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A novel intelligent system based 
on adjustable classifier models 
for diagnosing heart sounds
Shuping Sun1*, Tingting Huang2, Biqiang Zhang2, Peiguang He2, Long Yan2, Dongdong Fan2, 
Jiale Zhang2 & Jinbo Chen2

A novel intelligent diagnostic system is proposed to diagnose heart sounds (HSs). The innovations of 
this system are primarily reflected in the automatic segmentation and extraction of the first complex 
sound (CS1) and second complex sound (CS2) ; the automatic extraction of the secondary envelope-
based diagnostic features γ

1
 , γ

2
 , and γ

3
 from CS1 and CS2 ; and the adjustable classifier models that 

correspond to the confidence bounds of the Chi-square ( χ2 ) distribution and are adjusted by the given 
confidence levels (denoted as β ). The three stages of the proposed system are summarized as follows. 
In stage 1, the short time modified Hilbert transform (STMHT)-based curve is used to segment and 
extract CS1 and CS2 . In stage 2, the envelopes CS1FE and CS2FE for periods CS1 and CS2 are obtained 
via a novel method, and the frequency features are automatically extracted from CS1FE and CS2FE by 
setting different threshold value ( Thv ) lines. Finally, the first three principal components determined 
based on principal component analysis (PCA) are used as the diagnostic features. In stage 3, a 
Gaussian mixture model (GMM)-based component objective function fet(x) is generated. Then, the 
χ2 distribution for component k is determined by calculating the Mahalanobis distance from x to the 
class mean µ

k
 for component k, and the confidence region of component k is determined by adjusting 

the optimal confidence level βk and used as the criterion to diagnose HSs. The performance evaluation 
was validated by sounds from online HS databases and clinical heart databases. The accuracy of the 
proposed method was compared to the accuracies of other state-of-the-art methods, and the highest 
classification accuracies of 99.43% , 98.93% , 99.13% , 99.85% , 98.62% , 99.67% and 99.91% in the 
detection of MR, MS, ASD, NM, AS, AR and VSD sounds were achieved by setting βk(k = 1, 2, . . . , 7) 
to 0.87,0.65,0.67,0.65,0.67,0.79 and 0.87, respectively.

Background. As an efficient method, using heart sound (HS) analysis is often used to evaluate heart func-
tion; this approach has been widely used to diagnose heart disease and evaluate heart functions, such as congeni-
tal heart disease  classification1, ventricular septal defect  detection2, blood pressure  estimation3 and congenital 
heart disease  screening4, for children and adults. A normal HS is primarily composed of two basic sounds: the 
first sound ( S1 ) which is generated by the closing of aortic valves and the vibrations associated with tensing 
of the chordate trendiness and the ventricular walls, the second sound ( S2 ) is produced by the closure of the 
aortic and pulmonic valves at the beginning of is volumetric ventricular relaxation. However, HSs with unitary 
murmurs generally occur between S1 and S2 with different noise  patterns5. Therefore, analyses of S1 , S2 , and the 
period between S1 and S2 play important roles in characterizing HS features with different types of informa-
tion. Detailed information for S1 , S2 , and the sounds between S1 and S2 can be used to accurately classify HS. 
Additionally, to avoid analyzing the sounds between S1 and S2 , which are generally segmented from HSs with 
low accuracy, S1 and part of the period between S1 and S2 are integrated to obtain CS1 , and S2 and the part of the 
period between S1 and S2 are integrated to form CS2 . Then, the features are efficiently extracted from CS1 and CS2 . 
Finally, a classification method is established to diagnose heart diseases.
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Need for research. 

• CS1 and CS2 extraction The studies regarding HS segmentation can be summarized into two branches: one 
branch includes studies that segment each cardiac cycle into a sequence of four heart stages: S1 −→ Systole 
period −→ S2 −→ Diastole period6,7. As a result, the four fundamental stages to be segmented are different 
due to the nonstationary nature of an abnormal HSs signal and the effect of background noise. The other 
branch includes studies that segment a periodic HSs into a sequence of two heart stages, which are expressed 
as CS1
︷ ︸︸ ︷

OnepartofDiastole → S1 → OnepartofSystole

 → CS2
︷ ︸︸ ︷

TheotherofDiastole → S2 → TheotherofSystole

 based on 

the STMHT algorithm; this approach was reported to be successfully applied in diagnosing heart diseases, 
such as in ventricular septal defect (VSD)  diagnosis8 and several kinds of heart disease  diagnosis9. Moreover, 
 study9 noted that the use of frequency features was more efficient in distinguishing normal from abnormal 
sounds than was the use of time features. Therefore, an efficient frequency feature extraction method should 
be developed.
• Feature extraction As an important component of efficient feature extraction, the frequency width of the 
envelope over a given threshold value ( Thv ) has been verified to be useful for detecting heart  diseases8–11. 
However, for many types of HSs, it is difficult to extract frequency widths with an unsuitable Thv due to the 
existence of a non smooth envelope. To extract the frequency widths for a smooth envelope without setting 
different Thv values, the smooth envelope can be treated as a secondary envelope, as proposed  in9, and used to 
automatically extract the frequency feature matrix based on the STMHT technique; this method was success-
fully applied to detect different types of heart diseases. However, for mitral stenosis and mitral regurgitation 
noises, the feature matrix was not easily extracted because the second frequency component was missing. 
Therefore, to improve the classification accuracy for diagnosing different types of heart disease and simplify 
the complexity of the diagnostic method, the smooth envelopes for CS1 and CS2 extraction in the frequency 
domain must be considered; additionally, more frequency widths corresponding to different Thv values should 
be used, and dimensionality reduction should be employed to reduce the number of features considered . Such 
a classification method could be applied in the efficient extraction of features for diagnosing heart diseases.
• Classifier model Gaussian mixture models (GMMs) have been used in a wide variety of clustering 
 applications12–18 due to their powerful mathematical characteristics. Confidence regions are used to diagnose 
the detection data x in GMMs, and the optimal confidence regions is determined based on Mahalanobis dis-
tance following the Chi-square ( χ2 ) distribution. Thus, classifier models with adjustable sizes corresponding 
to the confidence bounds of the Chi-square ( χ2 ) distribution, which can be adjusted by changing the desired 
confidence level (denoted as β ), are proposed. The χ2 confidence bounds used as the classification criteria 
are employed to diagnose heart diseases.

Major contributions and organization. In summary, this study proposes an innovative and intelligent 
system. The major contributions in this study are (1) the STMHT-based CS1 and CS2 are automatically located 
and extracted; (2) a novel method for obtaining the secondary curves of CS1 and CS2 are extracted in the fre-
quency domain; (3) frequency features are automatically extracted over the given threshold value; (4) the diag-
nostic features γ1 , γ2 and γ3 are determined based on PCA; and (5) the confidence region of the χ2 distribution, 
which are adjusted based on the desired β , is determined and used as the classification criterion for diagnosing 
a given HS. The remainder of this paper is organized as follows. Section “Methodology” presents the approach 
for determining the diagnostic features [γ1 , γ2 , γ3 ] , and a definition of the confidence region-based diagnostic 
method for diagnosing heart diseases. In “Performance evaluation” section, the performance of the proposed 
method is compared with that of other efficient methods for diagnosing heart diseases. In “Conclusion” section, 
the conclusions are provided. Finally, the future study is pointed out in “Future study”.

Methodology
This study was approved by the ethics committee of Nanyang Institute of Technology (Approval Number:2016-06) 
and the informed consent was waived by the ethics committee of Nanyang Institute of Technology. The present 
study was also conducted in accordance with the tenets of the 1975 Declaration of Helsinki, as revised in  200819.

The flow chart of the proposed intelligent system, shown in Fig. 1, consists of three stages: the automatic 
location and extraction of CS1 and CS2 ; the automatic determination of frequency features γ1 , γ2 and γ3 ; and the 
establishment of the Mahalanobis distance criterion-based diagnostic method. In stage 1, the STMHT-based 
curve (denoted as HSSTMHT ), which is extracted for the HSE envelope generated by the HS, is used to segment and 
extract CS1 and CS2 from the HS (Fig. 1A). In stage 2, the envelopes CS1FE and CS2FE for every period CS1 and CS2 
are obtained via a novel method, and the frequency features are automatically extracted from CS1FE and CS2FE by 
setting different Thv lines. Finally, the first three principal components, γ1 , γ2 and γ3 , which express 86.7% of the 
FF information, are determined and used as diagnostic features (Fig. 1B, C). In stage 3, the GMM-based mixed 
classification objective function fet(x) which combines component k with respect to the parameters πk , µk , and 
�k and the features x = [γ1 , γ2 , γ3 ] , is generated. Then, the χ2 distribution for component k is determined by 
calculating the Mahalanobis distance from x to the class mean µ

k
 of component k, and the adjustable confidence 

bound (denoted as MDCk shown in Fig. 1E) is determined to diagnose heart diseases.
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Figure 1.  Flow chart of the proposed methodology.
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Stage 1: Automatic extraction of CS
1
 and CS

2
. As shown in Fig. 2, five steps consisting of heart sound 

auscultation, heart sound preprocessing, heart sound envelope extraction, STMHT extraction, and CS1 and CS2 
extraction, which is used to construct the procedure of the CS1 and CS2 extraction and is detailed in the follow-
ing steps.

Step A: Heart sound auscultation. Auscultation is performed for the purposes of examination cardiovascular. 
As described in previous  study8, the original heart sound, denoted as ST (colored in blue line as shown in Fig. 2), 
are collected by 3M-3200 electronic stethoscope with a Fs = 44.1k Hz sample rate which is widely used by many 
doctors and produced by American 3M  company20, and the tricuspid area is selected as the auscultation area 
due to the tricuspid area reported to supply more important  information21. Meanwhile, you can hear the sounds 
when auscultating heart sounds, ensuring that we avoid as much environmental noise as possible during the 
auscultation procedure. Even so, the collected heart sounds still need to be preprocessing for canceling the 
invalid components.

Step B: WD‑based heart sound preprocessing. HSs are reported to be primarily dispersed in the frequency range 
of 20∼700  Hz2,8,9. Therefore, according to the sampling frequency ( Fs = 44.1 kHz), WD-based HSs are filtered 
to obtain the efficient frequency components ( 21.5 ∼ 689 Hz). The Daubechies wavelet 10 (dB10) has been used 
to give the maximum signal-to-noise ratio and minimum root-mean-square error for HSs22. Therefore, dB10 is 
selected for use as the mother wavelet for preprocessing HSs. A filtered and normalized sound, colored by gray 
and denoted as HST , is shown in Fig. 2.

Step C: heart sound envelope (HSE) extraction. The Viola integral-based envelope, denoted as HSE , is extracted 
from the heart sound HST , as reported in  studies8,9; this envelope can effective overcome amplitude variations 
and complex backgrounds and noise. This concept is described as follows. Consider a filtered sound HST[m] for 
m = 0, 1, . . . ,M − 1 , where M denotes the number of HSs. In a Wm neighborhood of time m, called the width 
Wm time scale, the M-point envelope HSE[m] is obtained by Eq. (1):

where

Wm = 2205 if the duration of CS1 or CS2 greater than 0.13 s. Finally, normalization is performed by setting the 
maximum amplitude of HSE to 1 (Fig. 2).

Step D: STMHT extraction for HS. Given an M-point HS, the STMHT for the HSs , HSSTMHT , is computed 
from Eq. (3)

(1)HSE[m] =
1

2Wm + 1

m+Wm∑

k=m−Wm

(
HST[k] −HST[m]

)2
,m = Wm,Wm + 1, . . .M − 1−Wm,

(2)HST[m] =
1

2Wm + 1

m+Wm∑

k=m−Wm

HST[k],

(3)HSSTMHT[n] =

n+ N−1
2∑

m=n− N−1
2

HSE[m]WN [m− n]WE

[

m− (n−
N − 1

2
)

]

,

Figure 2.  Flow chart of the CS1 and CS2 extraction.
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where n = (N − 1)/2, . . . ,M − 1− (N − 1)/2 , and WN [l](l = −(N − 1)/2, . . . , (N − 1)/2) is a moving window 
of odd length N. According to  studies2,8, the length N is set to 44101.

Step E: Automatic extraction of CS1 and CS2. The characteristics of HSSTMHT considered in  studies2,8, as shown 
in Fig. 3A, C, are summarized as follows: 1© The negative-to-positive (N2P) points of HSSTMHT , denoted by � , 
correspond to the geometry center peaks of S1 and S2 ; 2© The geometry center between S1 and S2 , denoted by � is 
determined by the positive-to-negative P2N points of HSSTMHT . Moreover, the interval from S2 to S1 is generally 
greater than that from S1 to S2 in one period of an HS23–25. Therefore, the N2P and P2N-based CS1 and CS2 fea-
tures can be automatically segmented from one period of an HS and extracted by two procedures, as described 
as follows. 

(1)  N2P and P2N location

  The algorithm for detecting N2P and P2N is detailed as follows.

1© First, the signum function of HSSTMHT , denoted as SHSSTMHT
 , is calculated by 

2© Then, the variation in SHSSTMHT
 ( DSHSSTMHT

 ) is determined from Eq. (6) 

3© Finally, N2P and P2N are determined by 

(2)  Automatic extraction of CS1 and CS2

1© Calculate the difference between two adjacent N2Ps, denoted as DN2P , with Eq. (8) 

2© Determine the points CS12 and CS21 that are used for segmentation from CS1 to CS2 and from CS2 to CS1 , 
respectively, by using Eq. (9). 

3© Extract CS1 (denoted as CS1i ) and CS2 (denoted as CS2i ) for the ith period of an HS as follows 

(4)WE[i] =

{
cos( N−1−2i

2N π)−cos( N−1−2i
2 π)

Nsin( N−1−2i
2N π)

for i = 0, 1, . . . ,N − 1

0 for i = N−1
2

.

(5)SHSSTMHT
=

{
−1 if HSSTMHT < 0,
0 if HSSTMHT = 0,
+1 if HSSTMHT > 0.

(6)DSHSSTMHT
[i] = SHSSTMHT

[i + 1] − SHSSTMHT
[i], i = 1, 2, . . . , n.

(7)
{
N2P = i/FS if DSHSSTMHT

[i] = +2
P2N = i/FS if DSHSSTMHT

[i] = −2

(8)DN2P [i] = N2P[i + 1] −N2P[i], i = 1, 2, . . . , n.

(9)
{
CS21[i] = P2N[i], CS12[i] = P2N[i + 1], if DN2P [i] < DN2P [i + 1]
CS21[i] = P2N[i + 1], CS12[i] = P2N[i + 2], Otherwise

.

Figure 3.  The automatic extraction procedures for CS1 and CS2 . A-B show the procedure for an example of a 
typical AR from the database  in26. C-D show the procedure for an example of a typical normal sound  database27.
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The automatic extraction procedures for CS1 and CS2 are illustrated in Fig. 3. Figure 3(A, B) show a typical AR 
sound, and the typical NM sound is shown in Fig. 3(C, D).

Stage 2: Automatic feature generation. Feature definition. To extract the efficient frequency widths, 
as shown in Fig. 4, the smooth envelopes for CS1 and CS2 in the frequency domain are firstly generated, and then 
the frequency widths corresponding to different Thv values are extracted. 

(1)  Secondary envelopes CS1FE and CS2FE generation: Given an M-point HS, the secondary envelope in the 
frequency-domain, denoted as HSF , can be calculated from Eq. (11): 

 where l1 , l2 and HSF[k] are defined by Eq. (12): 

| · | is the absolute value sign, 2L1 + 1 is the first window width, and 2L2 + 1 is the second window width. Accord-
ing to  studies9,28, L1 and L2 are set to 9 and 17, respectively. Moreover, HSFE is also normalized by setting the 
maximum amplitude of HSFE to 1. The secondary envelopes for CS1 and CS2 , denoted as CS1FE and CS2FE respec-
tively, are illustrated by using the examples described in Fig. 3 which are first automatically generated based on 
Eq. (11), are shown in Fig. 4, where the plots in Fig. 4A.2 describe the results of CS1FE corresponding to CS1 in 
Fig. 4A.1, the plots in Fig. 4B.2 describe the results of CS1FE which corresponds to CS1 in Fig. 4B.1, the plots in 
Fig. 4A.3 describe the results of CS2FE corresponding to CS2 in Fig. 4A.1, and the plots in Fig. 4B.3 describe the 
results of CS1FE which corresponds to CS2 in Fig. 4B.1.
(2)  Definition and automatic extraction of frequency features: The frequency features are illustrated in 

Fig. 4(B, C), and their gravities are calculated by 

 The frequency widths over a given threshold value are defined and calculated by

where Lpi and Rpi are the ith left and right intersections, respectively, of CS1FE and CS2FE over the Thv lines ( Thv
=0.3, 0.5 and 0.8). Moreover, the frequency features are expressed based on Eq. (15) and described in Table 1.

(10)
{
CS1i = HST[CS21i : CS12i ]
CS2i = HST[CS12i : CS21i+1 ]

(11)HSFE [k] =

∑

l1
(L1 + L2 + 1− |l1|)HSF[k + l1] −

∑

l2
HSF[k + l2]

(2L1 + 1)(2L2 + 1)
,

(12)







l1 = −(L1 + L2),−(L1 + L2)+ 1, . . . , (L1 + L2)
l2 = −(L1 − L2 − 1),−(L1 − L2 − 1)+ 1, . . . , (L1 − L2 − 1)

HSF[k] =
�
�
�
�M−1

m=0 HST [m+ 1]e(−j 2πklM )
�
�
�, k = 0, 1, 2, . . . ,M − 1

,

(13)







CS1G =

�M−1
k=0 k×CS1FE [k]
�M−1

k=0 CS1FE [k]

CS2G =

�M−1
k=0 k×CS2FE [k]
�M−1

k=0 CS2FE [k]

,

(14)
{
CS1FWi = Rpi − Lpi
CS2FWi = Rpi − Lpi

, i = 1, 2, 3.

(15)FF = [CS1FW1,CS1FW2,CS1FW3,CS1G,CS2FW1,CS2FW2,CS2FW3,CS2G]

Figure 4.  Example of feature definition and automatic extraction.
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Experimental results for several typical types of heart disease. The features FF of six typical and normal sounds 
are illustrated in Fig. 5. From Fig. 5, CS1 and CS2 are first automatically located and extracted, then, the envelopes 
for every CS1 and CS2 are extracted by Eq. (11). Finally, the features defined by Eq. (15) for CS1 and CS2 in the 
frequency domain are automatically extracted with Eqs. (13-14). The experimental sounds are 665-period AR 
sounds (3M  database29, medical sound  library30, heart auscultation  sounds31, auscultation  sound32, continu-
ing medical  implementation26, sounds Database of the University of  Dundee27, and patients only with AR dis-
ease from the Nanyang First People’s Hospital), 381-period AS sounds (continuing medical  implementation26, 
sounds database of the University of  Dundee27, 3M  database29, medical sound  library30, auscultation  sound32, 
and patients only with AS disease from the Nanyang first People’s Hospital, and heart auscultation  sounds31), 
315-period ASD sounds (Medical sound  library30, heart auscultation  sounds31, 3M  database29, patients only with 
ASD disease from the Nanyang First People’s Hospital, and medical sound  library30), 769-period MR sounds 
(3M  database29, sounds database of the University of  Dundee27, heart auscultation  sounds31, medical sound 
 library30, and auscultation  sound32), 439-period MS sounds(3M  database29, auscultation  sound32, medical sound 
 library30, and continuing medical  implementation26), and 1056-period NM sounds(3M  database29, Michigan 
 database33, medical sound  library30, ThinkLabs  database34, and healthy undergraduates from Nanyang Institute 
of Technology, China)(whom I thank for the data used in this study)). Moreover, the boxplots for the features 
are plotted in Fig. 6, where Fig. 6A shows the features extracted from CS1 and Fig. 6B shows the features from 
CS2 for each type of heart disease. The scatter plots of features in Fig. 6 illustrate the discrimination ability of the 
model in distinguishing among different heart diseases and highlighting the following findings: 1© The MS and 
VSD sounds are easy to distinguish from the other sounds by using CS1FW1 (Fig. 6A), and by using the CS2FW1 
(Fig. 6B), the VSD sound is easy to distinguish from the other sounds; 2© The MS sound is easy to distinguish 
from the other sounds based on CS1FW2 (Fig. 6A), and by using the CS2FW2 (Fig. 6B), the AR and VSD sounds 

Table 1.  Description of the frequency domain feature matrix FF.

Feature index Feature’s symbol Feature description Unit

1 CS1FW1 The frequency width of CS1 corresponding to Thv = 0.3 Hz

2 CS1FW2 The frequency width of CS1 corresponding to Thv = 0.5 Hz

3 CS1FW3 The frequency width of CS1 corresponding to Thv = 0.8 Hz

4 CS1G The Center of gravity of CS1 in frequency-domain Hz

5 CS2FW1 The frequency width of CS2 corresponding to Thv = 0.3 Hz

6 CS2FW2 The frequency width of CS2 corresponding to Thv = 0.5 Hz

7 CS2FW3 The frequency width of CS2 corresponding to Thv = 0.8 Hz

8 CS2G The Center of gravity of CS2 in frequency-domain Hz

Figure 5.  Examples of a typical normal sound and six types of typical heart disease sounds.
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are distinguished from other sounds; 3© The NM sound is easy to distinguish from other sounds using CS1FW3 
(Fig. 6A). 4© The AR and VSD sounds are easy to distinguish from the other sounds using CS2FW3 , as shown in 
Fig. 6B; 5© Fig. 6A indicates that CS1G can be used to easily distinguish MR from other sounds and the AS and 
ASD sounds from other sounds; 6© Fig. 6B shows that the distribution of CS2G from AS sounds is different from 
that for other sounds, except NM sounds. The analysis results discussed above indicate that different combina-
tions of several features defined by Eq. (15) can be used to distinguish among various types of heart disease. 
Therefore, to simplify features and develop a diagnostic method that is simple and effective, dimension reduction 
is used to determine new features; this process is described in detail as follows. 
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Figure 6.  Box plot representation of FF for each type of heart disease. A shows the box plots for features from 
CS1 . In addition, B represents the features from CS2.
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Diagnostic feature determination. To simplify the computation when using features to diagnose heart diseases, 
PCA, a linear dimensionality reduction technique for finding principal components and replacing high-dimen-
sion data in many studies, such as studies on heart arrhythmias  classification35, heart disease  classification2,36, 
emotion  recognition37, respiratory rate  extraction38 and electrocardiogram heart disease  diagnosis39, is employed 
to generate a few efficient principal components to characterize HS features and diagnose heart diseases. The 
algorithm corresponding to the generation of new features via PCA for a given data set FF is described as 
Algorithm 1. The eigenvector ξi in Algorithm 1 , which corresponds to the eigenvalue �i and is calculated for 
the matrix Z in step 2, as shown in Table 3, is the actual weighted coefficient for the ith principal component γi . 
Table 3 shows that the largest absolute coefficients in the first principal component γ1 are CS1FW1 , CS2FW2 and 
CS1FW2 ; the second principal component γ2 is mainly weighted based on CS1G , CS2FW2 , CS1FW1 and CS2FW3 ; and 
the third component γ3 is mainly weighted based on CS1FW2 , CS1FW3 and CS2FW3 (Table 3). To determine the 
smallest number of principal components m should be considered, the Pareto chart is used; this chart provides 
a tool for visualizing the Pareto principle, which states that observing a small set of variables that influence 
a common outcome is more common than detecting many variables that influence the same outcome. This 
approach has been used to determine the percent variability explained by each principal component (Fig. 7A). 
Therefore, according to the smallest m value such that η� (m) > 80%40, combined with the scatter plot for the 
first m principal components, the smallest m is determined. The Pareto chart of the PCA results in Fig. 7A 
shows the explained variance and accumulated variance for each principal component γi , where i = 1, 2, . . . , 8 . 
According to Fig. 7A, 67.58% of the total variance is captured by the first two components, γ1 and γ2 , and 86.73% 
of the total variance is captured by the first three components γ1 , γ2 and γ3 . Therefore, the following conclusions 
can be obtained.

• γ1 and γ2 lead to a dimensionality reduction of 75% (from 8 to 2 variables) and only 32.42% information loss. 
The scatter diagram of γ1 and γ2 given in Fig. 7B indicates that although the distribution region correspond-
ing to each type of heart disease is obviously different and the overlaps between MR and other diseases, AR 
and other diseases, and VSD and other diseases are small, the overlaps among MS, ASD, NM, and AS are 
relatively large; therefore, it is difficult to accurately distinguish among these four types of heart diseases.

• However, the scatter diagram of γ1 , γ2 and γ3 , plotted in Fig. 7C, shows that there are different distribution 
regions for these types of heart diseases. In addition, η�(3) = 86.73% , as shown in Fig. 7A, based on feature 
number  determination40. Thus, γ1 , γ2 and γ3 lead to a dimensionality reduction of 62.5% (from 8 to 3 vari-
ables) with only 13.27% information loss. The scatter diagram of γ1 , γ2 and γ3 in Fig. 7C is used to verify the 
different distribution regions corresponding to these types of heart diseases.

Therefore, m is set to 3, and the new 3-dimensional feature matrices consisting of γ1 , γ2 and γ3 (see Fig. 7C) are 
used to diagnose heart diseases.

Stage 3: classification based on the squared Mahalanobis distance criterion. Classifier determi‑
nation. The squared Mahalanobis distance classification criterion-based diagnostic methodology, consisting 
of the five sequential steps as shown in the flow chart (Fig. 8A), is proposed to diagnose HSs and is described in 
the following 5 steps.

Step 1: GMM‑based µ
k
 and �

k
 generation. In the design step of GMM, the estimated target function, fet(x) , is 

a mixture of d-dimensional normal Gaussian distributions p(x|µ
k
,�

k
) that reflect the training pattern of each 

component; it is assumed that components can be modeled by mixtures of normal Gaussian distributions by

where

expresses the posterior probabilities corresponding to each component; K is the number of components; π
k
 

corresponds to the mixed weights, such that 
∑K

k=1 πk
= 1 ; and µ

k
 and �

k
 are the mean value and covariance 

matrix of the kth component, respectively. Because the goal is to maximize the function fet(x) , the parameters 
( π

k
 , µ

k
 , and �

k
 ) are determined based on the EM  algorithm41 for a set of sample records. Based on the types of 

heart disease described in Sect. 2.2 and the scatter diagram plotted in Fig. 7C, the number of Gaussian mixture 
components is set to K = 7 , and the fitgmdist function in MATLAB 2018b is used to return a GMM with K = 7 
components fitted to the features [γ1 , γ2 , γ3 ] established in Sect. 2.2 using the EM algorithm by assigning a pos-
terior probability to each component density with respect to each observation. Furthermore, the regularization 
value is set as 0.01 to avoid ill-conditioned covariance estimates, and the number of optimization iterations is 
set to 1000 based on experience. The Gaussian mixture parameter estimates for π

k
,µ

k
 and �

k
 are obtained and 

shown in Table 4. To characterize the 3-dimensional interspace corresponding to each 3-dimensional Gaussian 
component for diagnosing heart diseases, the 3-dimensional interspaces can be used as 3-dimensional classifiers 
to diagnose heart diseases with high classification accuracy; the overlapping interspace between two random 

(19)fet(x) =

K∑

k=1

π
k
p(x|µ

k
,�

k
),

(20)p(x) =
1

√

(2π)d | �
k
|

exp

(

− 1
2 (x−µ

k
)T�−1

k
(x−µ

k
)

)
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components is made as small as possible, and the independent 3-dimensional interspace corresponding to each 
component is considered.

Step 2: χ2

3
 determination for the kth component in 3‑dimensional interspace. Since the squared Mahalanobis 

distances for each Gaussian component follow the Chi-square distribution ( χ2
3  ) in 3-dimensional interspace, to 

determine the decision region for classifying the test data x via the components estimated in the above step, the 
squared Mahalanobis distance in 3-dimensional interspace for the kth component with mean µ

k
 and full covari-

ance matrix �
k
 , d2

3
(x|µ

k
,�

k
) , is computed as follows:

Table 2.  Mean ( µ
FF

 ) and standard deviation ( σ
FF

 ) of the features.

Statistics

Frequency features ( µ
FF

+ σ
FF

)

Features from CS1 Features from CS2
CS1FW1 CS1FW2 CS1FW3 CS1G CS2FW1 CS2FW2 CS2FW3 CS2G

µ
FF
± σ

FF
45.3± 11.8 33.1± 5.8 18.8± 3.6 80.6± 21.7 44.1± 23.1 32.2± 9.1 18.4± 6.5 79.8±18.9

Figure 7.  PCA results. A shows the Pareto chart of the variance by contribution of each principal component, 
B plots the scatter diagram of the first two components γ1 and γ2 , and C shows the first three components γ1 , γ2 
and γ3.

Table 3.  Eigenvector ξi and eigenvalue �i(i = 1, . . . , 8) for � in descending order of eigenvalues.

Features

Eigenvector (eigenvalue) in descending order of eigenvalues

ξ1(�1 = 3.6423) ξ2(�2 = 1.7643) ξ3(�3 = 1.5316) ξ4(�4 = 0.4671) ξ5(�5 = 0.3226) ξ6(�6 = 0.1748) ξ7(�7 = 0.0606) ξ8(�8 = 0.0368)

S1FW1 0.4309 -0.2169 0.0818 -0.2179 0.8062 -0.2394 -0.0499 0.0616

S1FW2 0.3716 -0.0757 0.5303 0.0431 -0.0306 0.6778 0.2873 -0.1735

S1FW3 0.3411 -0.0983 0.5431 0.0444 -0.4364 -0.6126 -0.1001 -0.0375

S1G 0.2385 0.6501 -0.0157 -0.2122 0.0212 0.0986 -0.5500 -0.4031

S2FW1 0.3313 0.0487 -0.2471 0.8958 0.0977 -0.0299 -0.0699 -0.0944

S2FW2 0.4475 -0.2390 -0.2924 -0.1628 -0.3044 0.2633 -0.3928 0.5607

S2FW3 0.3517 -0.2191 -0.5142 -0.2650 -0.2357 -0.1047 0.3750 -0.5353

S2G 0.2632 0.1026 -0.0768 -0.0662 -0.0207 -0.1308 0.5506 0.4386
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Therefore, χ2
3  , which is constructed based on component k and denoted as χ2

3 (µk
,�

k
) , is determined by

Therefore, the squared Mahalanobis distance d23(x|µk
,�

k
) specified based on the desired confidence level, 

denoted as β
k
 , can be used as the kth classifier criterion for determining whether feature x belongs to the kth class.

(21)d2
3
(x|µ

k
,�

k
) = (x − µ

k
)T�−1

k
(x − µ

k
).

(22)d23(x|µk
,�

k
) ∼ χ2

3 (µk
,�

k
).

Figure 8.  Flow chart of the diagnostic determination and 3-dimensional surface classifier results.

Table 4.  The Gaussian mixture parameter estimates are achieved for the new features [γ
1
, γ

2
, γ

3
] by setting the 

number of Gaussian mixture components as 7.

Components Component number

Gaussian mixture parameter estimates

π
k

µk �k

MR Classifier k = 1 0.1947 0.7056 2.7126 1.4950

0.0425 -0.0007 0.0013

-0.0007 0.2343 -0.0126

0.0013 -0.0126 0.2122

MS Classifier k = 2 0.0827 3.2981 -2.6064 -3.7382

0.3310 -0.0094 -0.0122

-0.0094 0.3906 -0.0210

-0.0122 -0.0210 0.5386

ASD Classifier k = 3 0.1130 2.3453 -0.3484 0.5773

0.5373 -0.0172 -0.0039

-0.0172 0.0608 -0.0053

-0.0039 -0.0053 0.1883

NM Classifier k = 4 0.1683 2.7874 1.8620 -0.9829

0.1403 0.0107 0.0063

0.0107 0.2549 0.0016

0.0063 0.0016 0.1301

AS Classifier k = 5 0.0783 0.7511 0.3199 -0.5341

0.0972 0.0077 -0.0161

0.0077 0.0344 -0.0050

-0.0161 -0.0050 0.2634

AR Classifier k = 6 0.2676 -1.2294 0.1198 0.3222

0.3301 -0.0011 0.0025

-0.0011 0.0230 0.0005

0.0025 0.0005 0.3255

VSD Classifier k = 7 0.0954 -0.1631 -1.1167 0.9454

0.1338 0.0048 -0.0155

0.0048 0.1449 -0.0095

-0.0155 -0.0095 0.1573
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Step 3: The kth confidence level (β
k
) determination. Actually, the kth confidence region, as specified by the kth 

desired confidence level β
k
 , is surrounded by the kth ellipsoid, and this relation is expressed as

where χ2
3,β

k
 is the inverse of χ2

3  for a given confidence level β
k
 , and MDCk represents the classification criterion 

for component k and satisfies the following equation

For the χ2
3  distribution, although the confidence regions corresponding to the confidence levels of 68.3% , 95% , 

and 97.5% are widely used classification criteria in many  studies2,42–45, the optional β
k
 is identified by setting 

βk ∈ [63 : 2 : 97]% combined with the following rules: 1) each ellipsoid should be as large as possible; 2) each 
common region should be as small as possible; and 3) the classification accuracy defined in Eq. (26) should be 
as high as possible. The classification accuracies for classifying sound data summarized in Sect. 2.2 are plotted 
in Figs. 9, and 9 shows the following results: 1© For VSD sounds, high accuracy can be achieved by setting the 
desired confidence level β to each value within the interval of ( 0.71 < β < 0.89 ), as shown in Fig. 9(VSD); 2© 
For AR and MR sounds, by setting the desired confidence level β based on β ∈ [0.69, 0.81] , high classification 
accuracy could be achieved (Fig. 9(MR and AR) ); 3© For MS, AS and NM sounds, to achieve the accurate clas-
sification of HSs, the interval of the desired confidence level β should be set as [0.63, 0.65] (Fig. 9); 4© For ASD 
sounds, Fig. 9(ASD) shows that the highest classification accuracy is achieved by setting the desired confidence 
level to β ∈ [0.63, 0.69] . Furthermore, the desired confidence level β can be adjusted to improve the classifica-
tion accuracy and fit new datasets without reperforming the computations for the objective function, especially 
for VSD sounds and MR sounds (Fig. 9(VSD and MR)). In this study, according to the rules described above 
combined with the accuracy analysis results plotted in Fig. 9, the βk(k = 1, . . . , 7) values are set as 0.87, 0.65, 
0.67, 0.65, 0.67, 0.79 and 0.87, respectively.

Step 4: MDC
k
 determination corresponding to β

k
. Based on the kth confidence level achieved for β

k
 in the above 

step, by using the function ’chi2inv’ in MATLAB 2018b, the inverse of χ2
3,β

k
 , denoted as MDC

k
= χ2

3,β
k
 , is deter-

mined. The analysis results for the kth confidence region in the 3-dimensional interspace, which is surrounded 
by the kth ellipsoid corresponding to the kth desired confidence level β

k
 , are determined and shown in Fig. 8B. 

Furthermore, Fig. 8B shows that the common regions between two random ellipsoids are almost zero; thus, a 
faulty decision process is avoided because the input will not fall into two or more categories.

Step 5: MDC
k
‑based diagnostic result determination. Based on the ellipsoid surfaces region shown in Fig. 8B, 

the diagnosis method is described as follows.

(23)d23(x|µk
,�

k
) ≤ MDC

k
= χ2

3,β
k
,

(24)χ2
(
d23(x|µk

,�
k
) = MDC

k

∣
∣µ

k
,�

k

)
= β

k

Figure 9.  The achieved accuracies corresponding to classifying the heart sounds described in Sect. 2.2 by 
setting β form 0.63 to 0.97 with a step of 0.02.
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1© The 3-dimensional diagnostic features [ γ1 , γ2 , γ3 ] are first transformed from the features FF (denoted as 
FFs ) of the testing sample and calculated with the following equation 

 where µFF and σFF are shown in Table 2.
2© Then, according to the confidence region shown in Fig. 8B, the MDC

k
-based diagnostic result for a test 

features x = [γ1 , γ2 , γ3 ] is determined.
3© MDC

k
-based diagnostic results for a test feature x = [γ1 , γ2 , γ3 ] are determined by 

 where class k corresponding to the type of heart disease is detailed in Table 4, and MDC
k
 (1, 2, . . . , 7) is 5.6489, 

3.2831, 3.4297, 3.2831, 3.4297, 4.5258 and 5.6489.

Performance evaluation criteria. To evaluate the performance of these ellipsoids in 3-dimensional space, the 
classification accuracy ( CA ), sensitivity ( Se ) and specificity ( Sp ) values are calculated by

where TP , FP , TN and FN are the numbers of true positives, false positives, true negatives and false negatives, 
respectively.

Performance evaluation
To evaluate the performance of the proposed methodology, the comparison between the proposed methodol-
ogy and the state-of-the-art methods on the clinical sounds and online sounds data was conducted as follows.

• Total sounds: The total sounds, consisting of sounds described in Sect. 2.2 and new sounds, were summa-
rized in Table 5 to evaluate the performance of this proposed methodology.
• State-of-the-art methods: To highlight the efficiency of the proposed methodology for diagnosing the seven 
typical heart diseases, the state-of-the-art methods, published in recent five years and described in Table 6, 
were comparatively analyzed.

(25)γi =
FFs − µFF

σFF

× ξi , i = 1, 2, 3

(26)
{

Class k, d23(x|µk
,�

k
) ≤ MDC

k

Unknown class, otherwise
,

(27)







CA(%) = TP+TN
TP+FP+FN+TN × 100

Se(%) = TP
TP+FN × 100

Sp(%) = TN
FP+TN × 100

,

Table 5.  Experimental sounds used to evaluate the performance.

Data source

Period numbers of every type of heart disease/Patients

MR MS ASD NM AS AR VSD

Sounds in Sect. 2.2 769/10 439/5 315/7 1056/45 381/10 665/15 327/10

New sounds 156/3 132/2 82/2 183/8 126/3 153/4 70/3

Total sounds 925/13 571/7 397/9 1239/53 507/13 818/19 397/13

Table 6.  Efficient methods successfully used in diagnosing normal sounds from other common heart diseases.

Method Year Performance evaluation

♯  146 2021 The Fano-factor constrained tunable quality wavelet transform (TQWT) was the sensitivity and specificity of 86.32% and 
99.44% respectively and overall score of 92.88% to detect abnormal heart sounds.

♯  247 2021
This study proposed a heart sound classification method based on improved MFCC features and convolutional recurrent 
neural networks, which achieved classification accuracy of 98% in the 2016 PhysioNeT/CinC Challenge database with 
dropout rate of 0.5.

♯  348 2020
A deep WaveNet model was proposed to classify five heart sound types and achieve high classification accuracies: 
98.20% for diagnosing Normal, 95.20% for diagnosing MVP, 97.80% for diagnosing MS, 96.10% for diagnosing MR, 
97.70% for diagnosing AS.

♯  48 2018 The higher CA, achieved in this study, was 95.5% , 92.1% , 96.2% and 99.0% for diagnosing small ventricular septal defect 
(VSD), moderate VSD, large VSD and normal sounds, respectively.

♯  549 2017 A rule-based classification tree method proposed by this study achieved very high CA: 95.45% for diagnosing VSD, 
100% for diagnosing normal, 100% for diagnosing aortic stenosis and 95.45% for diagnosing aortic insufficiency.

♯  650 2016 Artificial neural networks (ANNs) was reported to achieve the second-best score compared to the other methods in clas-
sifying the phonocardiogram recordings provided by the CinC Challenge.

♯  751 2016 Random forest, a meta-learning approach that uses multiple random decision trees as base learners and aggregates them 
to compute the final ensemble prediction, was successfully used in sound classification such as studies.
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• Comparsion results: The comparison results were summarized in Table 7, where the parameters correspond-
ing to the state-of-the-art methods were described in Table 8. The results in Table 7 support the following 
conclusions.
• Although using the method #1 to diagnose AS yielded a higher Sp than that of the proposed method, the CA 
was lower than that of the proposed method, partially due to the high Se achieved by the proposed method.
• Although using the method #3 to diagnose MS yielded a higher Sp than that of the proposed method, the CA 
was lower than that of the proposed method, partially due to the high Se achieved by the proposed method.
• Although using the method #5 to diagnose NM yielded a higher Sp than that of the proposed method, the CA 
was lower than that of the proposed method, partially due to the high Se achieved by the proposed method.
• For other sounds, the classification accuracies achieved in the proposed method were all greater than those 
of the other methods listed in Table 7 .

Overall, the efficiency of the proposed method in diagnosing MR, MS, ASD, NM, AS, AR and VSD diseases was 
evaluated by comparison with the other efficient methods listed in Table 7.

Conclusion
A novel intelligent system was proposed for diagnosing heart diseases with high CA . The innovation of this 
approach is primarily reflected in: 1) the automatic extraction of secondary envelope-based frequency features; 
2) the automatic determination of PCA-based diagnostic features γ1 , γ2 and γ3 ; and 3) the determination of adjust-
able confidence regions corresponding to the χ2 distribution. The confidence regions are obtained by calculating 
the Mahalanobis distance, which is adjusted by the desired confidence level β , and the results were used as the 
classification criteria for diagnosing heart diseases. The procedure for the implementation of the intelligent 

Table 7.  Comparative analysis of eight different methods for the diagnosis of heart diseases summarized in 
Table 5.

Method

MR MS ASD NM AS AR VSD

Se% CA(%) Sp(%) Se% CA(%) Sp(%) Se% CA(%) Sp(%) Se% CA(%) Sp(%) Se% CA(%) Sp(%) Se% CA(%) Sp(%) Se% CA(%) Sp(%)

♯1 92.1 86.34 87.6 88.2 86.81 87.3 91.2 84.53 85.1 86.3 82.90 81.6 90.9 98.25 99.1 88.2 86.05 85.4 95.2 96.31 96.8

♯2 90.6 89.93 88.3 88.8 90.32 91.3 83.9 86.12 87.21 95.9 98.3 97.7 96.3 96.1 96.02 87.1 86.31 85.9 90.6 89.3 88.1

♯3 90.1 88.6 87.5 85.1 85.69 99.2 81.3 80.97 80.8 93.6 91.95 90.3 87.9 85.04 83.3 92.1 88.69 85.6 88.6 86.9 85.9

♯4 90.1 87.34 86.7 83.2 86.81 87.3 90.2 83.13 82.5 85.7 81.90 80.6 91.3 90.40 90.3 87.2 84.04 83.4 96.2 97.66 97.8

♯5 88.6 85.93 85.3 86.1 89.72 90.2 79.8 82.10 82.3 96.1 98.93 99.9 98.3 91.95 96.2 85.1 86.97 83.6 87.5 87.19 82.1

♯6 88.1 87.6 87.8 83.1 89.36 90.2 80.3 81.67 81.8 92.6 91.63 91.3 83.9 86.04 86.3 90.1 84.69 83.6 87.6 86.03 85.9

♯7 89.7 91.64 92.1 85.2 83.52 83.3 86.3 87.49 87.6 93.7 91.61 90.9 90.1 87.05 86.7 85.2 82.21 81.6 90.8 91.63 91.7

This 100 99.43 99.3 99.2 98.93 98.9 99.6 99.13 99.1 100 99.85 99.8 98.8 98.62 98.6 100 99.67 99.6 100 99.91 99.9

Table 8.  The highest accuracies corresponding to the parameters set in every state-of-the-art method.

Method Performance evaluation

♯  146 The highest classification accuracies were obtained by using the features described in Table 3 on page 28.

♯  247 The highest classification accuracies were obtained by using the 13-features extracted using MFCC algorithm.

♯  348 The highest classification accuracies were obtained by using the porposed WaveNet model consists of 6 residual blocks.

♯  48 The highest classification accuracies were obtained based on the rules described in a previous  study8.

♯  549

The highest CA results were obtained based on the following rules.

Rule 1: If the 8th value of Lyapunov exponent (LPE8) ≥ 0.79 and (LPE9) ≤ 0.38 then the heart is normal.

Rule 2: If LPE2 ≤ 0.17 and (LPE8) ≤ 0.79 , then the heart disease is VSD.

Rule 3: If LPE4 ≥ 0.17 , LPE6 ≤ 0.39 , and LPE3 ≤ 0.56 , then the heart disease is MR.

Rule 4: If LPE5 ≥ 0.17 , LPE4 ≥ 0.67 , and LPE3 ≥ 0.37 , then the heart disease is MS.

Rule 5: If LPE7 ≥ 0.54 , LPE3 ≥ 0.29 , and LPE5 ≥ 0.49 , then the heart disease is AR.

Rule 6: If LPE8 ≥ 0.39 , LPE5 ≥ 0.72 , and LPE2 ≤ 0.68 , then the heart disease is ASD.

Rule 7: If LPE9 ≥ 0.64 , LPE3 ≥ 0.39 , and LPE7 ≥ 0.21 , then the heart disease is AS.

Rule 8: If none of these conditions are met, the HS is undefined.

♯  650 The most accurate results were obtained by the structure consisting of one input layer with 60 neurons, one hidden layer 
with 11 neurons and one output layer with five neurons.

♯  751 The most accurate results were obtained by setting the number of features at each node, the number of trees and the maxi-
mum depth of trees to 1, 108, and 36, respectively.

This method The most accurate results were obtained for the diagnosis of MR, MS, ASD, NM, AS, AR and VSD at 
Thv = 0.4, 0.3, 0.2, 0.2, 0.4, 0.1 and 0.2, respectively.
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system involved three stages. Stage 1 described the location and extraction of STMHT-based CS1 and CS2 . In 
stage 2, in the frequency domain, a novel method was first proposed to generate the envelopes CS1FE and CS2FE ; 
then, based on the Thv lines, FF was automatically extracted. Finally, based on PCA, the first three principal 
components, γ1 , γ2 and γ3 , which expressed 86.7% of the FF information, were determined and used as diagnostic 
features. In stage 3, the GMM-based objective function fet(x) with respect to the features x = [γ1, γ2, γ3] and 
the parameters [ πk , µk , �k ], where k = 1, 2, . . . ,K , was generated. Then, the χ2 distribution for component k 
was determined by calculating the Mahalanobis distance from x to the class mean µ

k
 of component k, and the 

confidence region for component k was determined by adjusting the optimal confidence level βk and used as 
the criterion (denoted as MDCk ) to diagnose a given HS. The performance evaluation was validated by sounds 
from online HS databases and clinical heart databases. The accuracy of the proposed method was compared 
to the accuracies of other well-known classifiers, and the highest classification accuracies of 99.43% , 98.93% , 
99.13% , 99.85% , 98.62% , 99.67% and 99.91% in the detection of MR, MS, ASD, NM, AS, AR and VSD sounds 
were achieved by setting βk(k = 1, 2, . . . , 7) to 0.87,0.65,0.67,0.65,0.67,0.79 and 0.87, respectively. Therefore, 
this proposed intelligent diagnosis system provided an efficient way to diagnose seven types of heart diseases.

The advantages and limitations were summarized as follows:
• Advantages: 1© CS1 and CS2 were automatically extracted to reduce difficulty in segmenting each cardiac 

cycle into a sequence of four heart stages: S1 −→ Systole period −→ S2 −→ Diastole period; 2© More features 
could be extended by setting even more threshold values for the unknown heart diseases, especially for the heart 
sound with the compound heart diseases; 3© Every classifier achieved in this study could be adjusted based on 
the desired β for fitting incremental new features without being retrained via huge training features.

• Limitations: 1© This methodology was impossible to diagnose the sounds when CS1 and CS2 cannot be 
segmented and extracted via the STMHT method for a given heart sound such as that plotted in Fig. 10; 2© The 
proposed classifier might not be satisfied with the compound heart diseases due to the distribution of features 
extracted from which can not fit a single Gaussian distribution.

Future study
Future study focused on how to handle the sounds (such as some AR sounds) when CS1 and CS2 cannot be 
segmented and extracted via the STMHT method will be explored, and on how to build the classifier model for 
fitting the compound heart diseases will be further studied.
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