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Quantifying the cell morphology 
and predicting biological behavior 
of signet ring cell carcinoma using 
deep learning
Qian Da1,5, Shijie Deng1,5, Jiahui Li2,5, Hongmei Yi1,5, Xiaodi Huang2, Xiaoqun Yang1, Teng Yu1, 
Xuan Wang3, Jiangshu Liu1, Qi Duan2, Dimitris Metaxas4* & Chaofu Wang1*

Signet ring cell carcinoma (SRCC) is a malignant tumor of the digestive system. This tumor has 
long been considered to be poorly differentiated and highly invasive because it has a higher rate of 
metastasis than well-differentiated adenocarcinoma. But some studies in recent years have shown 
that the prognosis of some SRCC is more favorable than other poorly differentiated adenocarcinomas, 
which suggests that SRCC has different degrees of biological behavior. Therefore, we need to find 
a histological stratification that can predict the biological behavior of SRCC. Some studies indicate 
that the morphological status of cells can be linked to the invasiveness potential of cells, however, 
the traditional histopathological examination can not objectively define and evaluate them. Recent 
improvements in biomedical image analysis using deep learning (DL) based neural networks could 
be exploited to identify and analyze SRCC. In this study, we used DL to identify each cancer cell of 
SRCC in whole slide images (WSIs) and quantify their morphological characteristics and atypia. Our 
results show that the biological behavior of SRCC can be predicted by quantifying the morphology of 
cancer cells by DL. This technique could be used to predict the biological behavior and may change the 
stratified treatment of SRCC.

Signet ring cell carcinoma (SRCC) is an adenocarcinoma with a high degree of malignancy, which occurs most 
frequently in the stomach and colorectum. SRCC is defined as a tumor consisting mainly or entirely of signet ring 
cells which are characterized by mucus in the cytoplasm that squeezes the nucleus to one  side1–3. The pathological 
diagnosis of SRCC is difficult. Unlike nested squamous cell carcinoma or ductal adenocarcinoma, SRCC cancer 
cells are diffuse and lack structures that can be recognized at low magnification, and the cell morphology is very 
similar to plasma cells, intestinal metaplasia, or capillary endothelium. As a result, even the most experienced 
pathologists or the latest algorithms are still prone to missed  diagnosis1–3.

With the development of computer technology and advances in DL, clinical-grade digital pathology has 
become more available for cancer  diagnosis4–7. Some segmentation algorithms have been successfully developed 
to detect cell and subcellular levels  structure8–10. Previously, we proposed a novel detection framework of signet 
ring cell based on semi-supervised learning from whole slide images (WSIs)11. By combining self-training and 
cooperative training, our DL model utilizes labeled and unlabeled data better, and experiments on a large number 
of real clinical data have proved its effectiveness. As far as we know, this is the only scheme that can use DL to 
detect signet ring cells automatically and accurately.

In this study, we used the model to analyze a total of 607 WSIs. More than 29 million cells were detected. 
Primary site of these tumors mainly includes the stomach (42.7%) and colorectum (56.8%). We not only ana-
lyzed the tumor cells of the primary lesion but also identified and analyzed metastatic regional lymph nodes, 
peritoneal implants, and ovarian implant tumor, namely the Krukenburg tumor. For this task, four features have 
been extracted from images: cell cross-sectional area, nuclear area, ellipticity, and nuclear/cytoplasmic ratio. Our 
results show that the inherent properties and differences of these cells are related to the depth of tumor inva-
sion and the mode of metastasis, and can predict biological behavior to some extent. We believe that our results 
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reveal important information to render an accurate diagnosis and thus, more accurate treatment strategies for 
the treatment of SRCC.

Results
Overview of the datasets. A total of 607 whole-slide images (WSIs) extracted from high resolution were 
analyzed. More than 29 million cells were quantified by the deep-learning framework we developed (Fig. 1). 
Four inherent cell properties were measured: average cell area (SC), nucleus area (SN), ellipticity (EP), and 
nuclear-plasma ratio (NCR). The standard deviation of each term is used to represent the atypia. According to 
the primary site, these sections were divided into stomach (259, 42.7%) and colorectum (348, 56.8%). Except 
for the primary tumor (87/259, 33.6%; 218/348, 62.6%), we also analyzed the metastatic regional lymph nodes 
(74/259, 28.6%; 105/348, 30.2%), peritoneal cancer nodules (33/259, 12.7%; 25/348, 7.2%), and ovarian implant 
metastatic lesions, namely Krukenburg tumor (65/259, 25.1%) (Fig. 2 and Supplementary Table 1).

Biological behavior and cell morphology of gastric SRCC . Gastric SRCC is a special entity of poorly 
differentiated adenocarcinoma in the pathological classification of gastric cancer. The prognosis of gastric SRCC 
in different TNM stages is significantly different: early gastric SRCC has a low rate of lymph node metastasis and 
a better prognosis than other types of early gastric cancer, while advanced gastric SRCC has high invasion and 
metastatic ability and poor  prognosis1–3. Early gastric SRCC can be cured by endoscopic submucosal dissection 
(ESD) or endoscopic mucosal resection (EMR) to reduce postoperative  complications12. Here we analyze the 
condition of gastric SRCC. This part of the analysis cohort consists of 87 WSIs, which can be divided into either 
lymph node involvement or not, or T1 ~ T4 according to the depth of invasion according to the current AJCC 
TNM staging system (Supplementary Table 1). We found that SN and NCR as well as their atypia was most cor-
related with the T stage (p < 0.001), while the size or regular degree of tumor cells are not. This suggests that the 
morphology of the nucleus can be a predictor of the depth of tumor invasion. Besides, the results of the multi-
variate analysis show that SN, NCR, and NCR SD are independent significant predictors of the T stage in gastric 
SRCC. Tumors with larger nuclei (HR 0.045, 95%CI 0.019–0.072, p = 0.001) and bigger nuclear-plasma ratio (HR 
16.144, 95%CI 2.593–29.634, p = 0.019) tend to have a higher T stage, while as the tumor infiltrates deeper, the 
atypia of nuclear-plasma ratio gets lower (HR 19.689 95%CI 2.425–36.953, p = 0.023) (Fig. 3). This result suggests 
that there is significant heterogeneity in the nucleus morphology of gastric SRCC. Our results combined with 
gastroscopic biopsy may be helpful to predict the depth of tumor invasion, evaluate the prognosis of patients, 
and even guide treatment for patients to choose appropriate treatment. Our results coincide with the Phillip 
et al.13 conclusion  that the shape of nucleus can encode prognostic information for different types of cancer.

Lymph node metastasis is required to assess in pathologic staging of gastric SRCC for its prognostic value 
of postoperative patients. However, most studies believe that there is no reliable approach to predict gastric 
SRCC lymph node metastasis before the operation, even with the tissues from sentinel node  biopsy14, which 
becomes one of the reasons for overtreatment. Our study revealed that there was a statistically significant cor-
relation between the ellipticity difference and lymph node metastasis in gastric SRCC. The cells in the lymph 
node-positive group tend to have a larger EP SD than the lymph node-negative group (0.1013:0.0991, p = 0.045) 
(Supplementary Table 2), which means that their shapes are more irregular. These results suggest that it is pos-
sible to predict lymph node metastasis by cell morphology, which depends on the physical properties of the cell 
membrane, which has been proved to be related to cancer metastasis in some studies. Accurate prediction of 
lymph node metastasis in patients with gastric SRCC is of great significance for effective clinical treatment and 
ensuring a better prognosis.

Lymph node involvement and cell morphology of colorectal SRCC . Colorectal SRCC is a rare sub-
type of colorectal cancer with distinctive molecular characteristics, including a low incidence of KRAS, PIK3CA, 
and APC  mutations1. A study shows that diffuse infiltrating colorectal SRCC with little or no extracellular mucin 
is more invasive and has a worse prognosis than mucin-rich SRCC, which is often accompanied by peritoneal 
 dissemination15. This suggests that there is a certain relationship between the morphology of tumor cells in colo-
rectal SRCC and their biological behavior. Compared with gastric SRCC, colorectal SRCC exhibit more aggres-
sive biological behavior and patients were often diagnosed with neoplasms of greater size, which explained the 
limited number of T1 and T2 cases in our cohort, hence we only analyze the status of lymph node involvement 
of colorectal SRCC. This part of the analysis cohort consists of 218 HE stained WSIs taken from primary lesions 
of colorectal SRCC, which are either negative or exhibit metastases in sentinel lymph nodes.

Compared with gastric SRCC, colorectal SRCC has larger SC (p < 0.001) and SN (p = 0.002), while the NCR 
was lower (p = 0.003). It is worth noting that atypia of colorectal SRCC is more obvious than gastric SRCC which 
is mainly reflected in SC SD (p < 0.001), SN SD (p < 0.001), and EP SD (p = 0.031) (Supplementary Table 3). The 
results are consistent with the objective fact that the prognosis of colorectal SRCC is worse, and further explain 
its aggressive biological behavior.

In addition, our results further confirmed some independent significant predictors of lymph node metastasis 
in colorectal SRCC. We found the SC (p = 0.001), SN (p = 0.001) and EP (p = 0.001) were the most correlated 
inherent properties with lymph node involvement (Supplementary Table 4). The cases with lymph node involve-
ment have bigger cell and nuclear cross-sectional area than the rests, while the cell ellipticity is relatively smaller. 
SC SD (p = 0.001), SN SD (p = 0.001) and are the most related parameters of atypia with lymph node metastasis. 
Moreover, EP (HR 2.836, 95%CI 0.224–35.906, p = 0.002) and SN SD (HR 22.672, 95%CI 2.808–183.03, p = 0.001) 
were identified as independent significant predictors of lymph node metastasis in colorectal SRCC (Fig. 4). Obvi-
ously, in cases with lymph node involvement, the atypia of cancer cells is greater in all three categories. When 
colorectal SRCC lymph nodes are involved, the tumor cells have greater sizes with enlarged, irregular-shaped 
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Figure 1.  Workflow of data collecting, scanning and analyzing. (a) The datasets consists of 607 WSIs that were 
collected from 439 patients. After summarizing each dataset, the HE slides were scanned to obtain WSIs. (b) 
WSIs were then analyzed by our DL model. Visualization results provided by DL, including the cross-sectional 
area of cell and nuclear, and the minimum circumscribed rectangle (representing the ellipcity), were illustrated. 
The 3D-scatter plot represents the inherent property distribution of each cell in a WSI. Over 29 million cells 
were detected and analyzed.
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Figure 2.  Comparison of cell properties. Each cell in each WSI was analyzed to determine the inherent 
properties of the signet ring cells in the case. (A) digital slices obtained by scanner (B) highlights the signet ring 
cells in heatmap (C) the distribution of cell number and cross-sectional area was shown on the histogram (D) 
the boxplot shows the comparison of inherent properties of all cases (Independent sample t test).

Figure 3.  Univariate and multivariate analysis of the relationship between lymph node involvement and the 
depth of invasion in stomach SRCC. SC Cell area (pixel); SN Nucleus area (pixel); Ep Ellipticity; NCR Nuclear-
plasma ratio; SD Standard deviation. #a calculated by Kruskal–Wallis test; b calculated by multiple ordered 
logistic regression, p < 0.05 was considered to be significant.
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nuclei. The results show that we can predict the metastatic potential of different cases from the morphology 
of signet ring cells. Studies have shown that in many types of cancer, compared with non-metastatic cells, the 
membrane of metastatic cells tends to be softer mechanically, and there are common changes in other physical 
properties, such as traction, migration behavior, and mechanical stiffness. Tumor cells’ transformation through 
accumulating mutations, leading to a complex and highly heterogeneous of morphological characteristics and 
physical  properties16.

Different forms of metastatic lesions. It is well known that in addition to the higher rate of lymph 
node metastasis, SRCC also has several other paths of metastasis. Peritoneal dissemination is a classic metastasis 
form of gastrointestinal cancer. The "seed and soil" theory has been established as the basic  theory17. Besides, 
about 50% of the metastatic tumors of the ovary are Krukenberg tumors, most of them came from SRCC 18. 
Gastric SRCC is the most common primary tumor, followed by colorectal cancer. It is generally believed that 
the tumor cells in the metastatic lesion are one or more subclones in the primary lesion which is competent to 
overcome the metastatic  barriers16. To metastasize, a cell must overcome multiple obstacles in the metastatic 
cascade—invasion and migration through the stromal, vessels, survival from shear forces of blood flow, success-
ful re-attachment to blood vessel walls, and thus settle down into another  place17. Different metastatic lesions 
from the same tumor need to face distinct metastatic barriers, its internal molecular changes are diverse, and the 
prognostic significance is also different—these are directly associated with the cellular physical properties, such 
as the formation and destruction of the  cytoskeleton19, the process of epithelial-mesenchymal  transition20, or the 
effect of extracellular matrix on  cells21, which are all directly related to cell morphology.

Therefore, to explore the differences among metastatic lesions, we analyzed the metastatic regional lymph 
nodes, peritoneal implants, and Krukenburg tumors by DL. The differences in cellular properties and atypia 
among the three categories are listed in Supplementary Table 5.

In terms of SC and its atypia, peritoneal implants were the largest, Krukenburg tumors were the second, 
and regional lymph nodes were the smallest (p < 0.01). Metastatic regional lymph nodes are so different from 
peritoneal implants that all four cellular properties show a significant difference. Peritoneal implants have bigger 
SC (p < 0.001) and SN (p < 0.001) than regional lymph nodes and smaller EP (p = 0.049) and NCR (p = 0.012). 
Krukenburg tumor shows less atypia than regional lymph nodes (p = 0.031) and peritoneal implants (p = 0.011) 
in the degree of EP, and less atypia than peritoneal implants in the degree of SN (p = 0.016). The atypia of NCR 
is more obvious than peritoneal implants (p = 0.02). It is easy to notice that the atypia of peritoneal implants is 
the most prominent, which may mean that there are relatively fewer barriers to metastasis to the peritoneal, and 
more tumor subclones will be able to meet this condition. Moreover, compared to regional lymph nodes, the 
difference in cell size of Krukenburg tumors is more obvious, but the shape is relatively more regular. This may 
indicate that more consideration should be given to whether these genes are located in the molecular pathways 
that play a major role in cell growth when we look for genes that play an important role in metastasis to the ovary. 
While the genes that play a more important role in lymph node metastasis may regulate the physical properties 
of cell membrane  fluid22, affect the cytoskeletal rearrangements within cancer  cells23, and drive their invasion 
and migration through the  stroma24.

The results of this experiment showed that there were significant differences in cell properties and atypia 
among metastatic regional lymph nodes, peritoneal implants, and Krukenburg tumors, and further confirmed 
that different forms of metastatic lesions represented different biological events. A study has analyzed the whole 
gene expression of gastric cancer cells with different metastatic  potential25. The results suggest that there is a 

Figure 4.  Forest plot of lymph node involvement in colorectal SRCC. The cutoff value of each index is 
calculated by the Youden’s index and its corresponding optimal cutoff point. HR hazard ratio. X axis is scaled by 
logarithmed HR.
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significant difference in gene expression between gastric cancer cells with abdominal metastasis and lymph node 
metastasis. The same result has also been confirmed by experiments in other common tumors, such as breast 
cancer and pancreas  cancer26. These studies are carried out on cell lineages, and the biggest limitation is that they 
can not reflect the most real biological behavior of tumors objectively in a variety of complex body environments. 
However, our study makes up for the above regret.

Discussion
Whether SRCC is an independent tumor entity has been questioned for a long, because of its vague definition and 
variable prognosis. It is challenging to predict biological behavior and formulate accurate treatment due to the 
limitations of traditional pathological  examination1–3,14. However, pathologists could only visually detect signet 
ring cells under the microscope, and carry out limited qualitative analysis and inaccurate quantitative analysis. 
Several deep learning models for the diagnose of gastrointestinal tract cancers based on WSIs have been reported. 
The advance functions including automated histological  classification4,26,27, immunohisto- chemistry results 
 interpretation28, or even microsatellite instability  prediction29. However, these studies are based on histology 
and do not perform the identification of individual tumor cells. Moreover, all of these studies acknowledge that 
there are some deficiencies in their diagnosis of poorly differentiated cancers, including SRCC, because they do 
not have complex histological structures such as glands or papillaries that can be identified in well-differentiated 
adenocarcinomas.

For the first time, we used DL to analyze the morphology of gastrointestinal SRCC and its different metastatic 
lesions (lymph nodes, peritoneal implants, and Kukenburg tumors) and accurately measure the inherent proper-
ties of signet ring cells, including the cross-sectional area of cell plasma and nuclear, the cell ellipticity, as well as 
the nuclear/cytoplasmic ratio. We analyzed these inherent properties and used them to define different dimen-
sions of cell atypia. As is known to all, cell morphology is the macroscopic expression of the final coding proteins 
by the tumor  genome30. Compared with the analysis of some specific genes, cell morphology is relatively easier 
to observe and  measure31. A tumor with greater heterogeneity, or an "ugly tumor", usually has a worse prognosis, 
which has been widely recognized by pathologists. The measurement of intra-tumor heterogeneity can be used 
as a biomarker to predict treatment and improve  outcome32, while the same picture can also be captured by DL 
to achieve a better prediction  effect33,34. Compared with previous studies on SRCC, our results quantify the spe-
cific manifestations of atypia, or how ugly the tumor is, in more detail, and clarify that cell morphology reflects 
the outcome of the tumor objectively. Our results provide new insight into the biological processes involved in 
disease etiology and can be used as biomarkers for the diagnosis or prognosis of SRCC.

Our research has the potential to be further developed. The research was conducted by Sundar et al.35 on 
primary gastric cancer intratumoral heterogeneity has revealed the significant differences in gene expression in 
tumor superficial areas, deep areas, and regional lymph node from the gene level, which may affect the treatment. 
Therefore, we’re indicated to concentrate our future work on evaluating the multi-dimensional information of 
different subregions in the primary lesion and develop appropriate segmentation algorithms to confirm the 
impact of temporal and spatial heterogeneity of the tumor at the cell level. In addition, cell morphology reflects 
the complex genomic and gene expression changes of cancer cells, and the measurement of morphological het-
erogeneity combined with functional spectrum can be a powerful, high-throughput, economical and effective 
means to diagnose and guide treatment. Therefore, we can further explore and clarify the relationship between 
the morphology and molecular changes of SRCC tumor cells. In addition, we will try to establish a prognosis 
cohort of different patients from different regions to confirm whether our algorithm can predict prognosis or 
guide treatment as good as or better than the existing tumor staging system.

As more and more data being available and algorithms become perfect, we hope that our results can be com-
bined with biopsy, pathological examination, gene sequencing, and other means of testing methods, which will 
contribute to more effective stratified treatment, survival prediction, and patient management, and improve the 
treatment decisions and outcomes of SRCC patients.

Methods
Datasets information. Each case of our data set was prepared in the Department of Pathology, Ruijin Hos-
pital, Shanghai Jiaotong University School of Medicine in 2014–2020. The WSIs were produced at × 40 magni-
fication (0.238 μm/pixel) by the National Medical Products Administration-cleared KFBio KF-PRO-005 digital 
scanner. All of the sections were evaluated by two pathologists and reviewed by a senior pathologist through a 
standardized procedure. We adopt the 4th edition of the WHO Classification of Tumors of the Digestive System 
as the reference standard. The patients who received neoadjuvant chemotherapy were excluded to eliminate the 
effect of treatment on cell morphology.

For gastric and colorectal SRCC, we selected 1–4 HE sections of each case, which was determined by the num-
ber of tumor cells at the time of initial evaluation. In order to ensure the stability of the test, sections containing at 
least 500 signet ring cells will be selected. We also selected all the Krukenburg tumors and peritoneal implants of 
SRCC in our case bank over the past six years. Cases with poor image quality were excluded. Additional clinical 
information was listed (Supplementary Table 1).

Statistical information. Statistical analysis was conducted by IBM SPSS (Release 25.0) and R ×64 4.0.3, 
P-value < 0.05 was considered statistically significant. Figures were then subsequently edited by Adobe Photo-
shop CS6 and GraphPad Prism 8 to provide better clarity. Continuous value variables such as the relationship 
between the parameters and lymph node involvement were analyzed by independent sample T-test and Mann–
Whitney U test, nonparametric test and pairwise comparison of multiple independent samples were analyzed by 
Kruskal–Wallis test and Tukey HSD test. Binary logistic regression was used to compute the hazard ratio (HR) 
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with 95% CI of patients with lymph node involvement in colorectal SRCC. Youden index was used in calculating 
its corresponding optimal cutoff point.

Signet ring cell and nuclei segmentation. The deep learning methodology was conducted by Pytorch 
(Release 1.1.0) to perform Signet Ring Cell and Nuclei segmentation. The architecture of the deep learning 
model is called Deep Layer  Aggregation9, a variant to UNet, which is an elaborately designed connection man-
ner of convolution modules to assemble image features from various scales. A coarse UNet was established to 
find an approximate region that contains Signet Ring Cell at X10 magnification, to swiftly discard most of the 
benign parts in whole slide images. We developed another fine UNet to carry out four class segmentation for the 
constant size of an image input in 512 pixels height and width, at X40 magnification, who classifies each pixel 
to the background, cell, nuclei, or instance boundary. To extend the model robustness on the various source of 
whole slide images, while it is unattainable to make pixel-level annotations to numerous images, a semi-super-
vised learning methodology was conducted as described in Li et al.11, for models running on X40 magnification.

For each independent Signet Ring Cell, the nucleus which has the largest intersection area is assigned to this 
cell. Then those morphological features of each cell could be easily obtained based on precise cell and nuclei mask, 
with the help of Opencv (2.4.9) and Scikit-Image (0.17.2). Based on thousands of cells will we have statistical 
results for each whole slide image for analysis. In details, based on the exact mask of cells and nuclei.

Cell Area is determined as the total number of pixels of Signet Ring Cell instance mask, Nucleus Area is 
the number of pixels of Nucleus instance mask. The aspect ratio of the minimum area rotated bounding box of 
each SRCC instance mask is called Cell Aspect Ratio. Nuclear Cytoplasmic Ratio is defined as the Nucleus Area 
divided by Cell Area.

Signet ring cell detection algorithms were developed by Pytorch1.1.0 and Python3.6.1. Thumbnail image and 
patches at 0.25 μm are extracted from whole slide image by Openslide3.4.1. After detecting cells at 0.25 μm, we 
downscale cell coordinates into a mask whose size is same as thumbnail image to generate gaussian map, pixel 
values near by cell coordinates are higher. With such gaussian map we could generate heatmap, then merge 
together with the thumbnail image to be those in Fig. 2.

Inference status. Previously as described in our former  work11, during three folds cross-validation, there 
exists obvious scores degrading from easy (Ins Recall 0.705, Nor FPs 1.45, Ins FROC 0.692) separation to hard 
(Ins Recall 0.658, Nor FPs 0.943, Ins FROC 0.657) separation for not enough training data. In this paper we add 
extra 1000 unlabeled patches containing crowded signet ring cell and 2000 benign patches into the cooperative 
training procedure, leading to similar scores between easy (Ins Recall 0.713, Nor FPs 0.912, Ins FROC 0.702) and 
hard (Ins Recall 0.709, Nor FPs 0.904, Ins FROC 0.695) mode. With similar scores between the two data separa-
tion modes, we believe the model generalization could be enough for new whole slide images. By introducing a 
coarse signet ring cell detection model on X10 magnification to discard most of the benign regions, averagely for 
each whole slide image inference time is reduced from 20 to 3 min, compared to predicting all the areas on × 40 
magnification.

#FROC: by adjusting the confidence threshold, when the number of normal region’s false positives is 1, 2, 
4, 8, 16, 32, the FROC is the average of relevant recall at those confidence thresholds. Ins Recall: instance-level 
recall, Nor FPs: normal region false positives.

Ethical statements. This study did not involve human trials or participants, so it did not require approval 
from ethical committee.
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