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Integration of genome‑wide 
association studies and gene 
coexpression networks unveils 
promising soybean resistance 
genes against five common fungal 
pathogens
Fabricio Almeida‑Silva* & Thiago M. Venancio*

Soybean is one of the most important legume crops worldwide. However, soybean yield is 
dramatically affected by fungal diseases, leading to economic losses of billions of dollars yearly. Here, 
we integrated publicly available genome-wide association studies and transcriptomic data to prioritize 
candidate genes associated with resistance to Cadophora gregata, Fusarium graminearum, Fusarium 
virguliforme, Macrophomina phaseolina, and Phakopsora pachyrhizi. We identified 188, 56, 11, 8, and 3 
high-confidence candidates for resistance to F. virguliforme, F. graminearum, C. gregata, M. phaseolina 
and P. pachyrhizi, respectively. The prioritized candidate genes are highly conserved in the pangenome 
of cultivated soybeans and are heavily biased towards fungal species-specific defense responses. The 
vast majority of the prioritized candidate resistance genes are related to plant immunity processes, 
such as recognition, signaling, oxidative stress, systemic acquired resistance, and physical defense. 
Based on the number of resistance alleles, we selected the five most resistant accessions against each 
fungal species in the soybean USDA germplasm. Interestingly, the most resistant accessions do not 
reach the maximum theoretical resistance potential. Hence, they can be further improved to increase 
resistance in breeding programs or through genetic engineering. Finally, the coexpression network 
generated here is available in a user-friendly web application (https://​soyfu​ngigcn.​venan​ciogr​oup.​
uenf.​br/) and an R/Shiny package (https://​github.​com/​almei​dasil​vaf/​SoyFu​ngiGCN) that serve as a 
public resource to explore soybean-pathogenic fungi interactions at the transcriptional level.

Soybean (Glycine max (L.) Merr.) is a major legume crop worldwide, contributing to global food security and 
economy. However, soybean yield is significantly affected by diseases, with an estimated economic loss of 95.8 
billion dollars from 1996 to 2006 in the US1. Most of the yield loss has been linked to foliar and stem/root dis-
eases, which are mostly caused by phytopathogenic fungi1. Fungal diseases, such as sudden death syndrome, 
Fusarium wilt, brown stem rot and asian rust, can impact soybean crops through leaf damage, necrosis, chlorosis, 
and death1–3.

Over the past decade, several genome-wide association studies (GWAS) have uncovered multiple single-
nucleotide polymorphisms (SNPs) associated with resistance to pathogenic fungi in soybean populations3–9. 
Nevertheless, GWAS often fail to accurately pinpoint the causative genes10. GWAS limitations are particularly 
challenging for self-pollinating plants (e.g., soybean) because of limited recombination and strong linkage dis-
equilibrium between causative and non-causative variants11. Such limitations ultimately lead to large genetic 
intervals with several genes, hindering causative gene identification. Because of the exponential accumulation 
of genomic and transcriptomic data in public databases12–16, integrative analyses to prioritize candidate genes 
have become a promising approach. This strategy consists in investigating the transcriptional patterns of all the 
genes near a significant SNP. Hence, the combination of multiple sources of evidence can result in richer and 
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narrower sets of high-confidence candidate genes for downstream experimental validation towards biotechno-
logical applications.

Here, we integrated multiple publicly available RNA-seq and GWAS datasets to identify high-confidence can-
didate genes for resistance to five phytopathogenic fungi. The prioritized resistance genes are species-specific and 
highly conserved in the pangenome of cultivated soybeans. The candidate resistance genes against each species 
are involved in various immunity-related processes, such as recognition, signaling, oxidative stress, and apoptosis. 
Finally, we highlighted the five most resistant accessions against each fungal species in the USDA germplasm, 
uncovering important information for breeding programs and genetic engineering initiatives. Finally, the coex-
pression network resulting from this work was also made available as a publicly available web application (https://​
soyfu​ngigcn.​venan​ciogr​oup.​uenf.​br/) and R/Shiny package (https://​github.​com/​almei​dasil​vaf/​SoyFu​ngiGCN).

Materials and methods
Curation of resistance‑associated SNPs and pan‑genome data.  SNPs that contribute to resistance 
against phytopathogenic fungi were manually curated from the scientific literature (Table  1; Supplementary 
Table S1). SNPs that were identified using the Gmax_a1.v1 genome were converted to their corresponding sites 
in the Gmax_a2.v1 assembly using the .vcf files for both assemblies available at Soybase17. A matrix of gene pres-
ence/absence variation (PAV) in the pan-genome of cultivated soybeans (n = 204 genomes from 24 countries and 
5 continents) was obtained from the Supplementary Data in18.

Transcriptome data.  Gene expression estimates in transcripts per million mapped reads (TPM, Kallisto 
estimation) were retrieved from the Soybean Expression Atlas19. Additional RNA-seq samples comprising soy-
bean tissues infected with fungal pathogens were retrieved from a recent publication from our group20. We 
filtered the SNP and transcriptome datasets to keep only fungal species that were represented by both data 
sources. A total of 150 RNA-seq samples from soybean tissues infected with fungal pathogens were selected 
(Supplementary Table S2). Finally, genes with median expression values lower than 5 were excluded to attenuate 
noise, resulting in an 18,748 × 150 gene expression matrix for downstream analyses.

Selection of guide genes.  MapMan annotations for soybean genes were retrieved from the PLAZA 3.0 
Dicots database21. Genes assigned to defense-related pathways (e.g., pathogenesis-related proteins, lignin bio-
synthesis, oxidative stress, and phytohormone regulation) were used as guides (Supplementary Table S3).

Candidate gene mining and functional analyses.  Gene expression data were adjusted for confound-
ing artifacts and quantile normalized with the R package BioNERO22. An unsigned coexpression network was 
inferred with BioNERO using Pearson’s r as correlation. All genes located in a 2 Mb sliding window relative to 
each SNP were selected as putative candidates, as previously proposed23. Candidate genes were prioritized using 
the algorithm implemented in the R package cageminer24, with an rpb threshold of 0.2 for gene significance 
(gene-trait correlation). Enrichment analyses were also performed with BioNERO, using functional annotations 
from the PLAZA 4.0 database25. To rank the prioritized candidates, they were given scores using the formula:

 where

rpb = point-biserial correlation coefficient (cageminer algorithm)
κ = 2 if the gene is a transcription factor
κ = 2 if the gene is a hub
κ = 3 if the gene is a hub and a transcription factor
κ = 1 if the gene is neither a hub nor a transcription factor.

Selection of most resistant accessions from the USDA germplasm.  The VCF file with genotypic 
information for all accessions in the USDA germplasm was downloaded from Soybase17. For each locus, scores 
0, 1, or 2 were attributed if accessions had 0, 1, or 2 beneficial SNPs (effect size > 0), respectively, whereas scores 

S = rpbκ

Table 1.   GWAS included in this work.

References Pathogen Resistance SNPs
8 F. graminearum 12
32 F. virguliforme 8
9 C. gregata/F. virguliforme/P. pachyrhizi 2/1/2
7 F. virguliforme 32
33 F. virguliforme 27
34 M. phaseolina 4
35 M. phaseolina 12
3 C. gregata 7
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2, 1, or 0 were attributed if accessions had 0, 1, or 2 deleterious SNPs (effect size < 0). Total resistance scores for 
each accession were calculated as the sum of scores Si for all n loci as follows:

Total resistance scores were ranked from highest to lowest, and ranks were used to select the most resistant 
accessions. The resistance potential of the best accessions was calculated as a ratio of the attributed scores to the 
theoretical maximum score (all beneficial SNPs and no deleterious SNPs).

Results and discussion
Data summary and genomic distribution of SNPs.  After filtering the datasets to keep only fungal 
species represented by both SNP and transcriptome information, we kept five common phytopathogenic fungi: 
Cadophora gregata, Fusarium graminearum, Fusarium virguliforme, Macrophomina phaseolina, and Phakopsora 
pachyrhizi (Fig. 1A). Overall, SNPs were located in gene-rich regions of the genome (Fig. 1B). SNPs were une-
venly distributed across chromosomes, except for F. virguliforme (Fig. 1C). Further, we found that most SNPs 
were located in intergenic regions (Fig. 1D). Hence, predicting SNP effect on genes would not be suitable for 
this trait.

Candidate gene mining reveals a highly species‑specific immune response.  Using defense-
related genes as guides, the cageminer algorithm identified 188, 56, 11, 8, and 3 high-confidence genes for F. 
virguliforme, F. graminearum, C. gregata, M. phaseolina, and P. pachyrhizi, respectively (Fig. 2). Only three genes 
were shared between species, revealing a high specificity in plant-pathogen interactions for these species. The 
three genes are shared by F. virguliforme and F. graminearum, suggesting that some conservation can occur at the 
genus level, but not at other broader taxonomic levels.

The specificity of resistance genes to particular species has been widely reported26–29. This phenomenon 
imposes a challenge for biotechnological applications, as it requires pyramiding many different genes to render 
elite cultivars resistant to different pathogens. However, we cannot rule out that the species-specific trend we 
observed results from low diversity in the association panels in the GWAS we analyzed. Additionally, as SNP and 
transcriptome data are not available for multiple pathogen strains, we might overlook broad-spectrum resistance 
genes that confer resistance to multiple strains of the same species27.

Further, we manually curated the high-confidence candidate resistance genes to predict the putative role of 
their products in plant immunity (Supplementary Table S4). Most of the prioritized candidates (28%) encode 
proteins involved in immune signaling, although this does not apply to all fungi species (Fig. 3). The main 
discrepancy in the functional classification of candidates was observed for candidate resistance genes against P. 
pachyrhizi. However, this is likely due to sampling bias, as the number of SNPs associated with resistance to P. 
pachyrhizi is limited as compared to other species. Candidates also encode proteins that play a role in recogni-
tion, phytohormone metabolism, systemic acquired resistance, transport, transcriptional regulation, oxidative 
stress, apoptosis, physical defense, and direct function against fungi (Fig. 3).

Interestingly, 21 candidate genes lack functional description and, hence, we could not infer their roles in plant 
immunity (n = 2, 4, 14, and 1 for C. gregata, F. virguliforme, and P. pachyrhizi, respectively). Nevertheless, as they 
were identified as high-confidence candidate genes, we hypothesize that they encode defense-related proteins. 
This finding reveals that besides the identification of high-confidence candidate genes, our algorithm can serve 
as a network-based approach to predict functions of unannotated genes, similar to previous approaches30,31.

We also developed a scheme that was used to rank high-confidence candidate genes (Table 2). Ranking 
candidates is particularly useful to prioritize genes when there are several candidates, such as for F. virguliforme 
and F. graminearum. Here, we suggest using the top 10 candidate resistance genes against each pathogen for 
experimental validation in future studies. Experimental tests with transgenic or edited soybeans using our set of 
target genes will likely reveal which genes are more suitable to develop soybean lines with increased resistance 
to each fungal disease.

Pangenome presence/absence variation analysis demonstrates that most prioritized genes 
are core genes.  We analyzed PAV patterns for our prioritized candidate genes in the recently published 
pangenome of cultivated soybeans to unveil which soybean genotypes contain prioritized candidate genes and 
explore gene presence/absence variation patterns across genomes18. We found that most candidates are present 
in all 204 accessions (Supplementary Fig. 1A). This trend is not surprising, as the gene content in this pange-
nome is highly conserved, with ~ 91% of the genes being shared by > 99% of the genomes. Although the variable 
genome is enriched in genes associated with defense, signaling, and plant development, this trend was not found 
in our gene set.

Further, we investigated if gene PAV patterns could be explained by the geographical origins of the acces-
sions (Supplementary Fig. 1B). We observed no clustering by geographical origin, suggesting that gene PAV is 
not affected by population structure. As this pangenome is comprised of improved soybean accessions18, the 
lack of population structure effect can be due to breeding programs targeting optimal adaptation to different 
environmental conditions (e.g., latitude and climate), even if they are in the same country.

Screening of the USDA germplasm reveals a room for genetic improvement.  We inspected the 
USDA germplasm to find the top 5 most resistant genotypes against each fungal pathogen (see Materials and 
Methods for details). Strikingly, the most resistant genotypes do not contain all resistance alleles, revealing that, 

Stotal =

n∑

i=1

Si , where Si = {0, 1, 2}
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theoretically, they could be further improved to increase resistance (Table 3). All resistance-associated SNPs 
against P. pachyrhizi are present in some accessions, but this is because only two SNPs have been reported for this 
species. Additionally, none of the reported SNPs for F. graminearum have been identified in the SoySNP50k col-
lection. Hence, we could not predict the most resistant accessions to this fungal species in the USDA germplasm.

Although some individual genes can confer full race-specific resistance to some pathogens, their durability 
in the field is often short because of pathogen evolution27. Thus, pyramiding quantitative trait loci (QTL) that 
confer partial resistance has been proposed as a strategy to confer long-term resistance28. To accomplish this, the 

Figure 1.   Data summary and genomic distribution of SNPs. (A) Frequency of SNPs and RNA-seq samples 
included in this study. (B) Genomic coordinates of resistance SNPs against each fungal pathogen. The outer 
track represents gene density, whereas inner tracks represent the SNP positions for each species. (C) SNP 
distribution across chromosomes. Overall, there is an uneven distribution of SNPs across chromosomes. (D) 
Genomic location of SNPs. Most SNPs are located in intergenic regions.
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most resistant genotypes identified here can be targets of allele pyramiding in breeding programs using marker-
assisted selection. Alternatively, these genotypes might have their genomes edited with CRISPR/Cas systems to 
introduce beneficial alleles or remove deleterious alleles, ultimately boosting resistance.

Development of a user‑friendly web application for network exploration.  To facilitate network 
exploration and data reuse, we developed a user-friendly web application named SoyFungiGCN (https://​soyfu​
ngigcn.​venan​ciogr​oup.​uenf.​br/). Users can input a soybean gene of interest (Wm82.a2.v1 assembly) and visualize 
the gene’s module, scaled intramodular degree, and hub status (Fig. 4A). Additionally, users can explore enriched 
GO terms, Mapman bins and/or Interpro domains associated with the input gene’s module (Fig. 4A). Users can 
also visualize a network plot with the input gene and its coexpression neighbors (Fig. 4B). This resource can be 
particularly useful for researchers studying soybean response to other fungal species, as they can check if their 
genes of interest are located in defense-related coexpression modules. Also, researchers studying other species 
can verify if the soybean ortholog of their genes of interest is located in a defense-related module. The application 
is also available as an R package named SoyFungiGCN (https://​github.​com/​almei​dasil​vaf/​SoyFu​ngiGCN). This 
package lets users run the application locally as a Shiny app, ensuring the application will always be available, 
even in case of server downtime.

Conclusions
By integrating publicly available GWAS and RNA-seq data, we found promising candidate genes in soybean asso-
ciated with resistance to five common phytopathogenic fungi, namely C. gregata, F. graminearum, F. virguliforme, 
M. phaseolina, and P. pachyrhizi. The prioritized candidates encode proteins that play a role immunity-related 
processes such as in recognition, signaling, transcriptional regulation, oxidative stress, and physical defense. We 
have also found the top 5 most resistant soybean accessions against each fungal species and hypothesize that they 
can be further genetically improved in breeding programs with marker-assisted selection or through genome 
editing. The coexpression network generated here was also made available in a web resource and R package to 
help in future studies on soybean-pathogenic fungi interactions.

Data availability
All data and code used in this study are available in our GitHub repository (https://​github.​com/​almei​dasil​vaf/​
SoyFu​ngi_​GWAS_​GCN) to ensure full reproducibility.
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Figure 4.   Functionalities in the SoyFungiGCN web application. A. Screenshot of the page users see when they 
access the application. In the sidebar, users can specify the ID of a gene of interest (Wm82.a2.v1 assembly). For 
each gene, users can see the gene’s module (orange box), scaled degree (red box), hub gene status (green box), 
and an interactive table with enrichment results for MapMan bins, Interpro domains and Gene Ontology terms 
associated the gene’s module. P values from enrichment results are adjusted for multiple testing with Benjamini–
Hochberg correction. B. Network visualization plot. Users can optionally visualize the input gene and its 
position in the module by clicking the plus (+) icon in the “Network visualization” tab below the enrichment 
table. As the plot can take a few seconds to render (~ 2–5 s), it is hidden by default.
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