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A global analysis of conservative 
and non‑conservative mutations 
in SARS‑CoV‑2 detected in the first 
year of the COVID‑19 world‑wide 
diffusion
Nicole Balasco1,3, Gianluca Damaggio2,3, Luciana Esposito1, Flavia Villani2, Rita Berisio1, 
Vincenza Colonna2 & Luigi Vitagliano1*

The ability of SARS‑CoV‑2 to rapidly mutate represents a remarkable complicancy. Quantitative 
evaluations of the effects that these mutations have on the virus structure/function is of great 
relevance and the availability of a large number of SARS‑CoV‑2 sequences since the early phases of the 
pandemic represents a unique opportunity to follow the adaptation of the virus to humans. Here, we 
evaluated the SARS‑CoV‑2 amino acid mutations and their progression by analyzing publicly available 
viral genomes at three stages of the pandemic (2020 March 15th and October 7th, 2021 February 
7th). Mutations were classified in conservative and non‑conservative based on the probability to be 
accepted during the evolution according to the Point Accepted Mutation substitution matrices and on 
the similarity of the encoding codons. We found that the most frequent substitutions are T > I, L > F, 
and A > V and we observe accumulation of hydrophobic residues. These findings are consistent among 
the three stages analyzed. We also found that non‑conservative mutations are less frequent than 
conservative ones. This finding may be ascribed to a progressive adaptation of the virus to the host. In 
conclusion, the present study provides indications of the early evolution of the virus and tools for the 
global and genome‑specific evaluation of the possible impact of mutations on the structure/function 
of SARS‑CoV‑2 variants.

In the last months of 2019, a novel and severe acute respiratory syndrome emerged in the Chinese city of Wuhan. 
Within a few weeks, this local disease spread worldwide leading the World Health Organization to declare the 
outbreak “a public health emergency of international concern” (January 30th 2020). The causative agent of this 
disease was identified on December 31st in a novel coronavirus (Severe Acute Respiratory Syndrome Corona-
virus 2—SARS-CoV-2) whose first genome sequencing was reported in mid-January 2020 (GISAID accession 
ID: EPI_ISL_402124) (https:// www. gisaid. org/)1. Despite the enormous efforts made globally, the development 
of effective therapeutic or preventive approaches for this disease is still an ongoing process. Among others, the 
ability of SARS-CoV-2 to mutate rapidly represents a remarkable complicacy. SARS-CoV-2 is a Baltimore class 
 IV2 positive-sense single-stranded RNA virus and is a member of the subgenus Sarbecovirus (beta-CoV lineage 
B)3. Its RNA sequence contains approximately 30,000 bases (GISAID; https:// www. epicov. org)1,4 that encode 28 
distinct proteins. Since the publication of the first SARS-CoV-2 genome, a remarkable number of variants have 
been daily characterized. This provides a unique opportunity to monitor the evolution of the mutations during 
the process of the virus adaptation to the host in a sort of evolution in action. As typically observed in  viruses5, 
SARS-CoV-2 presents a remarkable propensity to mutate. The estimated mutation rate of SARS-CoV-2 is about 
9.8 ×  10–4 substitutions per site per  year6. Although only indirectly related to the mutation rates, several studies 
analyzed the distribution and frequencies of the observed SARS-CoV-2 mutations. These analyses have been 
conducted on the entire genome or on specific proteins considered to be crucial for the development of effective 
therapeutics  interventions6–12. In the present paper, we evaluated the SARS-CoV-2 amino acid (AA) mutations 
at three stages of the pandemic: 2020 March 15th, 2020 October 7th, and 2021 February 7th. In particular, we 
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classified the mutations in conservative and non-conservative ones based on the probability to be accepted 
during the evolution according to the Point Accepted Mutation substitution  matrices13 and on the similarity of 
the encoding  codons14. The comparative analysis of mutations detected at these three stages of the pandemic 
unravels significant analogies despite the huge difference in their overall content. The present study provides 
some indications of the early evolution of the virus and useful tools for the global and genome-specific evalua-
tion of the impact that mutations could have on the structure/function of SARS-CoV-2 variants that emerged 
or will emerge in the pandemic.

Results
To monitor the evolution of the SARS-CoV-2 virus in the first months of the pandemic we evaluated the amino 
acid (AA) substitutions retrieved from the GISAID database (https:// www. gisaid. org/)1 at 2020 March 15th (Data-
Mar20—Supplementary Table S1), 2020 October 7th (DataOct20—Supplementary Table S2), and 2021 February 
7th (DataFeb21—Supplementary Table S3). Using the sequence of the Wuhan genome as reference (GISAID 
accession ID: EPI_ISL_402124) we considered mutations occurring in the same position of each viral protein 
only once even if present in different genomes. While this choice does not provide information on homoplastic 
mutations, the occurrence of this kind of mutations has proved to be minimal compared to the global number 
of substitutions detected in the virus  genomes6,12.

Definition of conservative and non‑conservative mutations. The AA substitutions were classified 
according to two criteria. First, we considered the Point Accepted Mutation (PAM) score, i.e. the likelihood 
that an AA substitution is accepted by natural selection based on the probability of finding the same mutation 
in highly homologous  proteins13. In particular, after considering the very low percentage of mutated AAs per 
SARS-CoV-2 genome, we referred to the mutation probability matrix of PAM1 that reports the probability of a 
specific AA replacement in sequences that are 1%  different13. The PAM values used in this work are the prob-
abilities reported in the PAM1 matrix multiplied by 10,000 (Supplementary Table S4). Second, we considered the 
number of base changes required at codon level to generate the AA replacement. It has been recently reported 
that out of 380 possible AA substitutions, some (150) may occur with a single base change in the codon whereas 
the others (230) require more than one base change in the genetic code to  happen2 (Table 1).

We evaluated the interplay between these two criteria by separately plotting the PAM values of these two 
classes of mutations (Fig. 1). A comparative analysis of Fig. 1A,B clearly indicates that all mutations having PAM 
values larger than 12 can occur with a single base substitution. On the other hand, we observed that the PAM 
range of the substitutions requiring more than one change is 0–12 (Fig. 1B). Therefore, based on the fact that 
high PAM values are associated with changes between AAs that present minimal differences in their chemico-
physical properties, and based on the evidence that the maximum PAM value in substitutions that require more 
than one base change is 12, we define as non-conservative and conservative the mutations with PAM values 
falling in the range 0–12 and > 12, respectively.

Analysis of the AA mutations detected at March 2020. The analysis of the mutations occurring 
in the 581 SARS-CoV-2 genomes deposited in the GISAID database up to 2020 March 15th unravels that 508 
of them (87.4%) contain at least one AA substitution compared to Wuhan reference genome. Notably, six of 

Table 1.  Grouping of the AA substitution types according to the Point Accepted Mutation (PAM) score and 
the number of base changes required at the codon level. Theoretical values and the number of AA substitution 
types detected in DataMar20, DataOct20, and DataFeb21 are also reported.

PAM 0–12 PAM > 12 Overall

Theoretical

1 base change 107 43 150

> 1 base change 230 – 230

Total 337 43 380

DataMar20

1 base change 70 37 107

> 1 base change 9 – 9

Total 79 37 116

DataOct20

1 base change 107 43 150

> 1 base change 228 – 228

Total 335 43 378

DataFeb21

1 base change 107 43 150

> 1 base change 230 – 230

Total 337 43 380

https://www.gisaid.org/
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these genomes present more than ten amino-acid mutations, with one (GISAID accession ID: EPI_ISL_406592) 
having 18 replacements (Supplementary Fig. S1). The inspection of these sequences led to the identification of 
404 AA substitutions (DataMar20—Supplementary Table S1). Among these, 395 require a single base change 
and nine (Y > E, Y > I, W > Y, V > Q, T > F, S > M, L > K, F > R, and A > Q) require more than one change. These 
nine mutations occur only once and present PAM values that fall in the range 1–3, with seven of them having 
PAM = 1.

In the ensemble of 404 AA substitutions we identified 116 types of AA replacements out of the 380 possible 
ones (Table 1), i.e. only ~ 31% of the possible substitutions had occurred. Of these, 107 correspond to replace-
ments that can occur with a single base change, i.e. the ~ 71% of the possible substitutions occurring with a single 
change (150). The distribution of these 107 AA substitution types as a function of the PAM value is reported in 
Fig. 2A. As most of the substitution types have rather low PAM values (337 out of 380 have PAM < 12, Table 1 
and Supplementary Table S4), we plot the percentage of the observed over the possible substitutions within each 
PAM value. Figure 2B shows that on this relative scale the conservative mutations are almost all realized (37 out 
of 43; 86.0%) compared to non-conservative ones (70 out of 107; 65.4%), which present a significant number of 
missing substitution types (Table 1).

Since the 395 AA substitutions that take place within a single base change correspond to 107 substitutions 
types, on average each substitution type is found 3.7 times (395/107). As shown in Fig. 3A, the observed substitu-
tion types have rather different frequencies. Although the most frequent replacement is T > I that is observed 30 

Figure 1.  Frequency of the 380 amino acid substitution types that can either occur with a single base change 
(A) or require more than one base change (B) as function of the PAM value. The maximum PAM value 
observed in substitutions that require more than one base change is 12.

Figure 2.  (A) Frequency of the 107 types of amino acid replacements that can occur with a single base 
change detected in the DataMar20 dataset according to their PAM value. In orange substitutions classified as 
non-conservative, in cyan conservative ones. The overall higher number of non-conservative compared to 
conservative mutations observed is due to the fact that 337 out of the 380 substitution types have PAM in the 
range 0–12 and therefore classify as non-conservative. (B) Frequency of observed over possible substitutions 
within PAM values.
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times, we observe that conservative substitutions present a significantly higher average number of occurrences 
compared to the non-conservative (Fig. 3B, Wilcox-test p-value = 0.003).

When considering average occurrences per PAM value (Fig. 3C), we observed that some values (6, 7, 13, and 
17) have very large standard deviations. This finding suggests that for these values, outliers, i.e. AA substitutions 
with enhanced frequencies compared to the others sharing the same PAM value, might be present. The inspec-
tion of Fig. 3A corroborates this observation as the PAM values of 6, 7, 13, and 17 contain the very frequent 
substitutions L > F (17 times), T > I (30 times), A > V (21 times), and P > S (19 times), respectively (Supplemen-
tary Table S5). Notably, three (L > F, T > I, and A > V) of these most frequent substitutions led to an increase of 
hydrophobicity (Supplementary Table S6).

To further investigate this aspect, for each AA we estimated its enrichment/depletion in counts of mutated 
versus original residues. In Fig. 4A we show a trend of enrichment of hydrophobic residues and depletion of the 
hydrophilic ones that corroborates previous observations. This trend is further confirmed when considering 
the differences in hydrophobicity (ΔHydrophobicity) between mutated and original residues (Fig. 4D), as the 
ΔHydrophobicity averaged over all the 404 observed mutations is slightly positive (0.18 ± 1.04).

The classification of the observed AA substitutions following the PAM values was also used to assign a genome 
divergence index (GDI) to a certain genome with respect to the reference one by considering all the individual AA 
substitutions present in that genome. Each mutation contributes to the score differently depending on its PAM 
value (see “Methods” for details). The GDI values calculated for the genomes deposited in the GISAID database 
up to 2020 March 15th presenting the highest number of mutations is reported in Supplementary Table S7. 
Although these GDI values are still dominated by the number of the mutations per genome, this parameter dif-
ferentiates genomes having the same number of mutations.

Figure 3.  (A) Counts of the observed mutations (non-conservative in orange and conservative in cyan) 
detected in the DataMar20 dataset grouped by PAM value. (B) Boxplot of the number of occurrences per 
substitution types. (C) Average and standard deviation (bars) of the number of occurrences within PAM values.
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Analysis of the AA mutations detected at October 2020. We compared the trends observed in the 
DataMar20 dataset with those detected in the dataset DataOct20 (Supplementary Table S2) that contains a much 
larger number of mutations (25,634) identified in 135,404 genomes. In contrast to DataMar20, almost all pos-
sible AA substitutions are present in DataOct20 (378 out of 380) (Table 1). The two missing ones (W > D and 
W > E) are among the most non-conservative substitutions as they require more than one base change and pre-
sent a PAM value of zero (Supplementary Table S4). As expected mutations that can occur through a single base 
change (Fig. 5) present frequencies that are much higher than those requiring multiple base changes (Fig. 6).

When analyzing the frequency of the 378 substitution types stratified by PAM values and number of changes 
required, we observe that conservative mutations are more frequent compared to non-conservative ones (Figs. 5 
and 6). Indeed, for mutations occurring with a single base change, the quantitative comparison of the frequen-
cies of the conservative and non-conservative mutations (Fig. 7A) using the Wilcox-test provides a p-value of 
4.8 ×  10–6. As expected, the mutations requiring more than one base change, which are all non-conservative, 
present significantly lower frequencies compared to the non-conservative mutations occurring in a single base 
change (Fig. 7A, Wilcox-test p-value < 2 ×  10–16).

When considering the average occurrences of mutations per PAM value, we observe that conservative muta-
tions generally exhibit larger frequencies than non-conservative and that some values present large standard 
deviations that may be indicative of the presence of outliers (Fig. 7B,C). Similarly to what observed in Data-
Mar20, also in DataOct20 the most frequent replacement is T > I (573 times), followed by A > V (529 times), 
L > F (517 times), and V > I (473 times) (Fig. 5 and Supplementary Table S5). It is worth mentioning that, despite 
the general trend outlined above, two of these highly occurring mutations (T > I PAM = 7 and L > F PAM = 6) are 
non-conservative substitutions. The inspection of occurrences of the mutations requiring more than one base 

Figure 4.  Variation of the total content in amino acids as consequence of the mutations stratified by 
hydrophobicity in DataMar20 (A), DataOct20 (B), and DataFeb21 (C) datasets. For each amino acid, the 
enrichment/depletion in counts of mutated versus original residues is reported. Residues with negative or 
positive hydrophobicity are colored in red and blue, respectively. Distributions of the ΔHydrophobicity for 
mutations in DataMar20 (D), DataOct20 (E), and DataFeb21 (F) datasets.
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change indicates that A > L (121 times) and T > L (114 times) are the most frequent ones (Fig. 6). Collectively 
these findings indicate that most frequent substitutions led to an increase of the hydrophobicity, independently 
of the number of codon base changes required for the mutation.

This is also evident from the analysis of enrichment/depletion in counts of mutated versus original residues as 
shown by the consistent increase in the two most hydrophobic residues, F and I and the decrease of hydrophilic 
residues (Fig. 4B). Among hydrophilic residues the arginine (R) is an exception being significantly enriched. 
This may be ascribed to the complicated hydrophobic/hydrophilic behavior of this residue that presents both a 
charged group (guanidinium) and an aliphatic chain extending from the  Cα to the  Cδ atoms.

As a consequence of these changes, the distribution of the ΔHydrophobicity values is slightly shifted toward 
an increased hydrophobicity (mean ΔHydrophobicity 0.08 ± 1.16) (Fig. 4E). The large number of mutations 
contained in DataOct20 allowed the analysis of the ΔHydrophobicity also for the individual viral proteins. This 
analysis indicates that the rise in hydrophobicity is not uniform but rather driven by some proteins such as the 
protein N that exhibits the highest value (Supplementary Fig. S2 and Table S8).

Finally, we evaluated the GDI index for the sixty most mutated AA sequences. Although in some cases the 
index provides different values for genomes with the same number of mutations, the total number of substitutions 

Figure 5.  Frequencies of the observed mutations that can occur with a single base change grouped in 
conservative (cyan) and non-conservative (orange) types detected in the DataOct20 dataset.
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Figure 6.  Frequencies of the observed mutations that require more than one base change detected in the 
DataOct20 dataset.
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dominates its value (Supplementary Table S9). This is due to the fact that all of these genomes include many 
mutations with low PAM values.

Analysis of the AA mutations detected at February 2021. The data collected considering the 
mutations at March and October 2020 were compared to those obtained by performing similar analyses on 
the ensemble of the mutations detected up to 2021 February 7th (DataFeb21—Supplementary Table S3) that 
essentially corresponds to the first year of the worldwide SARS-CoV-2 spread. This dataset contains 38,986 AA 
substitutions identified from the analysis of 415,516 genomes. An idea of the mutations accumulated up to 2021 
February is provided by the analysis of the replaced residues in the Spike protein, a crucial factor for the virus 
entry in the host cells and an important target for preventive and therapeutic approaches. Overall, 5809 muta-
tions were found for this protein. Considering that Spike contains 1273 residues, the average mutation occur-
rences per residue is 4.6. The most mutated AA residue is Asp80 that is replaced by 12 other residues out of the 
19 possible substitutions. Only 12 residues (Ser383, Lys386, Leu387, Asn422, Tyr423, Gly601, Gln644, Cys749, 
Arg983, Glu988, Gln992, and Cys1126) of the protein (0.94%) were never mutated. As shown in Fig. 8, all of 
the residues belonging to the N-terminal domain of the protein were found to be mutated at least once. In this 
domain, residues presenting the highest frequency of mutation are present (Supplementary Figs. S3 and S4).

All theoretically possible AA substitutions (380) are present in DataFeb21 (Table 1). As found for the earlier 
datasets, mutations that can occur through a single base change present frequencies that are much higher than 
those requiring multiple base changes (Figs. 9 and 10). The analysis of the frequencies of these 380 possible sub-
stitutions as function of the PAM values and of the number of changes required clearly indicates that conservative 
mutations are more frequent compared to non-conservative ones (Fig. 9).

For mutations occurring with a single base change, the quantitative comparison of the frequencies of the 
conservative and non-conservative mutations (Fig. 11A) using the Wilcox-test provides a p-value of 5.0 ×  10–6. 
Again, the mutations requiring more than one base change, which are all non-conservative, show considerably 
lower frequencies compared to the non-conservative mutations occurring in a single base change (Fig. 11A, 
Wilcox-test p-value < 2 ×  10–16).

We then checked whether the trends emerged from the global analysis of the mutations could also be detected 
for the individual proteins of the virus. To this aim, we considered the proteins exhibiting the largest number of 
mutations (NSP3, Spike, NSP2, NSP12, and N) (Supplementary Table S10). Interestingly, for all of these proteins 
conservative mutations present frequencies that are significantly higher than those shown by non-conservative 
ones, thus confirming the trends highlighted by the overall analysis (Supplementary Figs. S5–S9).

When we consider the average occurrences of mutations per PAM value, we observe that conservative sub-
stitutions generally exhibit larger frequencies than non-conservative ones. As previously observed for DatOct20, 
also in this case for some PAM values we observe large standard deviations that may be ascribed to the presence 
of outliers (Fig. 11B,C).

Figure 7.  (A) Boxplot of the number of occurrences per substitution types stratified in conservative (cyan) and 
non-conservative (orange) types that can occur with a single base change and types that require more than one 
change (magenta). Average values with standard deviation (bars) of the number of occurrences within PAM 
values detected in the DataOct20 dataset: (B) substitutions that can occur with one base change grouped in 
non-conservative (orange) and conservative (cyan) and (C) substitutions requiring more than 1 base change 
(magenta).
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Similarly to what observed in DataOct20, also in DataFeb21 the most frequent replacements are V > I (639 
times), T > I (633 times), L > F (625 times) and A > V (602 times) (Fig. 9 and Supplementary Table S5). As 
observed above, two of these highly occurring mutations (T > I PAM = 7 and L > F PAM = 6) are non-conservative 
substitutions. The inspection of the occurrences of mutations requiring more than one base change indicates 
that, as observed in DataOct20, A > L (174 times) and T > L (172 times) are the most frequent ones (Fig. 10). 
Collectively, these findings indicate that most frequent substitutions led to an increase of the hydrophobicity, 
independently of the number of codon base changes required for the mutation.

The analysis performed individually on the five most mutated proteins (NSP3, Spike, NSP2, NSP12, and 
N) indicates analogies and differences among them (Supplementary Table S11). It is interesting to note that 
the most frequent AA substitutions (V > I, T > I, L > F, A > V, and V > A) detected in DataOct20 and DataFeb21 
datasets are among the fifteen most frequent ones also for these proteins with the exception of the protein N. The 
protein NSP2 shows a high frequency of substitutions causing a decrease of Glu residues whereas a depletion of 
Gln residues is evident for the protein N (Supplementary Table S11). The analysis of enrichment/depletion in 
counts of mutated versus original amino acid residues confirms the trends observed for the previous datasets 
with a significant increase in the two most hydrophobic residues, F and I, and a decrease of hydrophilic residues 
(Fig. 4C). In addition, the distribution of the ΔHydrophobicity values is slightly shifted toward an increased 
hydrophobicity (mean ΔHydrophobicity 0.06 ± 1.18) (Fig. 4F). The analysis of the ΔHydrophobicity performed 
on the individual viral proteins confirms a non-uniform growth of hydrophobicity with the proteins NSP3 and 
N exhibiting the lowest and the highest values, respectively (Supplementary Fig. S10 and Table S8).

Discussion
Proteins are fundamental biomolecules that combine remarkable molecular and structural complexity with fine 
regulation. Although they are made of thousands of atoms, their functional properties may be heavily affected 
even by the replacement of a handful number of them. In general, missense mutations may lead to radically dif-
ferent consequences in protein structure/function ranging from negligible to dramatic effects. Frequently, they 
fine-tune protein functions. The a priori prediction of the effect of mutations on the protein function/structure 
and on their interactome is not an easy task. In this scenario, viruses deserve special attention as they exploit 
extensive mutations as an adaptive mechanism to the  host10.

Here we present a global analysis of the AA mutations that have been progressively detected in different sites 
of the SARS-CoV-2 proteins. This was done by collecting mutations at different stages of the pandemic. We set 
up three distinct checkpoints: (i) at 2020 March 15th, 2 months after the deposition of the first SARS-CoV-2 
genome sequence, (ii) at 2020 October 7th, the early stage of the pandemic spread in the Western countries, and 
(iii) at 2021 February 7th, essentially one year after the outbreak of the pandemic at global scale.

Figure 8.  Three-dimensional structure of the SARS-CoV-2 Spike protein. Cartoon representation of (A) the 
protein trimer (PDB ID 6xr8) and (B) the complex of the Spike Receptor Binding Domain (RBD) with the cell 
receptor ACE2 (PDB ID 6m0j). The location of the residues that have never been found to be changed in the 
DataFeb21 dataset is shown as blue balls.
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Mutations were classified according to the similarity of the underlying  codons14 and to the probability to be 
detected in highly similar protein sequences (PAM values, Supplementary Table S4)13. In particular, the cor-
relation between these two parameters allowed us to discriminate between conservative and non-conservative 
mutations (Fig. 1).

The analysis of the evolution of SARS-CoV-2 mutations provides some interesting observations. Indeed, 
mutation types detected at 2020 March 15th (116 out of 380) essentially represent a sub-set (107 out of 150) of 
the AA substitutions that require a single base change (Table 1). A significant number of the possible single base 
substitutions (43 out of 150), generally presenting low PAM values, are still missing in the database generated at 
the first checkpoint (Fig. 2B). The scenario is radically different in the mutation dataset collected at 2020 October 
7th where essentially all types of mutations (378 out 380), including those requiring multiple base changes, are 
observed (Table 1). As expected, the number of mutations and their frequencies further increased in the dataset 
collected at 2021 February 7th in which all types of substitutions are observed (Table 1).

The analysis of the frequencies of the observed mutation types presents interesting analogies despite the 
temporal separation of the three checkpoints and the content of the corresponding mutation datasets. In par-
ticular, mutations that can occur with a single base change in the codon are by far more frequent than those 
requiring multiple changes thus indicating that the similarity of the underlying codons is the crucial factor that 

Figure 9.  Frequencies of the observed mutations that can occur with a single base change grouped in 
conservative (cyan) and non-conservative (orange) detected in the DataFeb21 dataset.
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Figure 10.  Frequencies of the observed mutations that require more than one base change detected in the 
DataFeb21 dataset.
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dictates the occurrence of specific mutations. In all cases, non-conservative mutations, which are characterized 
by very low PAM values, present rather lower frequencies compared to the conservative ones. This finding may 
represent a signature of the virus adaptation to humans that is manifested with the elevated frequencies observed 
for the mutations that do not significantly affect the structure/function of the viral protein. Nevertheless, it is 
important to note that SARS-CoV-2 genomes are accumulating non-conservative mutations that have very low 
probabilities to occur in evolutionary-related proteins displaying very high overall identities (99%) as those used 
to generate the PAM1 matrix.

Despite the huge difference in the number of the mutations of DataMar20 and DataOct20 datasets (404 ver-
sus 25,634), they share some of the most frequent substitutions (T > I, L > F, and A > V). It is worth mentioning 
that these mutations do not present, among single base substitutions, high theoretical probabilities to  occur14. 
In general, in both cases, we observe an enrichment of hydrophobic residues associated with the mutation 
events, in line with previous literature  reports12. The large content of mutations (38,986) that are present in the 
DataFeb21 dataset allowed the analysis of the most frequent AA substitutions in the most mutated SARS-CoV-2 
viral proteins. Interestingly, although the global trends are also observed in most of these proteins (e.g. NSP3, 
Spike, NSP2, and NSP12), a specific mutational trend is exhibited by the N protein in which a depletion of Gln 
residues is evident. An increase of the hydrophobicity has also been detected at the individual protein level for 
most of the SARS-CoV-2 proteins.

The analysis of the diffusion of specific missense mutations in the human population has received particu-
lar attention throughout the pandemic  evolution3,8,9,12–22. It has been pointed out that the D614G mutation, a 
non-conservative mutation with a PAM value of 11, in the Spike protein, which occurred through a single base 
change, has increased the virus  infectivity23–25. More recently, other mutations of the Spike protein have been 
reported to be crucial for the virus infectivity of other variants (“Emerging SARS-CoV-2 Variants”. Centers 
for Disease Control and Prevention. https:// www. cdc. gov/). Most of these mutations (K417T, L452R, T478K, 
E484K, N501Y, H655Y, P681H, and P681R) are non-conservative as they exhibit PAM values in the interval 1–11. 
Two of them (K417N and A701V) are barely conservative as they present a PAM value of 13. It is important to 
note that, despite the relative abundance of AA substitution types with PAM values of 0 (89 out of 380), none 
of them is present the Spike mutants of these variants. Collectively, these observations indicate that the virus 
has acquired an increased infectivity through non-conservative but not radical mutations. In this scenario, we 
believe that the monitoring of the diffusion of the non-conservative mutations here identified and classified, 
which may underlie significant structural/functional changes, could highlight widespread SARS-CoV-2 variants 
with altered properties.

In conclusion, the present study provides interesting indications of the early evolution of the virus and useful 
tools for the global and genome-specific evaluation of the impact that mutations could have on the structure/
function of SARS-CoV-2 variants that emerged or will emerge in the pandemic. The unique availability of 
genome data since the early stage of the pandemic has provided information about the first AA substitutions 

Figure 11.  (A) Boxplot of the number of occurrences per substitution types stratified in conservative (cyan) 
and non-conservative (orange) types that can occur with a single base change and types that require more than 
one change (magenta). Average values with standard deviation (bars) of the number of occurrences within 
PAM values detected in the DataFeb21 dataset: (B) substitutions that can occur with one base change grouped 
in non-conservative (orange) and conservative (cyan) and (C) substitutions requiring more than 1 base change 
(magenta).

https://www.cdc.gov/
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occurring in the viral proteins. Notably, the most frequent mutations have remained essentially the same over 
one year of the pandemic.

Methods
Source of the data. The lists of the AA mutations present in SARS-CoV-2 variants detected using the 
sequence of the Wuhan genome (GISAID accession ID: EPI_ISL_402124) as reference were retrieved from the 
Global Initiative for Sharing All Influenza Data (GISAID) database (https:// www. gisaid. org/)1 at three time 
points: 2020 March 15th (DataMar20—Supplementary Table S1), 2020 October 7th (DataOct20—Supplemen-
tary Table S2) and 2021 February 7th (DataFeb21—Supplementary Table S3). In particular, for each viral pro-
tein, we retrieved from the server the mutations that were manually curated to eliminate non-missense muta-
tions. These were then merged to carry out the global analyses.

Classification of the mutations. The AA substitutions were classified according to two criteria. First, we 
considered the Point Accepted Mutation (PAM) score (Supplementary Table S4), i.e. the likelihood that an AA 
substitution is accepted by the natural  selection13. Second, we considered if the AA substitution required one or 
more than one base change in the genetic code to  happen14.

Differences in hydrophobicity (ΔHydrophobicity) between the mutated and the original residue was calculated 
based on the consensus hydrophobic scale developed by  Eisenberg26 and reported in Supplementary Table S6.

We introduced the genome divergence index (GDI) to measure the divergence of a genome from the reference 
sequence (GISAID accession ID: EPI_ISL_402124). For each polypeptide chain encoded by a specific SARS-
CoV-2 genome, the GDI is calculated as GDI = Σi (58-PAM1i), where  PAM1i is the PAM1 score of the i-th AA 
substitution in the polypeptide chain, and 58 was chosen to have positive values of the score considering that 
PAM1i values range from 1 to 57. In this way, the most conservative mutation (I > V, PAM = 57) has value 1 in the 
summation. Statistical analyses were performed using R (R Core Team (2020). R: A language and environment for 
statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https:// www.R- proje ct. org/).
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