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Network models of prostate cancer 
immune microenvironments 
identify ROMO1 as heterogeneity 
and prognostic marker
Lei Wang1,2,6*, Xudong Liu1,6, Zhe Liu3,6, Yafan Wang1,6, Mengdi Fan1, Jinyue Yin1, Yu Zhang1, 
Ying Ma1, Jia Luo1, Rui Li1, Xue Zhao1, Peiju Zhang1, Lijun Zhao1,2, Jinke Fan1, Yuxuan Chen4, 
Wei Lu5* & Xinqiang Song1,2*

Prostate cancer (PCa) is the fifth leading cause of death from cancer in men worldwide. Its treatment 
remains challenging due to the heterogeneity of the tumor, mainly because of the lack of effective 
and targeted prognostic markers at the system biology level. First, the data were retrieved from 
TCGA dataset, and valid samples were obtained by consistent clustering and principal component 
analysis; next, key genes were analyzed for prognosis of PCa using WGCNA, MEGENA, and LASSO 
Cox regression model analysis, while key genes were screened based on disease-free survival 
significance. Finally, TIMER data were selected to explore the relationship between genes and tumor 
immune infiltration, and GSCAlite was used to explore the small-molecule targeted drugs that act 
with them. Here, we used tumor subtype analysis and an energetic co-expression network algorithm 
of WGCNA and MEGENA to identify a signal dominated by the ROMO1 to predict PCa prognosis. 
Cox regression analysis of ROMO1 was an independent influence, and the prognostic value of this 
biomarker was validated in the training set, the validated data itself, and external data, respectively. 
This biomarker correlates with tumor immune infiltration and has a high degree of infiltration, poor 
prognosis, and strong correlation with CD8+T cells. Gene function annotation and other analyses also 
implied a potential molecular mechanism for ROMO1. In conclusion, we putative ROMO1 as a portal 
key prognostic gene for the diagnosis and prognosis of PCa, which provides new insights into the 
diagnosis and treatment of PCa.
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WGCNA  Weighted Gene Co-expression Network Analysis
MEGENA  Multiscale Embedded Gene Co-expression Network Analysis
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MCA  Multiscale Clustering Analysis
HPA  The Human Protein Atlas
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TCGA   The cancer genome atlas
GO  Gene ontology
LASSO  Least absolute shrinkage and selection operator
GEPIA  Gene expression profling interactive analysis
AUC   Area under curve
TIMER  Tumor Immunity Evaluation
OS  Resource overall survival
ROC  Receiver operating characteristic
GSEA  Gene set enrichment analysis

Prostate cancer (PCa), an epithelial malignancy of the prostate, is the second most common cancer in the world 
and one of the most common malignancies in  men1,2. At present, PCa has become a global public problem 
threatening human health and  life3, with more than 1,275,000 new diagnoses and 350,000 deaths each year. The 
factors associated with the development of PCa are mainly involved in age, race, family heritage, geography, and 
 diet4–6. According to the Epidemiology and End Results report (https:// seer. cancer. gov//), the five-year survival 
rate for PCa is 97.5%7, and it will account for 13.1% of all new cancers in 2021. Although there are many types 
of research on PCa, its etiology and pathogenesis remain not fully understood. The current treatments for the 
PCa include radical  surgery8, external beam  radiotherapy7,  brachytherapy9, local treatment of experimental 
 PCa10, endocrine  therapy11, and  chemotherapy12, etc. Serum prostate-specific antigen (PSA) is now commonly 
used as the preferred marker for screening PCa, with low  specificity13. The immune system plays a huge role in 
preventing and treating of  tumors14. Treatments developed to target the immune system, such as cancer vaccines, 
can effectively target specific antigens expressed on the surface of cancer cells, thereby protecting normal cells 
from drug  damage15. However, due to the heterogeneity within tumors and because cancer vaccines target only 
a limited number of specific antigens, cancer cells that do not express these antigens or a group of cancer cells 
that have mutations that result in altered surface antigens can evade immune control and thus create new tumor 
populations that can resist treatment with vaccines encoding the same tumor-associated  antigens16,17. Therefore, 
the development of new effective oncology treatments against heterogeneous populations of tumors has become 
an urgent task. However, immunotherapy for PCa has not been efficacious for patients in the  past18. Therefore, 
comprehensive bioinformatics screening for new diagnostic and prognostic indicators and the proposal of new 
effective cancer drugs are of great importance for the treatment and diagnosis of PCa.

Intratumoral heterogeneity is a vital feature of  tumorigenesis19. As cancer cells divide and proliferate, somatic 
mutations accumulate, some of which give cancer cells a more significant adaptive  advantage20–23. Meanwhile, 
alterations in epigenetics with the tumor microenvironment may lead to different molecular subtypes that have 
varying tissue types, invasive capabilities, and degrees of  differentiation24–27. The presence of heterogeneity makes 
tumor treatment very challenging, while the discovery of tumor driver genes and associated drugs targeting 
these genes offers the possibility of treating these  tumors28,29. A comprehensive analysis of 333 cases of primary 
prostate cancer has identified three molecular  subtypes30. Precision medicine for PCa needs to consider differ-
ent molecular subtypes so that tumor heterogeneity can be achieved and patients can be offered personalized 
treatment options.

Reactive oxygen species (ROS) modulator 1 (ROMO1) is a membrane protein found in mitochondria that 
is important for regulating mitochondrial ROS production and redox  sensing31. Romo1 is capable of triggering 
and exacerbating cancer through extracellular signal-regulated kinases (ERKs) and nuclear factor-kB (NF-kB)-
induced reactive oxygen species (ROS)32. ROS can trigger and exacerbate cancer in a variety of  malignancies33,34. 
It can also influence cancer cell invasion by affecting the epithelial-mesenchymal transition (EMT)  pathway35,36. 
This protein affects signaling pathways and ROS homeostasis, affects the G2/M phase cell cycle, and leads to cell 
overgrowth through increased expression  levels37. Nevertheless, ROMO1 has not been reported in the tumor 
microenvironment as well as in the development of prostate cancer.

With the rapid development of next-generation sequencing technologies, bioinformatics analysis allows us to 
understand tumor characterizes at a multi-omics  level38. Research in RNA sequencing (RNA-seq), Co-expression 
network analysis, immunohistochemistry, immuno-infiltration, and targeted drug studies, etc., are now widely 
used. RNA sequencing can study the transcriptional profiles of cell populations or the average expression levels 
of  tissues39. The Cancer Genome Atlas (TCGA)40, Gene Expression Profiling Interactive Analysis (GEPIA)41, 
The Human Protein Atlas (HPA)42, etc. are open databases for the collection and storage of patient genomic 
data. This study explores the PCa RNA-seq data to discover new biomarkers and provide new insights for the 
diagnosis and treatment of PCa.

Materials and methods
Data acquisition. Gene expression profiles and clinical data for PCa were downloaded using the UCSC 
Xena (http:// xena. ucsc. edu/)  database43, containing 436 PCa tissue and 114 normal tissues. Patients with unclear 
survival time and survival status characteristics were excluded from the cohort, and all data were collected on 
10 April 2021.

Determination of cluster count and membership. Based on the expression profile of PCa, Conensus-
ClusterPlus (v. 1.52.0) R language software package has carried out unsupervised clustering classification for 550 
 samples44,45. The project selection criteria were selected 1000 iterations and 80% resampling rate Pearson cor-
relation. Concurrently, principal component analysis for further filtering of the results of consensus clustering 
is employed. Reshape2 (v. 1.4.4) and factoextra (v. 1.0.7) two R language software packages were used to reduce 
the dimensions of clusters of different clusters to verify the results, and the first two principal components of 

https://seer.cancer.gov/
http://xena.ucsc.edu/
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the principal component analysis were selected for subsequent analysis. Also, all samples are within the cluster 
and within the cutoff height of (− 100 ~ 150) and cutoff width of (− 200 ~ 150). The ggplot2 (v. 3.3.3) R language 
software package was used to draw the graph to display the results.

Identification of differentially expressed genes based on consensus clustering and PCA. The 
Limma (v. 3.46.0) R language package was used to screen differentially expressed genes (DEGs) among non-
cancerous samples with different prostate carcinoma  subtypes46. The DEGs are identified by significant cutoffs. 
Genes with |log2FC| (fold change) ≥ 1 and P-value ≤ 0.01 is considered as DEGs. The R language software pack-
ages of ggplot2 (v. 3.3.3) and RColorBrewer (v. 1.1.2) were used to draw the graph to display the results. The Venn 
diagram of the overlapping DEGs was outputted by the Draw Venn diagram website (http:// bioin forma tics. psb. 
ugent. be/ webto ols/ Venn/), and the Upset plot was drawn by the UpSetR R language package.

Functional enrichment analysis of noncancerous samples and different tumor subtypes of 
DEGs. To elucidate the biological functions of the DEGs, we performed further functional annotation and 
pathway enrichment analysis using the Metascape (https:// metas cape. org) online  tools47. P-value < 0.05 was con-
sidered as the cutoff value. An R package heatmap is used in heatmap figure. And two-way hierarchical cluster-
ing is used for clustering.

Gene co-expression network analysis to obtain key gene modules associated with tumori-
genesis and malignant progression. Gene co-expression network analysis is widely used in identifying 
functional gene modules associated with human disease and has proven to be highly  effective48,49. The complex-
ity of tumors is further expressed through intratumoral heterogeneity and the tumor microenvironment, which 
encompasses intratumoral cell differences and interactions and the expression of several biomarkers between 
normal and different tumor  cells50,51. In this study, we used Weighted Gene Co-expression Network Analysis 
(WGCNA) and Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) to identify key genes 
associated with prostate carcinogenesis as well as tumor malignant progression WGCNA (v. 1.70-3) R language 
package was used to perform a WGCNA of all DEGs with clinical traits, mining modules, and key genes associ-
ated with clinical  characteristics52:

1. The gene correlation matrix was transformed into a scale-free network.
2. Unsupervised hierarchical clustering was performed using a dynamic tree chopping algorithm, and the 

clustered tree branches were defined as modules.
3. The correlation between each module and clinical traits was calculated, and the modules with higher cor-

relations were selected.

Subsequently, the hub genes in the selected modules were ranked by intra-module connectivity and correla-
tion with module trait genes, and finally, candidate genes were identified.

MEGENA is an innovative co-expression network analysis method that offers unique advantages over 
WGCNA for efficiently constructing large-scale co-expression planar filter networks and preserving gene 
 interactions53. The R software package MEGENA (v. 1.3.7) is used to perform MEGENA, which consists of the 
following steps: (1) constructing a planar filtered network (PFN); firstly, calculating correlation coefficients based 
on gene expression profiles, and then filtering and clustering gene pairs using a parallel filtering method to obtain 
a fast planar filter network; (2) multi-scale clustering analysis; from the initial PFN of the connected components, 
multi-scale clustering of each parent cluster can obtain more sub-modules, followed by hierarchical clustering 
results; (3) downstream analysis, using multiscale hub analysis (MHA) to identify important hubs based on the 
network topology; (4) Finally, the correlation between clustering results and clinical information was analyzed 
by cluster-trait association analysis (CTA). To test whether selected modules in WGCN and multiscale hub genes 
in MEGCN were highly associated with tumorigenesis and malignant progression, we performed GO and KEGG 
 pathway54 analysis on all genes in the selected DAVID (https:// david. ncifc rf. gov/)  database55 for hub modules. 
P ≤ 0.05 was considered as the cut-off criterion for identifying enrichment. Similarly, an R package heatmap is 
used in heatmap figure. And two-way hierarchical clustering is used for clustering.

Validation and survival analysis of pivotal genes. In WGCNA, when hub modules were identified, 
we selected candidate hub genes by module connectivity (cor. gene module-Membership (MM) > 0.8) and clini-
cal feature correlation (cor.geneTraitSignificance (GS) > 0.2), both by Pearson correlation absolute values were 
used to determine. At the same time, we chose the STRING database (https:// www. string- db. org/)56 to identify 
the connectivity of candidate genes. Next, Cytoscape’s plug-in CytoHubba was used to identify top50 genes 
as candidate  genes57. The gene modules from the WGCNA and MEGENA analyses are saved separately. The 
userListEnrichment R function was used to calculate the overlap of genes between the WGCNA and MEGENA 
modules. The WGCNA and MEGENA modules that overlapped significantly and were significantly associated 
with PCa were retained. In this study, we used the Gene Expression Profiling Interactive Analysis (GEPIA) 
dataset (http:// gepia. cancer- pku. cn/) for prognostic analysis of  PCa58. We analyzed the differential expression of 
key hub genes in PCa and their association with RFS using GEPIA. P-value and fold change were defined as 0.05 
and group limit of 50% for two survival analyses. Also, normal distribution tests and differential analysis of hub 
genes in normal versus tumor tissue and normal versus different tumor subtypes were performed based on the 
Wilcoxon test. Finally, Human Protein Atlas Dataset (https:// www. prote inatl as. org/)59 was used to validate the 
immunohistochemistry (IHC) of the hub gene.

http://bioinformatics.psb.ugent.be/webtools/Venn/
http://bioinformatics.psb.ugent.be/webtools/Venn/
https://metascape.org
https://david.ncifcrf.gov/
https://www.string-db.org/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
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Development and validation of the hub gene prognostic model. To assess the prognostic value of 
hub genes, Cox regression analysis was used to evaluate the correlation between genes and survival status in a 
cohort of 494 PCas. Next, we chose the glmnet R language package for LASSO Cox regression modeling to nar-
row down the candidate genes and build prognostic  models60. Ultimately, the screening retained three genes and 
their coefficients, and the penalty parameter λ was determined based on the minimum criterion. The algorithm 
obtained a more accurate model by constructing a penalty function. As a method for complex covariance data, 
variable selection can be achieved and parameter estimation to better address multiple covariances in regres-
sion analysis. The PCa expression data were centrally normalized using a scale function, and a risk score was 
calculated.

Patients with PCa OS were divided into low and high-risk subgroups based on median risk scores. Kaplan 
Meier analysis was performed to compare OS time assessment risk scores and overall survival between the two 
subgroups. To validate the accuracy and predictive power of the model, ROC curve analyses were performed 
using the survivor, survminer, and timeROC R packages for one year, three years, and five years, respectively, 
to calculate the area under The curve (AUC) and to compare the effect of the timeROC R package on classifier 
performance.

Relationship between key genes and tumor-infiltrating immune cells. The Tumor Immunity 
Evaluation Resource (TIMER) (https:// cistr ome. shiny apps. io/ timer/) is a comprehensive resource for detecting 
immune cell infiltration in tumor tissue using RNA-Seq expression profiling data and contains immune infiltra-
tion in different cancer  types61. Hub gene expression was correlated with six types of immune infiltration (B cells, 
CD4 + T cells, CD8 + T cells, neutrophils, macrophages, and dendritic cells) were correlated and assessed using 
the Gene module. The SCNA module was also used to explore the correlation between somatic cell copy number 
changes and the abundance of immune infiltrates.

Exploring the drug sensitivity of the hub gene. The GSCAlite (http:// bioin fo. life. hust. edu. cn/ web/ 
GSCAL ite/) database is a genomic cancer analysis  platform62. The database can be used for genomic and immu-
nogenomic analyses. It also enables researchers to combine clinical information and small molecule drugs to 
mine candidate biomarkers and valuable small molecule drugs for better experimental design and further clini-
cal trials. The GSCA data contains 33 cancer types from TCGA and normal tissue data from GTEx, and over 750 
small-molecule drugs from GDSC and CTRP for 10,000 genomic data. Spearman correlations represent gene 
expression associated with drugs. A positive correlation means that a gene with high expression is resistant to 
the drug and vice versa.

Statistical analysis. R63 (version 3.6.2) and related software packages were an application for all the statisti-
cal analyses. P < 0.05 is a statistically significant difference.

Result
Combined consistency clustering and principal component analysis to obtain sample 
cohorts. The analytical process used in this study is shown in Fig. S1. To follow up on the molecular hetero-
geneity of PCa, we performed an unsupervised consensus analysis on all samples. In this study, we chose k = 5, 
which allowed us to divide all samples into five groups (Fig. S2). Among them, C1:59, C2:146, C3:129, C4:102, 
and C5:114. Moreover, we found that C1-C4 were tumor subgroups, and C5 were normal samples (Fig. 1A–C). 
Next, to verify the robustness of this classification, we performed another principal component analysis based 
on the results of consistent clustering and observed the subgroup differentiation. PC1 and PC2 were selected as 
the main components for the analysis, and 260 samples with significant differences were obtained after exclud-
ing outlier samples as well as those with insignificant differences (Table 1). As shown in Fig. 1D, there was an 
individual crossover between tumor subgroups, indicating good differentiation between subgroups. The cluster-
ing results were as follows: C1:41, C2:68, C3:72, C4:51, and C5:28, reflecting the impact of differences between 
tumor subgroups and normal samples on transcriptional profiles.

Identification of differentially expressed genes and GO functional annotation in PCa. We per-
formed differential gene expression analysis of the four tumor subgroups separately from normal samples. A 
total of 3521 differentially expressed genes were obtained. Of these, 581 up-regulated and 1432 down-regulated 
genes were obtained for C1 vs. C5, 231 up-regulated and 637 down-regulated genes were obtained for C2 vs. C5, 
234 up-regulated and 684 down-regulated genes were obtained for C3 vs. C5, and 282 up-regulated and 2265 
down-regulated genes were obtained for C4 vs. C5 (Fig. 2A). Comparisons between tumor subgroups revealed 
842 DEGs specific to C1, 47 DEGs specific to C2, 29 DEGs specific to C3, and 1045 DEGs specific to C4 (Fig. 2B). 
Three hundred ninety-six overlap genes were also identified, suggesting a degree of similarity in expression 
profiles between tumor subgroups but also a high degree of heterogeneity between tumor subgroups (Fig. 2C).

Functional enrichment analysis of four groups of differentially expressed genes. The research-
ers used the Metascape website to carry out a biological process analysis of the GO function of 3521 DEGs 
(Fig. S3). As shown in Fig. 3A, there was a strong interaction between the four groups of differentially expressed 
genes. Also, DEGs were found to be mainly enriched in functions such as leukocyte migration, inflammatory 
response, regulation of MAPK cascade, circulatory system processes cell component morphogenesis, and regu-
lation of cell adhesion (Table  2). Moreover, Metascape enrichment analysis also showed that DEGs differed 
significantly between the four groups in the pathways regulating cell adhesion and leukocyte migration, demon-

https://cistrome.shinyapps.io/timer/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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strating genetic and functional differences in tumor subtypes (Fig. 3B–E). Naturally, to ensure that the differen-
tial analysis did not filter out key genes, we also performed GSEA analysis on all genes and found that they were 
mainly enriched in P53, DNA repair, Notch signaling pathway, etc. (Fig. S4).

Co-expression network analysis reveals key modules of PCa network. We used the expression 
profiles and clinical information of 260 samples from PCa as input files for WGCNA by integrating them. We 
eliminated two outlier samples based on the clustering tree and then plotted the sample dendrograms and 
expression heat maps of the traits (Fig. 4A). After excluding the two outlier samples, the remaining 258 samples 
and 3521 differentially expressed genes were subjected to WGCNA analysis (Fig. S5). We chose a soft threshold 
power of 8 (scale-free  R2 = 0.85) by calculation, ensuring that the scale-free network was reasonable (Fig. 4B). 
We built the network by choosing the soft threshold. And the minimum number of genes in the modules was 
required to be 50. Subsequently, the initial modules were divided using a dynamic tree, and the genes were 
divided into modules based on the similarity of the characteristic genes in the gene clustering map, and ten 
gene modules were finally identified (Fig. 4C). One color indicates a gene module, while grey gene modules are 
considered invalid genes that cannot be assigned to a module. Next, we created a heat map of the correlation 
between gene modules and clinical information (Fig. 4D). We found that the blue module was found to have the 
highest correlation coefficient with consensus clustering (Pearson cor = 0.87, p = 1e−200) (Fig. 4E). This suggests 

Figure 1.  PCa tumor subtypes classification and identification in TCGA cohort. (A). The 550 samples were split 
into five clusters by the consensus clustering matrix (k = 5). (B).The consensus clustering approach established 
the cumulative distribution function (CDF) curve of Top 10. (C). The CDF Delta area curve of all samples 
with different k values. (D). Principal component analysis was carried out based on the results of consensus 
clustering.
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that the genes in this module correlate with tumor typing as well as malignancy; meanwhile, we found a large 
correlation coefficient between the green module and tumorigenesis (Pearson cor = 0.57, p= 3e−08) (Fig. 4F). 
In contrast, the absolute values of the correlation coefficients between genes and age, recurrence status, and 
gleason_score were smaller in the other modules, suggesting that the genes are less relevant to other clinical 
information. Finally, we calculated the connectivity of the genes within the blue (Fig. 5A) and green modules 
(Fig. 5B) and selected the top50 most closely connected genes for subsequent analysis.

Meanwhile, the expression profiles of 3521 differentially expressed genes (DEGs) were applied to the multi-
scale embedded gene co-expression network (MEGENA) analysis. After parallelization, early termination, and 
pre-quality control steps, 10,333 gene pairs of PFNs were used to enter 1755 MCA for multiscale cluster identi-
fication. A total of 5 different scales were identified by multi-scale cluster analysis, and 226 significant modular 
clusters were constructed (Fig. S6), where the modular p-values were all less than 0.05.

Comparing the significant modules of WGCNA with the MEGENA modules, we found a degree of overlap 
between the key gene modules of WGCNA and those of MEGENA. We found a large degree of overlap between 
the blue module and green module of WGCNA and the C1_5 module (Fig. 6A) and C1_7 (Fig. 6B) module of 
MEGENA. We also annotated the genes of the four modules and found that the four groups of genes are mainly 
involved in the cell cycle, cell division, and transcriptional functions (Fig. S7). WGCNA and MEGENA can 
complement each other and help us to preserve the maximum range of gene modules specific to PCa. We found 
that the expression profiles of this class of overlapping genes differed greatly between tumor and normal adjacent 
tissue, and some of the genes also differed greatly between different subtypes of tumors (Fig. 7A, B). Further, 
the expression of NDUFB7, AURKAIP1, ROMO1, SCAND1, GADD45GIP1, and NDUFA13 was upregulated 
in the four tumor subtypes compared with normal adjacent tissue (Fig. 7C). Next, we annotated the GO_BP 
function of 29 overlapping genes based on the DAVID database (Table 3) and found that these genes are mainly 
involved in cell division, cell cycle, mitosis, and positive regulation of ubiquitin-protein ligase activity (Fig. 7D).

Validation of key candidate genes. We first performed a disease-free survival analysis of key genes using 
the GEPIA database to explore the relationship between genes and phenotype and prognostic status. We selected 
median as a criterion to differentiate gene expression levels and found that TPX2, ROMO1, PLK1, UBE2C, and 
KIF4A were considered hub genes with the most significant p-values selected from the 29 core genes (Fig. 8A). 

Table 1.  Information on the clinical features of patients with prostate cancer.

Variable Type %

PCA (260)

Tumor 232 89 

Normol 28 11 

CCF

Cluster1 41 16 

Cluster2 68 26 

Cluster3 72 28 

Cluster4 51 20 

Cluster5 28 10 

Relaplse

NA 13 5 

NO 206 79 

YES 41 16 

Age

 >  = 60 163 63 

 < 60 97 37 

Gleason_score

6 17 6 

7 144 55 

8 28 11 

9 69 27 

10 2 1 

OS

0 <  = OS <  = 1000 142 55 

1000 < OS <  = 2000 84 32 

2000 < OS <  = 3000 24 9 

3000 < OS <  = 4000 5 2 

4000 < OS <  = 5000 3 1 

OS >  = 5000 2 1 
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We then perform a Wilcoxon test on the five hub genes screened, and we found significant differences (P < 0.05) 
in the expression of the five genes between tumor and normal adjacent tissue (Fig. 8B). Meanwhile, we further 
analyzed the expression differences of the five hub genes among different tumor subtypes, and we found that 
these genes also differed significantly among tumor subtypes of PCa (Fig. 8C). Moreover, we found that ROMO1 
was highly expressed in both tumor and normal tissues after immunohistochemistry (Fig. 8D). Meanwhile, we 
incorporated PCa data from GETx that found significant upregulation of ROMO1 in tumor tissues from GEPIA 
database (Fig. S8).

Construction and validation of prognostic gene markers in TCGA . The data for 497 tumors were 
obtained from The Cancer Genome Atlas (TCGA) dataset, and corresponding clinical information was incor-
porated into the prognostic training model. The expression data of five genes, TPX2, ROMO1, PLK1, UBE2C, 
and KIF4A, were pooled, and LASSO Cox was applied to construct a regression model. The model identified 
ROMO1, PLK1, and KIF4A5 based on the optimal value of λ to construct an OS prognostic model for PCa 
patients (Fig. 9A, B). The risk scores, patient survival status distributions, and gene expression profiles associ-
ated with the three genetic features in the training dataset are shown in Fig. 9C. OS was significantly lower in 
the high-risk group than in the low-risk group (P = 0.0021) (Fig. 9D). Finally, ROC analysis was performed, and 
the area under the ROC curve (AUC) for overall survival (OS) at 1, 3, and 5 years was 0.789 and 0.72 and 0.626, 
respectively (Fig. 9E). In a subsequent study, we also did a LASSO regression analysis on ROMO1 and found that 
ROMO1 could also be used as an independent prognostic model and that its low-risk group had a better survival 
outcome than the high-risk group (Fig. S9).

Alterations in the immune microenvironment may result from aberrant regulation of key 
genes in PCa. To explore the relationship between hub genes expression and tumor-infiltrating immune 
cells, we used the TIMER tool to analyze the correlation between key gene expression and the level of immune 
infiltration. Our results showed that ROMO1 expression was strongly correlated with immunity to PCa and was 
found to be negatively correlated with B cells, CD8 + T cells, macrophages, neutrophils, dendritic cells and posi-

Figure 2.  Analysis of differences between four tumor subtypes and normal samples. (A). Volcano plot of four 
groups, with |log2(FC)| > 2 and FDR < 0.01. (B) Venn diagram and Upset plot were used to visualize common 
genes between 4 clusters datasets. The number of genes annotated is presented on the y-axis. (C) The heat map 
shows the expression profiles of four groups of differentially expressed genes.
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tively correlated with CD4 + T cells; PLK1 and KLF4A expression was positively correlated with B cells, CD8 + T 
cells, macrophages, neutrophils, dendritic cells (Fig. 10 A-C). In addition, we found that different mutant forms 

Figure 3.  Meta-enrichment analysis summary for PFNs lists in 4 comparison cohorts. (A). The overlap of 
differentially expressed genes in the four selected groups is shown in the circus plot explored using Metascape. 
(B). Each box indicates whether the gene in each gene list (column, C1 vs C5, C4 vs C5, C2 vs C5, and C3 vs C5) 
enriched in each selected top 20 GO term. The darker the color, the more significance the P-value. R package 
heatmap is used in this process, and two-way hierarchical clustering is used for clustering. (C). The network of 
enriched terms is colored by cluster-ID, and nodes that share the same cluster are typically close to each other. 
(D). Network enrichment terms and genes are colored by the database, where the terms containing more genes 
tends to have more significates. (E). Coloring by the degree of enrichment, with darker colors indicating a 
greater number of genes enriched to that pathway or biological process class.
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of ROMO1 correlated with immune infiltration of CD8 + T cells, macrophages, and neutrophils; different mutant 
forms of KLF4A correlated with immune levels of CD8 + T cells, macrophages, neutrophils, and dendritic cells; 
and we found that ROMO1, PLK1, and KLF4A were found to have higher levels of immune infiltration in den-
dritic cells (Fig. 10 D–F). This also reveals the influence of key genes on the immune microenvironment of PCa.

Drug sensitivity and resistance of key genes. To investigate the relationship between the expression 
of hub genes and drug interactions, we used the GSCA database to screen for drugs that interacted with it. The 
GSCA database integrated drug sensitivity and gene expression profile data for cancer cell lines from both the 
GDSC and CTRP databases into GSCALite, and then, using Spearman correlation analysis, the expression levels 
of genes were correlated with the IC50. FDR < 0.05 was considered significant (Supplementary Table 1. During 
the research, we found that ROMO1 expression was significantly positively correlated with nutlin-3, fluoroura-
cil, etc. KIF4A expression was significantly positively correlated with PD318088 and selumetinib, and negatively 
correlated with ML239; PLK1 expression was significantly negatively correlated with STF-31 was significantly 
negatively correlated (Fig. 11). This reveals a diversity of expression levels of key genes and drug sensitivity.

Discussion
In recent years, PCa has become the most common and deadly solid cancer and genitourinary tumor in men 
 worldwide64, with a diagnosis rate of 12% and a mortality rate of 9%, and its incidence rises with  age65. The 
traditional clinical treatment options include resection, radiotherapy, chemotherapy, and endocrine  therapy66. 
The tumor heterogeneity leads to limitations in conventional treatment and makes it difficult to manage and 
risk assess patients  effectively67,68. Recent studies have demonstrated the imperative of identifying new effective 
biomarkers and promising immune-related therapeutic targets that can be used to guide cancer treatment in 
clinical  practice69. In this study, we found a high correlation between ROMO1 expression and clinical features 
such as the occurrence of PCa, subtypes classified by consistent clustering. Also, ROMO1 correlated with the 
level of immune cell infiltration and immune pathways in PCa.

Firstly, many factors can contribute to cancer development, such as dietary status, genetic mutations, epige-
netic alterations, etc. We consequently identified 260 valid samples comprising a normal group and four tumor 
sub-types by consensus clustering and principal component analysis after outliers were excluded. Secondly, the 
limmaR package was selected to differentially analyze the four groups of tumor subtypes from the normal group, 
respectively. Finally, 3521 DEGs were identified and functionally annotated, and these differentially expressed 
genes were found to be mainly enriched in ah immune-related pathways. Next, WGCNA and MEGENA were 
applied to construct co-expression networks of differentially expressed genes to identify gene modules associated 
with tumorigenesis and heterogeneity, and 29 overlapping genes were identified by calculation. Then, the Lasso 
Cox regression model was constructed to identify ROMO1, PLK1, and KIF4A5 as the optimal core genes. Sub-
sequently, when analyzing the relationship between the expression of hub genes and tumor-infiltrating immune 
cells, it was found that the expression of ROMO1, PLK1, and KIF4A were all associated with tumor-infiltrating 
immune cells, which in turn led to the alteration of the tumor microenvironment alterations, which in turn lead 
to tumor heterogeneity. Finally, we found that nutlin-3, fluorouracil, and others could be potential therapeutic 

Table 2.  Functional annotation of GO_BP for top20 of four sets of DEGs.

No Category Term ID Description LogP Ratio

1 GO_BP GO:0003013 Circulatory system process − 71.68 207/611

2 GO_BP GO:0032989 Cellular component morphogenesis − 65.57 226/766

3 GO_BP GO:0061061 Muscle structure development − 56.30 186/609

4 GO_BP GO:0030029 Actin filament-based process − 55.21 215/794

5 GO_BP GO:0045229 External encapsulating structure organization − 52.90 143/398

6 GO_BP GO:0034330 Cell junction organization − 51.96 195/701

7 GO_BP GO:0040017 Positive regulation of locomotion − 48.52 171/587

8 GO_BP GO:0048729 Tissue morphogenesis − 46.92 177/638

9 GO_BP GO:0070848 Response to growth factor − 46.55 192/736

10 GO_BP GO:0006954 Inflammatory response − 45.06 196/778

11 GO_BP GO:0043408 Regulation of MAPK cascade − 44.56 185/712

12 GO_BP GO:0009611 Response to wounding − 41.77 172/658

13 GO_BP GO:0050801 Ion homeostasis − 40.81 190/787

14 GO_BP GO:0030155 Regulation of cell adhesion − 40.19 181/734

15 GO_BP GO:0048598 Embryonic morphogenesis − 39.35 154/569

16 GO_BP GO:0034762 Regulation of transmembrane transport − 38.50 152/565

17 GO_BP GO:0001501 Skeletal system development − 37.11 137/486

18 GO_BP GO:0050900 Leukocyte migration − 36.41 140/511

19 GO_BP GO:0048871 Multicellular organismal homeostasi − 35.28 139/516

20 GO_BP GO:0060485 Mesenchyme development − 34.80 99/288



10

Vol:.(1234567890)

Scientific Reports |          (2022) 12:192  | https://doi.org/10.1038/s41598-021-03946-w

www.nature.com/scientificreports/

Figure 4.  Analysis of weighted gene co-expression networks for the construction of PCa. (A). Dendrogram 
combining clinical data and transcriptional expression profiles for sample Euclidean distance clustering. (B). 
Analysis of soft threshold power for WGCNA: (left) Analysis of the scale-free matching index (β) for various 
soft threshold powers. (Right) Analysis of the average connectivity of various soft threshold powers. (C). 
Dendrogram of all differentially expressed genes clustered based on the measure of variability (1-TOM). The 
colors bands show the results obtained from the automated individual cluster analysis. (D). The heat map shows 
the relationship between MEs and clinical characteristics. Each cell contains the corresponding correlation 
coefficient and p-value. (E, F). Scatterplot of gene significance versus module affiliation in the three selected key 
modules blue, green modules.
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agents for ROMO1, and PD318088 and selumetinib could be potential therapeutic agents for PLK1. In conclu-
sion, our study provides a new theoretical basis for the diagnosis and treatment of PCa.

Polo-like kinase 1 (PLK1) is a member of a family of serine/threonine protein kinases that are widely found 
in eukaryotic  cells70. Its specific functions are mainly in cell cycle processes, including controlling mitotic entry 
and the G2/M checkpoint, coordinating centrosomes and the cell cycle, regulating spindle assembly and chro-
mosome segregation, performing multiple functions during mid-spindle and abscission, promoting DNA rep-
lication, participating in the cytoplasmic division and meiosis, and playing an important role in the initiation, 
maintenance, and completion of  mitosis71–73. The pharmacological inhibition of PLK1 in triple-negative breast 
cancer has been reported to increase the anti-proliferative activity of drug-resistant cells, which in turn causes 
G2/M phase block and increases the phosphorylation of cell cycle proteins inducing  apoptosis74. Also, in PCa, 
mitotic kinase polo-like kinase 1 (PLK1) is expressed at elevated levels and is associated with tumor  grade75. In the 
present study, we also found a significant prognostic effect of PLK1, with expression in different subtypes of the 
prostate gland also differing significantly from normal samples, and found that PLK1 expression was also associ-
ated with tumor-infiltrating immune cells, further demonstrating the reliability of PLK1 as a biomarker for PCa.

Figure 5.  Weighted gene co-expression network analysis of gene interaction networks in key gene modules 
of PCa (A). The top 50 genes with the highest levels of intramodular connectivity in the blue module. (B). The 
top 50 genes with the highest levels of intramodular connectivity in the green module. (The size of the circle 
represents combined scores).

Figure 6.  Visualization of interest modules and hub genes multiscale embedded gene co-expression network 
analysis (MEGENA). (A). Intergenic connectivity of genes in MEGENA_C1_5 and identification of key genes. 
(B). Intergenic connectivity of genes in MEGENA_C1_7 and identification of key genes. The red triangle 
represents the HUB gene and the gray circle represents the non-core gene.
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Figure 7.  Visualization and functional annotation of candidate genes. Venn diagram showing all identified hub 
genes and their overlap in WGCNA-blue and MEGENA-C1_5 (A), and WGCNA-green and MEGENA-C1_7 
(B). (C). Each box indicates the expression level of each candidate gene (row) in each sample (column). The red 
indicates the high expression, while the blue indicates the low expression. Similarly, an R package heatmap is 
used in this figure. And two-way hierarchical clustering is used for clustering. (D). GO enrichment analysis was 
performed on the candidate genes.

Table 3.  Functional annotation of GO_BP for candidate genes.

No Term category_BP Count P value Fold.enrichment FDR

1 GO:0006468:protein phosphorylation 6 0.00 8.18 0.14

2 GO:0006366:transcription from RNA polymerase II promoter 5 0.00 6.06 0.64

3 GO:1904668:positive regulation of ubiquitin protein ligase activity 2 0.01 138.21 0.62

4 GO:0030071:regulation of mitotic metaphase/anaphase transition 2 0.01 138.21 0.64

5 GO:0018105:peptidyl-serine phosphorylation 3 0.02 14.93 0.64

6 GO:0,051,301:cell division 4 0.02 7.11 0.64

7 GO:0000086:G2/M transition of mitotic cell cycle 3 0.02 13.62 0.64

8 GO:0006355:regulation of transcription, DNA-templated 7 0.02 2.89 0.69

9 GO:0045862:positive regulation of proteolysis 2 0.02 65.47 0.69

10 GO:0031572:G2 DNA damage checkpoint 2 0.03 62.19 0.69

11 GO:0045736:negative regulation of cyclin-dependent protein serine/threonine 
kinase activity 2 0.03 56.54 0.69

12 GO:0051439:regulation of ubiquitin-protein ligase activity involved in mitotic cell 
cycle 2 0.05 54.08 0.69

13 GO:0045892:negative regulation of transcription, DNA-templated 4 0.04 4.99 0.74

14 GO:0000281:mitotic cytokinesis 2 0.04 42.89 0.74
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Figure 8.  Performance of the five genes in different validation cohorts. (A). Prognostic value of mRNA 
expression of five key genes in PCa (GEPIA). PCa patients with high levels of key gene transcripts were 
significantly associated with short DFS. (B, C). Analysis of the expression levels of five key genes in PCa tissues 
and normal adjacent tissue based on the Wilcox.test method. (C). Analysis of the expression levels of five key 
genes in PCa para-cancer and four subtypes of cancer tissues based on the Wilcox.test method. The ****, ***, **, 
*, ns corresponding to 0, 0.001, 0.01, 0.05, 1. (D). Representational immunohistochemical images of ROMO1, 
PLK1, KIF4A, TPX2, and UBE2C in PCa and normal adjacent tissue from the HPA database. HPA, Human 
Protein Atlas.



14

Vol:.(1234567890)

Scientific Reports |          (2022) 12:192  | https://doi.org/10.1038/s41598-021-03946-w

www.nature.com/scientificreports/

Kinesin superfamily protein 4A (KIF4A) is found in all eukaryotes and belongs to a family of KIFs that are 
highly  conserved76. KIF4A has important roles in DNA repair, DNA replication, spindle organization, cyto-
plasmic division, and intracellular  transport77. KIF4A has been previously reported to be aberrantly expressed 
in many cancers, revealing its function and role in different  tumors78–80. KIF4A can promote PCa cell growth 
through AR and AR-V7-dependent  signaling78. In the present study, KIF4A expression in different subtypes of 

Figure 9.  Construction of risk signature prognostic classifier in the TCGA cohort. (A, B). Determining the 
number of key factors through LASSO analysis. (C). Distribution of Pca patients based on the risk score in 
the TCGA database. PCA plot for OCs based on the risk score. The survival status for each patient (low-risk 
population: on the left side; high-risk population: on the right side). (D). Kaplan–Meier curves for the OS of 
patients in the high- and low-risk groups. (E). ROC curves of hub genes for predicting 1/3/5-year survival in the 
TCGA dataset.
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Figure 10.  Immune relevance of three hub genes in PCa based on Tumor Immune Estimation Resource 
(TIMER). (A–C) Correlation study of ROMO1, PLK1 and KIF4A expression with six immune infiltrations, 
including CD4 + T cells, CD8 + T cells, B cells, macrophages, Neutrophils, and dendritic cells. (D–F) Boxplot 
shows the comparison of the tumor infiltration levels of ROMO1, PLK1 and KIF4A in immune cells with copy 
number variants in four categories. *P < 0.05, **P < 0.01, ***P < 0.001.
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the prostate was also significantly different from normal samples, and KIF4A expression was also found to be 
associated with tumor-infiltrating immune cells.

Studies have shown that ROMO1 is overexpressed in hepatocellular carcinoma, colorectal cancer, and 
 glioma81–83 but has not been reported in PCa. In the present study, we selected the Wilcoxon test and found that 
ROMO1 was highly expressed in tumor tissue and significantly different from normal tissue; we also found that 
the four identified tumor subtypes were significantly different. The expression of ROMO1 was also found to be 
associated with tumor-infiltrating immune cells, leading to changes in the tumor microenvironment and further 
increasing tumor heterogeneity; drug sensitivity analysis revealed that nutlin-3 and fluorouracil could be used 
as potential therapeutic agents for ROMO1.

In general, tumor pathogenesis involves many interacting signaling pathways, including tumor cell prolifera-
tion, cell immortalization, invasion, and migration, etc.84. The complexity of cancer can be reflected through the 
tumor microenvironment, while protein interactions can further increase heterogeneity between  tumors85,86. In 
the present study, we have used weighted gene co-expression network analysis (WGCNA), which classifies the 
gene co-expression network of PCa into ten highly correlated signature modules. The modules were then cor-
related with specific clinical features to identify genes that are key to tumorigenesis and transformation, to help 
identify potential mechanisms involved, and to explore candidate biomarkers. However, WGCNA has the limi-
tation of not being able to coexist at different levels of clustering within a single network, thus not reflecting the 
multi-scale hierarchical nature of complex networks. Multi-scale embedded gene co-expression network analysis 
(MEGENA), on the other hand, allows the construction and analysis of large-scale planar filtered co-expression 
networks to the greatest extent  possible53. Parallelization of embedded network construction and the identifica-
tion of multiscale clustering structures are two key components of MEGENA, which is an essential complement 
to existing co-expression network analysis methods by identifying multiscale modular systems and co-expression 
networks with varying degrees of sparse and tight connectivity. Here, by using WGCNA in conjunction with 
MEGENA to construct a gene co-expression network for PCa, we identified more meaningful clusters of co-
expressed genes and identified key biomarkers associated with prostate carcinogenesis in transformation.

In this study, we combined various bioinformatic analysis methods, especially the introduction of weighted 
gene co-expression network analysis and multi-scale chimeric network analysis, to reveal that ROMO1 may 
serve as a new key prognostic marker for PCa. However, the article still has some limitations. Firstly, the role of 
ROMO1 has not been validated experimentally in vivo and in vitro, and secondly, the fact that the number of 
cancer samples and normal samples are not identical to each other has led to some preference in our data. We 
believe that if we had direct access to a larger sample of clinical sequencing data and sample information, we 
would obtain better and more accurate results.

Figure 11.  Correlation between CTRP drug sensitivity and mRNA expression.
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Conclusions
In conclusion, our systematic analysis of the TCGA database supported by array-based and sequence-based PCa 
data has identified ROMO1, a key gene closely associated with the PCa tumor microenvironment, and the essen-
tial signaling pathways involved. For this reason, we propose that ROMO1 may serve as a potential biomarker 
and therapeutic target for PCa. It may provide new theoretical inferences for the diagnosis and prognosis of PCa.

Data availability
All data are available. Please contact us to access if it is needed.
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