by MOFs using the XGBoost approach confirmed 
that it is capable of handling a wide range of data, cost‑efficient and straightforward to apply in 
environmental applications.

Carbon dioxide  (CO2) plays a high influencing role in global  warming1. As a result of consumption of fossil 
fuels especially in electricity generation, transportation and other industrial activities,  CO2 emission into the 
atmosphere is  surging2,3. According to an investigation by Pachauri et al. in 2014, carbon dioxide’s concentration 
in the atmosphere has increased from 280 to 400 ppm with 0.8 °C1,4. It is estimated that concentration of  CO2 
would touch a peak of 600–700 ppm at the dawn of 22th century and resultantly it will lead in 4.5–5 °C growth 
in the average temperature of  earth5. Thus, as to put a halt on rapid growth of  CO2 emission rates, United States 
Department of Energy (DOE) provided the world with a program aiming for reduction of  CO2 concentrations by 
utilization of high efficiency  CO2 capture plans. According to the issued program 90% of emitted  CO2 could be 
captured just with less than 35% of additional budget allocation to carbon capture and storage (CCS)  programs6. 
These programs could be contemplated as promising approaches for the separation and sequestration of  CO2. As 
soon as carbon dioxide is separated, it could be stored underground, or alternatively it can be utilized in various 
industries such as oil industries in order to enhance the  recovery7–9. Up to date, scientists have proposed numer-
ous methods for  CO2 capture among which  absorption10–12,  membranes13,14, and carbon-based  adsorbents5,13 are 
well developed. Nevertheless; high total costs, low capacities, and challenging regeneration processes are some 
of their  limitations15. A material which could be used successfully for an efficient  CO2 capture process, not only 
should possess good characteristics for  CO2 uptake, but also must release the captured carbon dioxide in the 
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regeneration step. Furthermore, the effectiveness of the capturing process could be maximized provided that the 
structure of the material could be modified using various functional groups and molecular tuning approaches.

Metal organic frameworks (MOFs) have been distinguished as a very promising and efficient group of mate-
rials which can be used in CCS projects because of their unique properties of being modifiable, stable in high 
temperatures, and having a chemical structure which can be easily  adjusted16–20. Therefore, different advantages 
and disadvantages of MOFs have been investigated by several researchers such as an investigation done by Le 
et al., which reported how the architecture and active functional groups of MOFs could be  controlled17. Moreover, 
having conducted various investigations on the thermal stability of MOFs, scientists have reported the impact 
of morphology and crystalline shape of these materials on their thermal  stability21–24. Taking MOFs synthesized 
from strontium and calcium by the way of example, Yeh et al.25 found that, as a result of their micro-porosity, 
these materials were thermally stable in all temperatures lower than 450 °C. Some other scientific investigations 
have found that MOFs could be modified for various applications just by changing the functional groups, which 
are located on their pore  walls26,27. It is wieldy known that MOFs are comprised of metal ions clusters and link-
ers which are organic molecules. These linkers have a 3D-structure of pores and connecting channels. While 
3D-structurevoids adsorb molecules as their host, the primary structure of these materials provides reversible 
channels and pores as soon as desorption step take  place26–28. Properties of MOFs is determined by the selected 
linker and the metal. For example, zinc in the structure of IRMOF-1 is the metal which is located at the center 
of structures and is connected to the terephthalic molecules. Having this structure, IRMOF-1 benefits from 
existence of pores with high capacity of adsorption. Furthermore, there are various groups of MOFs with their 
unique structures, properties and application. Some MOFs like UMCs have unsaturated metallic  centers29, which 
provides carbon dioxide molecules with more active sites, hence facilitates formation of strong bonds between 
 CO2 and the structure. Other advantage of MOFs in comparison to other materials like zeolite is that the MOFs 
have typically wider pores, which boost diffusion rate of molecules not only in a single structure, but also between 
different  crystals30–33. That is why scientists believe that MOFs are promising for adsorption of  CO2, emphasizing 
on their adjustable porosities and having a modifiable surface  chemistry5,34–36. Regarding developing and testing 
MOF, there are some important challenges and obstacles to overcome or be solved using alternative methods. 
Firstly, experimental investigation of adsorption capacity of MOFs not only is time consuming, but also is not 
cost-effective. Secondly, data cannot be matched with the developed isotherms because typically these isotherms 
are proposed for a specific range of  data31. So as to address the problem, many scientists have been trying to use 
soft computing methods by which not only the time and money could be saved, but also there is no need for 
simplifying assumptions and the data could be modeled more precisely. Artificial intelligence (AI) approaches 
are useful tools which enable us to estimate and develop representative models in various  disciplines37–42. These 
powerful algorithms are able to model non-linear relationship which exist between influencing parameters. Up 
to the date, a plethora of models have been developed such as fuzzy logic, radial basis networks, support vector 
machine, and colony  optimization43–47.

In the current investigation, authors tried utilizing smart models for the prediction of nonlinear adsorption 
of  CO2 by MOFs. According to the literature, scientists have done fewer researches on the modeling of  CO2 
adsorption by MOFs using AI methods. To model the  CO2 uptake capacity of different MOFs, new and powerful 
methods of CatBoost, LightGBM, Random Forest (RF), and XGBoost were employed. CatBoost (which is the 
abbreviated form of categorical boosting) is an open-source and modern gradient boosting library and it can 
deal with problems which are intrinsically heterogeneous thought handling categorical features. XGboost and 
LightGBM belong to GBDTs (Gradient Boosted Decision Trees) and in these methods a tree structure includes 
two separate steps. Firstly, the appropriate structure for the tree must be found. Secondly, leaf values must be set 
as soon as the tree structure is  finalized48. Another approach which was used in this investigation was Random 
Forest. Since it was introduced, the accuracy of classifications improved significantly because not only growth of 
various trees were allowed, but also the program is able to vote for best and most distinguished  class49. Reviewing 
literature, the authors gathered 1191 data points related to the adsorption capacity of different MOFs at various 
temperatures and pressures. The investigated MOFs are ZIF-8, Zn-MOF-74, Mg-MOF-74, PCN-16, MOF-5, 
PCN-11, BeBTB, Co-BDP,  Mg2(dobdc), Cu-BTTri, MOF-177, IRMOF-1, IRMOF-6, IRMOF-3, IRMOF-11, Cu-
BTC, MOF-505, MOF-74, and MOF-250–53.

Implementation of models
Extreme gradient boosting model (XGBoost). In a tree-based ensemble method, a group of various 
classification and regression trees (CARTs) are utilized to minimize a set of objective functions applied to a 
training dataset. The XGBoost approach could be contemplated as a tree-based model which basically belongs to 
a gradient boosting decision tree (GBDT). So as to explain the CART’s basic structure, it is comprised of three 
various nodes namely (a) the main node (root node), (b) internal nodes, and (c) leaf nodes like as illustrated in 
Fig. 1. The binary decision-making processes will split the root node into internal nodes. Doing so, the dataset 
which is located in the root will be classified into various nodes in the internal nodes and the final classification 
will take place in the leaf nodes as the final classes. Aiming for developing a powerful set according to the gradi-
ent booting model, an ensemble of CATRs are introduced and developed using determination of their influence 
by giving them a specific weight during the training  process54.

In a dataset where m dimension features and n examples exist, the modeling output (y) would be trained 
according to the following expression to form n tree  nodes55:
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where a binary leaf index will be formed by mapping an example X using a defined decision rule q(x). In Eqs. (1) 
and (2), the corresponding space of each regression tree is depicted by ‘f ’. Accordingly, fk represents the kth tree, 
tree leaves are denoted by T, and their corresponding weight is determined by ω.

As the next step in the modeling, tree sets will be determined by minimizing an objective function denoted 
by L55:

In the given formulation, Ω represents the regularization function and limits the model complexity by reduc-
ing the overfitting issues; loss function is shown by l and intrinsically is a differentiable convex; the minimum 
loss is denoted by γ and it is necessary in division of a new ultimate class as a leaf, and λ stands for the regulation 
coefficient. γ and λ facilitates the growth of the variance of the model and resultantly plummet the overfitting 
 issue55. Every leaf in the boosting model has its own objective function, which should be minimized iteratively 
as  follows55:

In the presented formula, t is the iteration number for the minimization of a leaf objective function in the 
training step. So as to improve the model, an algorithm known as the greedy algorithm is utilized, which is 
designed to provide enough space for regression trees. Doing so, XGBoost model can continuously update its 
final results through improving the preciseness of the objective  functions55:
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(t)
i = ŷ
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Figure 1.  A schematic illustration of XGBoost depicting the main node, interior nodes, and the leaves.
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Shrinkage strategy is another strategy that XGBoost method utilizes properly. In this strategy, a learning fac-
tor is defined and its learning rate is regulated in every gradient boosting step through definition of additional 
weights. Shrinkage strategy prevents overfitting problem by restricting future trees from affecting previously 
formed  trees56.

Light gradient boosting machine (LightGBM). On the basis of gradient learning theories, a novel 
learning machine was developed which is known as  LightGBM57. The LightGBM approach, in comparison to 
XGBoost, needs lower memory spaces and speeds up the training step by using a  histogram58. LightGBM can 
form a histogram with a width of ‘k’ by discretizing eigenvalues into ‘k’ different bins. Furthermore, the afore-
mentioned approach diminishes the need for a set of pre-sorted results and values will be saved in an integer 
with a size of eight bits, which results in a drastic reduction of memory consumption. That said, such as kind 
of approach unfortunately results in dipping the model’s preciseness. Leaf-wise approach has also been utilized 
in LightGBM. Drawing comparison between traditional growth strategies and the leaf-wise strategy, it must be 
admitted that this approach is considerably more efficient than the others. What makes the leaf-wise strategy 
more efficient than the alternative level-wise strategy is this fact that the leaves existing in the same layer are 
properly taken into consideration, which diminish the need for unnecessary allocation of memory. Therefore, 
by finding leaves with the maximum branching gain, errors could be minimized and a better accurateness could 
be achieved. In Fig. S1, the leaf-wise strategy of tree development is illustrated. An important drawback of leaf 
orientation is that as the decision trees grow deeper, unfavorable overfitting gets exacerbated. That said, simul-
taneously when LightGBM is resulting in overfitting, by definition of an upper limit on depth of the leaf top, a 
high efficiency will be  achieved57,58.

Regarding the formulation of a LightGBM model, parameters and calculations could be introduced as 
 follows59:

Being given a training dataset of X =
{

xi , yi
}m

i=1
 , the LightGBM approach approximates a f̂ (x) according to 

a f ∗(x) aiming for the minimization of the desirable values of a loss function shown by L
(

y, f (x)
)

:

A wide variety of T regression trees with the formulation of 
T
∑

t=1

ft(x) will be formed as LightGBM sets which 

can be used for the model’s approximation. In a defined regression tree ( Wq(x), q ∈ {1, 2, . . . ,N} ), w stands for a 
vector which represents the weight of each leaf node, N depicts how many leaves exist in a tree, and the decision 
rules applied to trees are shown by q. The training step of the model development, at step t, is formulated as 
 follows59:

The objective functions are determined by utilizing Newton’s method.

Gradient boosting with categorical features support (CatBoost). In the CatBoost approach aim-
ing for successful application of categorical boosting technique, categorical columns must be utilized. The afore-
mentioned column benefit from a range of processing techniques. The target-based statistics and the one_hot_
max_size (OHMS) are the most important ones. In the growth of every branch of the running tree, a greedy 
approach will be applied to facilitate finding changes in the combination of features of CatBoost  method60. In the 
CatBoost method, the following steps must progress properly for every feature of various  categories48,61:

1. To form a random subgroup of the available records
2. Convert labels to integer
3. According to Eq. (7), features related to categories must be transformed into numeric form:

In the given formulation, targets are counted by countInClass. Each target is assigned with some categorical 
features, each having a value of one, and all the previous objects will be counted in totalCount (the prior ones 
which are needed in counting the objects are determined by the initiating parameters)48,61.

Random forest (RF). An ensemble of various decision trees forms a random forest, in which trees are being 
trained in parallel. The superiority and the importance of each decision tree is determined by the  algorithm62. 
Additionally, a built-in property of RF classifier which is utilized to select various features makes the RF able 
to manage different inputted features without need for removing a number of parameters for reduction of 
 dimension63. In the modeling, in order to enhance the diversity of trees of the forest, the RF technique employs a 
method known as Bagging (which stands for bootstrap aggregating). Typically, the population of trees are given 
as an input to the model, and accordingly the model will divide data points into various sets. Being a type of 
random sampling methods, bagging employs just a third of data points for the training step of a subtree develop-
ment process and the remaining data points are referred as the out-of-bag (OOB). Furthermore, in the model 
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development cross-validation of results are not required in the RF, as the accuracy of the model is assessable 
using the OOB’s  errors49. In Fig. S2, the strategy of RF method is illustrated. A successful training process will 
happen if a training sample is given to the model as a requirement. If there is a training data set in the form of 
D =

[(

x1.y1
)

.
(

x2.y2
)

. · · ·
(

xn.yn
)]

 , the defined training dataset for tree ht will be denoted by Dt , and the resulting 
prediction of the out-of-bag dataset of sample x will be Hoob , as it is given as  follows49:

For the purpose of the modeling, the error of the OOB dataset is generalized as  follows49:

The RF’s operation should be random and this feature is controlled by a parameter formulated as k = log2d
49. 

The significance of a characteristic of a variable Xi could be measured using the following  expression49:

Accordingly, in the X vector, the ith factor is denoted by Xi , B depicts how many trees exist in the current RF, 
the predicted error of the OOB samples is defined by ÕOBerrti , which stands for the feature Xi of tree t  , and finally 
the initial OOB data samples are given as the OOBerrt , which includes the permuted variables.

The significance of the character permutation process illustrates how much a feature is salient for the estima-
tion. Resultantly characteristic permutation severely changes the model’s estimation and it can be conclusively 
observed that an insignificant feature possess a very limited power for changing the prediction of the  model64. 
Figure 2 shows the feature selection and classification using different algorithm for predicting  CO2 adsorption 
on MOFs.

Data gathering
A dataset comprising of approximately 1191 experimental results of  CO2 uptake on various MOFs includ-
ing ZIF-8, Zn-MOF-74, Mg-MOF-74, PCN-16, MOF-5, PCN-11, BeBTB, Co-BDP,  Mg2(dobdc), Cu-BTTri, 
MOF-177, IRMOF-1, IRMOF-6, IRMOF-3, IRMOF-11, Cu-BTC, MOF-505, MOF-74, and MOF-2 was collected 
reviewing the  literature51–53. Table 1 represents the details of the data used in this study. Moreover, Table 2 lists 
down the statistical details of the whole dataset which was collected for the purpose of this investigation. Trying 
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Figure 2.  Feature selection and classification using different algorithm for predicting  CO2 adsorption on MOFs.
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to conceptualize and perceive the effect of various parameters on the MOF’s  CO2 uptake capacity, the authors 
have incorporated temperature (K), pressure (bar), surface area  (m2/g) and pore volume  (cm3/g). To provide a 
precise and reliable set of models, deliberately about 80% of data points were devoted to model establishment 
and training phase and just about 20% were considered for testing phase. Therefore, the models’ preciseness and 
trustworthiness were ensured by utilizing two statistical factors, namely root mean-square error (RMSE) and 
coefficient of determination  (R2) were  used65–67:

Outlier detection. Having a range of uncertainties and being associated with outliers, experimental data 
can introduce errors in the modeling process. To prevent any undesirable and not reliable outcome, the experi-
mental models must undergo data evaluation and outlier detection. For the case of  CO2 adsorption on various 
MOFs, the faulty data points will enormously impact the preciseness of the predicting models. In the outlier 
detection process, as soon as a notable deviation of a data point from the others is detected, it will be recognized 
as an outlier. This study seeks benefits from the well-known leverage value procedure for spotting an  outlier68. 
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Table 1.  Details of the experimental data used in this study.

No MOF
Surface area 
 (m2/g)

Pore volume 
 (cm3/g) Temperature (K) Pressure (bar)

CO2 uptake 
(mmol/g) No. data Refs.

1 MOF-2 345 0.227 298 0–42.2 0–3.20 39 51

2 MOF-74 816 0.4 298 0–42.4 0−10.4 31 51

3 MOF-505 1547 1.83 298 0–42.5 0–10.4 31 51

4 Cu3(BTC)2 1781 0.43 298 0–42.4 0−10.7 30 51

5 IRMOF-11 2096 0.92 298 0–42.4 0–14.8 32 51

6 IRMOF-3 2160 1.07 298 0–42.2 0–18.9 37 51

7 IRMOF-6 2516 1.14 298 0–42.5 0–19.7 37 51

8 IRMOF-1 2833 0.18 298 0–42.2 0–22.0 35 51

9 MOF-177 4508 1.59 298 0–42.5 0–33.9 70 52

10 CuBTTri 1750 0.713 313 0.546–39.86 1.16–16.99 43 52

11 Mg2(dobdc) 1800 0.5727 313 0.0005–35.32 0.09–15.15 51 52

12 CoBDP 2030 0.93 313 1.31–39.87 0.28–16.56 31 52

13 BeBTB 4030 1.701 313 1.02–38.83 1.79–30.17 40 52

14 PCN-11 1931 0.91 220–310 0–30.80 0 -22.84 104 53

15 MOF-5 3500 1.31 220–310 0–31.43 0–30.34 96 53

16 PCN-16 2273 1.06 220–310 0–31.66 0–21.51 120 53

17 HKUST-1 1690 0.66 220–310 0–24.99 0–19.36 130 53

18 Mg-MOF-74 1332 0.61 280–310 0–31.63 0–13.55 63 53

19 Zn-MOF-74 885 0.41 280–310 0–31.39 0–10.65 63 53

20 ZIF-8 1980 0.65 220–310 0–31.6 0–11.83 108 53

Total 220–313 0–42.5 0–33.9 1191

Table 2.  Statistical details of the dataset gathered in this paper.

Pressure (bar) Temperature (K) Surface area: S  (m2/g) Pore volume:  VP  (cm3/g) CO2 uptake (mmol/g)

Mean 10.469 286.319 2156.937 0.877 10.910

STD 11.539 28.238 969.463 0.409 8.512

Min 0 220 345 0.180 0

25% 1 280 1690 0.610 4.9

50% 5.2 298 1980 0.910 9.899

75% 17.714 310 2273 1.070 16.065

Max 42.5 313 4508 1.830 141
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Firstly, the standardized residual and the Hat and value corresponding to any input data were calculated. The 
following formulation was used for the determination of Hat  matrix37:

In the abovementioned formula, X represents a matrix with a size of N × P, where the total number of data 
points is depicted by N and the number of inputs’ features is denoted by P. Additionally, an alarming leverage 
value was determined as  follows37:

Results and discussion
Model development. For predicting the amount of  CO2 absorbed on the surface of various MOFs, we 
developed various models using XGboost, LightGBM, Catboost and RF methods. In order to avoid overfitting, 
the grid search was used to optimize hyperparameters of models. Each model’s grid search hyperparameters 
were different, and the importance of the hyperparameters was determined by theoretical and practical consid-
erations. For each model, the following hyperparameters were employed. Table S1 shows the optimal values of 
the major hyperparameters, as well as the search intervals for the hyperparameters set for the machine learning 
models used in this study.

In Table S1, n_estimators represents the number of trees, subsample shows subsample ratio of columns when 
constructing a tree, C denotes a degree of importance that is given to misclassifications, max_depth is maximum 
depth of a tree, feature_fraction is parameters randomly selected in each iteration for building trees, learning_rate 
controls the impact of each tree on the final outcome.

Model implementation and accuracy evaluation. The most salient feature of each model is its accu-
racy and trustworthiness. In Fig. 3 and Fig. S3, the predicted  CO2 adsorption capacity is illustrated versus the 
experimental data for the implemented models, in which the closer predicted data to the experimentally obtained 
data (forming a y = x line), the more accurate the model is. In the given figure, almost all models illustrate a slope 
very close to unity which prove that all of them can be reliable when anticipation of real data is needed. As an 
important statistical criterion, the calculated error corresponding to every data point is depicted in Fig. 4 and 
Fig. S4, which provide the readers with comprehensive information about the preciseness of the proposed mod-
els. Delineated in the given illustrations, data points fluctuate closely around the zero-error line which indicates 
that the models were developed well. According to this figure, the calculated error for RF, Catboost, LightGBM, 
and XGBoost are limited to ± 10, ± 8, ± 7, and ± 12.5, respectively. The cumulative frequency of errors of each 
developed model is illustrated in Fig. 5. As it can be seen, 95% of the data predicted by XGBoost model has an 
error less than 1%. Moreover, Catboost model could predict 89% data with errors less than 1%.

In Table 3, the accuracy of each model is reported based on statistical criteria. As it can be perceived from 
this table, having an  R2 of 0.9992 and 0.9733 in the training and testing steps of modeling, the XGboost is the 
most trustworthy model followed closely by the Catboost model.

Moreover, the calculated RSME for every model is given in Fig. S5 from which it is obvious that the XGBoost 
model is the most aureate model having an RSME of 0.568. Following closely, the LightGBM approach had 
the second lowest RSME value. According to both of RSME and  R2 criteria, RF was determined as the poorest 
predicting model.
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Figure 3.  Crossplots of the proposed machine learning models in this study.
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With increasing pressure, the saturation process of the MOFs’ pores will be facilitated according to the 
room-temperature isotherms. From these isotherms, it can be perceived that the uptake capacity of each MOF is 
qualitatively related to its surface area and among all types of assessed MOFs in the current study, the MOF-177, 
BeBTB, MOF-5 and PCN-11 showed outstanding and considerable  CO2 adsorption capacity. As the pore sizes are 
greater and more efficient, the contribution of the pressure regime appearance gets more influence on the  CO2 
uptake  capacity69,70. Comparison among all mentioned porous materials, the MOF-177 had a maximum capacity 
of 33.5 mmol/g, because of its high surface area (4508  m2/g) nearly twice of IRMOF-11. Figure 6a illustrates a 
detailed representation of uptake capacities in different pressures at 298 K for the investigated MOFs. Also, Fig. 6b 
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Figure 5.  The cumulative frequency plot for the developed predictive models.

Table 3.  Calculated statistical criteria for the developed models.

Statistical criteria R2 RSME

XGBoost

Train 0.9992 0.2515

Test 0.9733 1.1649

Total 0.9955 0.5682

LightGBM

Train 0.9876 0.9819

Test 0.9599 1.4245

Total 0.9837 1.0853

CatBoost

Train 0.9660 1.6270

Test 0.9653 1.3259

Total 0.9659 1.5712

Random Forest
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Total 0.9466 1.9667
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draws a comparison between the  CO2 adsorption efficiency of MOF-177 at 313 K and a range of other MOFs. 
It has also been discovered that the amount of  CO2 adsorption on the MOF structure is directly related to the 
surface area and the polarity of the surface. As these features are higher, more  CO2 will be absorbed and even in 
low pressures a high adsorption will be achieved using some MOFs like Cu-BTTri and  Mg2(dobdc). Moreover, 
operating at a high pressure significantly affects the  CO2 adsorption capacity.

Regarding Co-BDP, a step-like appearance for the adsorption isotherm can be seen, which is potentially 
resulted from a phenomenon known as the gate opening. This event takes place due to the notable flexibility of 
the MOF’s  framework71,72. This claim must not be interpreted as if the other MOFs are not efficient and practical 
in  CO2 removal endeavors, but it means that MOF-177 has an excellent  CO2 removal capacity at 35  bar51. Further-
more, as presented in Fig. 7, dependency of adsorption capacity on the operational temperature is considerable, 
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Figure 6.  Comparison between experimental and predicted  CO2 uptake capacities by XGBoost model for the 
investigated MOFs at different temperatures: (a) 298 K and (b) 313 K.
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and generally for MOF-5, the  CO2 uptake capacity was higher at room temperature than its capacity at 313 K. 
Thus, temperature negatively affects the carbon dioxide adsorption efficiency. In other words, with increasing 
temperature, the adsorption capacity decreases.

Ability of various models in prediction of  CO2 adsorption capacity at low pressure ranges is shown in Fig. S6, 
in which the models were utilized to estimate  CO2 removal efficiency of  Mg2(dobdc) at 313 K. Among all models, 
the XGBoost and CatBoost were found to be the most trustable models. Moreover, this model can be successfully 
compared with different isotherm models. As illustrated in Fig. 8 and Fig. S7, XGBoost as the best model along 
with Langmuir, Freundlich, Dubinin-Radushkevitch (D-R) and Sips isotherm models were fitted with experi-
mental data for PCN-11 and Mg-MOF-74. Figures show that both Langmuir and XGBoost models predicted 
the results well. Langmuir isotherm model showed well-fitting with correlation coefficient of 0.999 and 0.980 for 
PCN-11 and Mg-MOF-174, respectively, but totally the XGBoost models represented better fitting correlation 
with  R2 values of 0.998 for both MOFs.

Microporous MOFs are new emerging generation of promising adsorbents which can drastically improve 
the  CO2 removal efficiency due to their high selectivity ranges. Using these materials, a higher  CO2 uptake 
capacity could be  achieved73 specially between 5 and 40 bar which is appropriate for the separation of  CO2 and 
 H2

74,75. In power plants in which coal is mainly consumed for generation of power, a wide range of pollutants 
will be emitted to the environment including carbon dioxide. As a highly efficient process, pre-combustion 
capture of  CO2 can take place in the integrated gasification and combined cycle method. In this system, carbon 
dioxide could be separated from  H2 and removed from the  process5,65,76. Additionally, the intrinsic feature of 
the surface of these materials will result in a better and more powerful interaction between  CO2 and the surface 
of the  MOFs77. Due to their promising removal efficiency, many scientists have paid attention to integration 
of these materials into various industries including gas separation and purification processes in the petroleum 
industry specially when separation of  CO2/N2

78,  CO2/CH4
71, and  O2/N2

79 are desired. To successfully investigate 
the adsorption process, a profusion of experimental endeavors has been done and lot of isotherm models have 
been developed. Nevertheless, a range of drawbacks have prevented both of experimental works and theoreti-
cal approaches to successfully be used. Firstly, the designing and conducting experiments are time consuming 
and costly. Additionally, a wide range of various assumptions must be made to simplify the problem when the 
currently available adsorption isotherms are going to be utilized. Resultantly, not only a big inventory of data is 
needed, but also modeling process encounters errors from first the steps of the investigation. These errors will 
be exacerbated if a set of needed data is not  accessible31. Therefore, application of cost-effective, time-saving, 
robust, and simple model is vital in the investigation and prediction of  CO2 adsorption capacity by MOFs. The 
presented investigation has dealt with the adsorption of  CO2, as one of the main causes of global warming  issue5, 
on MOFs, which are known as very promising materials for  CO2 removal, by applying some well-known soft 
computing techniques. The most outstanding feature of these models was this fact that no limitation for the 
development of these comprehensive models were needed to be applied. Therefore, being capable of handling 
a wide range of data, the implemented models have estimated the adsorption capacity at various pressures and 
temperatures accurately. However, the models’ performance and reliability are highly dependent on the selection 
of appropriate input  parameters1. Additionally, successful application of smart models requires a large number 
of data points and excellent skills of programming.

Based on the calculated Hat values, an area limited by standardized residuals of ± 3 and 0 ≤ H ≤  H* is detected 
as the acceptable region. H* is determined for every model. The model is valid if majority of the data points are 
being located in the determined region. Figure 9 shows the Williams plot relating to the proposed XGBoost model 
as the best approach in this study. According to this figure, almost all data points were inside the acceptable region 
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and just a few data points are located outside the desirable area. Thus, both developed model and experimental 
data are statistically valid.

Sensitivity analysis. To investigate the impact of various parameters on the adsorption capacity of MOFs, 
a relevancy factor was defined as  follows80–82:

in which N, Xk,i, Yi, X ̅k, Y ̅ stand for the number of assembled data points, the  kth parameter of  ith input value,  ith 
output data, mean of the kth input parameter, and the average of the outputs, respectively.

Laying between ± 1, the relevancy factor depicts how much an input parameter affects the  CO2 removal capac-
ity of the MOFs. As the absolute value of the relevancy factor corresponding to a specified parameter increases, 
the carbon dioxide adsorption capacity will change more dramatically with any change in that parameter. The 
calculated relevancy factor for each affecting parameter on the adsorption of  CO2 on various MOFs is illustrated 
in Fig. 10. According to the calculated r values, among all investigated parameters, only temperature negatively 
impacts the adsorption capacity having an r = − 0.114. Furthermore, it was found that pressure and surface area 
of MOFs have the most and the second most significant effects on the  CO2 adsorption capacities possessing “r” 
factors of 0.478 and 0.337, respectively. Pore volume also was found to have a positive impact on the  CO2 adsorp-
tion capacity of MOFs as provides more adoption sites for  CO2 molecules to be captured by them.

Conclusions
The adsorption capacity of various MOFs for  CO2 capture was modeled by development of robust models using 
1191 data points. The data was used to train and test the XGBoost, LightGBM, CatBoost, and RF approaches and 
it was found that the XGBoost as the best fitting model and the Catboost as the second most trustworthy model 
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predicted the  CO2 adoptions more precisely than other methods. The  R2 and RMSE values of 0.9955 and 0.5682, 
0.9659 and 1.5712, 0.9837 and 1.0853, and 0.9466 and 1.9667 were obtained for XGBoost, CatBoost, LightGBM, 
and RF approaches, respectively. Additionally, it was found that all parameters except temperature have positive 
impact on the  CO2 capture by MOFs and temperature had the smallest influence on the  CO2 uptake capacity. 
It has also been discovered that the amount of  CO2 adsorption on the MOF structure is directly related to the 
surface area and the polarity of the surface. As these features are higher, more  CO2 will be absorbed and even at 
low pressures, a high adsorption could be achieved using some MOFs like Cu-BTTri and  Mg2(dobdc). Langmuir 
isotherm model showed well-fitting with correlation coefficient of 0.999 and 0.980 for PCN-11 and Mg-MOF-174, 
respectively, but totally the XGBoost models represented better fitting correlation with  R2 values of 0.998 for 
both MOFs. The obtained results of the current work could be beneficially utilized in the environmental studies 
such as carbon capture and gas separation and purification.
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