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Observation of spatial nonlinear 
self‑cleaning in a few‑mode 
step‑index fiber for special 
distributions of initial excited 
modes
Zahra Mohammadzahery*, Maryam Jandaghi, Ebrahim Aghayari & Hasan Nabavi

In this paper, we experimentally demonstrate that a nonlinear Kerr effect in suitable coupling 
conditions can introduce a spatially self‑cleaned output beam for a few‑mode step‑index fiber. 
The impact of the distribution of the initial excited modes on spatial beam self‑cleaning has been 
demonstrated. It is also shown experimentally that for specific initial conditions, the output spatial 
pattern of the pulsed laser can be reshaped into the  LP11 mode due to nonlinear coupling among the 
propagating modes. Self‑cleaning into  LP11 mode required higher input powers with respect to the 
power threshold for  LP01 mode self‑cleaning. Our experimental results are in agreement with the 
results of numerical calculations.

Nonlinear pulse propagation in Multimode fibers (MMFs) has recently attracted a lot of attention in recent years 
due to their high transmission capacity, especially for very high data rate optical  communications1,2. Research 
on MMF has revealed a number of nonlinear spatiotemporal phenomena such as multimode solitons, geometric 
parametric instability (GPI), supercontinuum (SC) generation, and nonlinear microscopy and  endoscopy3–10. 
The input spatially Gaussian beam in MMFs, leads to an output speckled beam pattern due to the generation 
of a large number of guided transverse modes and this is a major problem in transmitting radiation through 
these fibers. After a few centimeters of the light propagation inside the fiber, the random coupling of the modes 
leads to a sever reduction in the quality of beam. In recent studies on nonlinear pulse propagation in MMFs 
it is demonstrated that the refractive index dependence on light intensity (Kerr-effect), in MMFs can lead to a 
spatially cleaned output beam which is robust against fiber  bending11–15. The power threshold for frequency con-
version or self-focusing of sub nanosecond to femtosecond pulses propagating in the normal dispersion regime 
is much higher than that required for nonlinear self-cleaning effect. Most articles in this field, reported nonlinear 
beam reshaping and the other nonlinear effects in MMFs with a parabolic or nearly parabolic refractive index 
 profile16–19. We demonstrated for the first time in our previous work that the Kerr beam self-cleaning effect can 
be seen in step-index few-mode fiber at higher peak-powers with respect to the power threshold for self-cleaning 
in graded index (GRIN)  fibers20. It is obvious that the role of core refractive index profile is very important in 
nonlinear self-cleaning process, by introducing intermodal dispersion and creation of a periodic self-imaging 
 effect21. Kerr beam self-cleaning arises due to quasi-phase matching (QPM) induced by mode auto imagery when 
the refractive index is parabolic. This imagery can occur in step-index fibers but not with the same efficiency 
and with a smaller coherence length than GRIN  fibers22. With few-mode fibers that support fewer modes than 
MMFs, it is easier to have the QPM condition between modes than highly multimode fibers. In this work, we 
demonstrate that for creation of self-cleaning effect in few-mode step-index fiber, it is necessary to manage the 
coupling condition and consequently the initially guided modes fractions because this arrangement affects the 
self-imaging distance and nonlinear modal couplings. We focus on the effect of the initial modal distributions 
on Kerr-beam self-cleaning in few-mode step-index fiber. To show that, we employed the second harmonic of 
a sub-nanosecond microchip pulsed laser propagating in a step-index fiber with a core diameter of 20 μm and 
a numerical aperture of 0.065 supporting more than 10 spatial modes at 532 nm wavelength. We found that 
there is a final limitation for the initial propagating mode distribution in order to achieve a proper Kerr-induced 
refractive index profile and consequently a nonlinear self-cleaned output beam in few-mode step-index fiber. 
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Moreover, at a special input coupling angle, Kerr nonlinear self-cleaning in our considered fiber can reshape 
the transverse output pattern into the  LP11 mode. Nonlinear self-cleaning of the  LP11 mode requires a careful 
adjustment of the laser beam coupling at the fiber input to prepare a proper power distribution among the guided 
modes. Numerical simulations are consistent with our experimental results.

Theory
We utilized the generalized multimode nonlinear Schrödinger equation (GMM-NLSE) to calculate the propaga-
tion of all excited modes in few-mode step-index  fiber23:

here Ap(z, t) is pth mode envelop, βp
n is the (n-1)th order term in the Taylor series expansion of the wave number 

for pth mode, Skplmn and SRplmn are mode overlap tensors, fR is the fractional contribution of the Raman response to 
the total nonlinearity (approximately 0.18), and n2 is the nonlinear Kerr parameter of Silica. The electromagnetic 
field inside the core can be expressed as a superposition of all excited modes:

where summation is taken over all ( l,m ) excited modes with propagating constant βlm . Spatial self-imaging effect 
is one of the initial phenomena in the self-cleaning process, which its combination with Kerr nonlinearity will 
introduce a periodical modulation of the refractive index in the core of the fiber. Self-imaging is actually the 
reproduction of the input field in some positions inside the fiber where guided modes are in phase and satisfy 
the following  condition21:

where mlm is an integer number and zs is the self-imaging distance with one period. With the properties of 
the characteristic  equations24, the number of guided modes and corresponding propagation constants can be 
accurately determined by numerical procedures. According to the computations, an imaging period of 1.8 mm 
is expected for propagation of 532 nm wavelength for a straight alignment of the input beam, which is much 
smaller than 10-43 mm in a step-index MMF with 50–105 μm core diameter and slightly longer than 1 mm or 
less for a GRIN MMF. For high-intensity beams, there is an intensity-dependent refractive index in the MMF 
core, and the self-imaging period changes according to:

On the other hand, there is an additional phase shift γpPpz in the presence of intermodal nonlinear effects, 
where γp =

n2ω0Spppp
c  is nonlinear coefficient and Pp is the equivalent optical power for the pth  mode25. Conse-

quently self-imaging distance reduces slightly by the amount of Δ:

As it can be seen, by increasing the optical power of the fundamental mode with respect to the higher order 
modes, there will be a greater reduction in the self-imaging distance. According to our calculations, for 10 kW 
input peak-power Δ can be increased up to 0.36 mm for different fractions of fundamental mode with respect 
to the higher order modes. A reduction in the self-imaging distance facilitates nonlinear interactions, leading to 
a spatially cleaned output beam in a few-mode step-index fiber. On the other hand, as it has explained in  Ref22, 
if there is a higher fraction of fundamental mode in the initial distribution of guided modes, an irreversible 
decoupling of the fundamental mode can be observed, which allows the power to remain in this mode. As it is 
demonstrated experimentally and numerically in the next sections, there is a limitation of propagating mode 
fractions on the observation of the self-cleaning effect in few-mode step-index fiber.

Experiments
In our experiments, we used a 5 m long piece of step-index fiber with a core diameter 20 µm and numerical 
aperture of 0.065. The signal source for experiments was the second harmonic of a microchip Nd:YAG laser 
delivering sub nanosecond (450 ps) pulses at 1 kHz repetition rate with 40 µJ maximum pulse energy at 532 nm 
wavelength. The laser beam was injected into the fiber using a focusing lens (f = 50 mm) controlled by using a 
3-axis translation stage. The laser beam passed through a half-wave plate and a polarization cube before being 
focused within the central axis onto the fiber input face, in order to adjust the input power. Full with at half 
maximum in intensity (FWHMI) of the laser beam on the input face of the fiber was 10 µm. The fiber carries 
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more than 10 modes at both polarization components at 532 nm wavelength. The optical setup included CCD 
cameras for field monitoring, a power meter and a spectrum analyzer.

In our previous work, we demonstrated experimentally and numerically that by increasing the injected 
power from 0.3 kW in the linear regime to 6 kW in the nonlinear regime, the output pattern of the step-index 
few-mode fiber transfers from a speckled profile to a bell-shaped smooth central beam. Here, in the first series 
of experiments, we studied the impact of the number of excited modes on the properties of the Kerr-beam self-
cleaning process. We injected the input pulse beam into the step-index few-mode fiber by imposing a transverse 
shift to the entrance of the fiber with respect to the optical lens, so the initial conditions were varied. Figure 1a–d 
shows the spatial beam profile at the output of the fiber for different input conditions while keeping the guided 
peak power fixed.

As it can be seen clearly from the figure, the excitation of the few-mode fiber at the central position with 6 
propagating modes and a lower fraction of the higher-order modes lades to the Kerr beam self-cleaning at 8 kW 
input peak-power in 5 m long few-mode fiber. With the larger transverse shift of the input beam, the number 
of propagating modes and the higher order modes fraction increase, and the peak-power for Kerr-beam self-
cleaning also increases. In our experiments, we observed that in cases where the index of higher order modes 
is much more than that of fundamental mode and lower order modes, it is impossible to reach Kerr-beam self-
cleaning. Therefore, in these fibers, there is a final limitation for the initial distribution and number of propagat-
ing modes to achieve a self-cleaned output beam.

In the second series of our experiments, we varied the tilt angle of the Gaussian laser beam at the input face 
of the few-mode step-index fiber. The incident angle was greater than the numerical aperture of the fundamental 
mode. In our selected coupling condition, the highest fraction of power has been coupled into the odds modes. 
As has been shown in GRIN  fibers26, this modal distribution generates an off-axis refractive index modulation 
that leads to a strong overlap with the  LP11 mode, and consequently, FWM processes with participation of this 
mode have the highest coefficient.

The experimental results for the Kerr-beam self-cleaning process in a 5 m long few-mode step-index fiber are 
shown in Fig. 2a–f. To confirm the experimental observation of self-cleaning to the  LP11 mode in our considered 
fiber, we recorded the near field pattern of the output beam at different input peak-powers. By gradually increas-
ing the injected power from 1kW in the linear propagation regime up to 12 kW in the nonlinear propagation 
regime, the main part of the launched power transfers toward the  LP11 mode. The threshold peak-power to obtain 
Kerr beam self-cleaning in  LP11 mode is on the order of 9–10 kW. This is a value greater than that for  LP01 mode 
self-selection in step-index few-mode fiber (6 kW). To confirm the spatial reshaping toward  LP11mode under 
special initial input conditions, we have investigated near-field and corresponding far-field images, which have 
been simultaneously observed in two cameras placed at the near and far fields, of the output beam from the 
step-index few-mode fiber in both the linear and nonlinear regimes.

It is clear from Fig. 3 that nonlinear propagation for tilted input injection conditions leads to an apparent 
reshaping of both near and far field output profiles. It has been checked that there is no frequency conversion or 

Figure 1.  Output beam intensity patterns versus input beam position with respect to the fiber center: (a) 
Δx = 0 μm, (b) Δx = 2 μm, (c) Δx = 4 μm, (d) Δx = 7 μm. Scale bar is 10 μm.

Figure 2.  Near field intensity pattern at the few-mode step-index fiber output versus input peak power for 
appropriate input coupling conditions for higher fraction of  LP11 mode, for (a) 1 kW, (b) 3.5 kW, (c) 5 kW, (d) 
7.4 kW (e) 9.2 kW, (f) 12 kW. Scale bars 10 μm.
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Raman scattering at these power levels. We also show in Fig. 4 the intensity correlation  Cs of the experimental 
near field output beam profile with the mode solver:

This represents the integration of the normalized product of the experimental output intensity profile ( Iexp ) 
and numerically calculated mode profile ( Ith ) on the fiber cross-section. The curves in Fig. 4 indicate that the 
intensity correlation for experimentally observed patterns corresponding to the  LP11 and  LP01 modes increases 
as the input peak power grows larger. Consequently, the power fraction into the  LP01 and  LP11 modes grows at 
high power levels.

Numerical results
To guide our experiments, a series of numerical simulations has been performed by solving the generalized 
multimode nonlinear Schrödinger equation using an integration step of 0.05 mm and a transverse 800 × 800 
grid for a spatial window of 100 × 100 μm. We considered a step-index MMF with a core diameter of 20 μm and 
a core-cladding index difference Δn = 0.0015 at a central wavelength 532 nm. Numerical results are consistent 
with the experimental results. Figure 5 summarizes a series of numerical simulations showing the output beam 
intensity patterns for different fractions of initially excited modes corresponding to different transverse shifts to 
the lateral position of the Gaussian beam with respect to the fiber core, for 8 kW input peak power in the non-
linear regime (Fig. 5a–d) and 0.1 kW input peak power in the linear regime (Fig. 5e–h), and for a 5 m length of 
the fiber. In these simulations, it has been considered that by increasing the displacement of the beam from the 
fiber center, the number of excited modes and also the fraction of higher order modes with respect to the central 
mode increased. Therefore, it can be seen in the nonlinear propagation regime that there is a bell-shaped output 
beam at the beginning, whereas by increasing the transverse shift, the spatial output shape of the beam will be 
disrupted. On the other hand, the modal distribution and population in the few-mode step-index fiber has a 
considerable effect on the spatial beam condensation effect. Receiving Kerr nonlinear self-cleaning at a higher 
number of excited modes needs to increase the input peakpower, where more nonlinear effects and wavelength 
broadening will be observed. Therefore, Kerr-beam self-cleaning in few-mode step index fibers can be seen for 
a limited number of initially excited modes. This is in agreement with our experimental results obtained by 
changing the input beam position with respect to the fiber center.

Cs =

∫

IexpIthds
√

∫

I2expds
∫

I2thds
.

Figure 3.  Near field (left) and far field (right) intensity patterns at the step-index few-mode fiber output for the 
linear propagation regime (a, c) and Kerr nonlinear regime (b, d) for appropriate input coupling conditions for a 
higher fraction of the  LP11 mode, scale bars 10 μm.
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Figure 4.  Intensity correlation  CS upon input peak power for  LP01 (red curve) and  LP11 (blue curve).
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To investigate the possibility of Kerr nonlinear self-cleaning to  LP11 mode in few-mode step-index fiber, in 
the next series of simulations, we have considered a different contribution of initial excited modes such that the 
highest fraction of power coupled to the  LP11 mode, as shown in Fig. 6h. Under this condition, the numerical 
results of propagation of the input Gaussian beam in 5 m long fiber are consistent with the experimental observa-
tions. As the input peak power increases from 0.5 kW in the linear regime to 13 kW in the nonlinear regime, the 
spatial distribution of the output beam intensity transforms from a nearly multimode intensity pattern toward 
the  LP11 mode spatial distribution (Fig. 6a–g). There are some slight differences between the experimental and 
corresponding numerical results of output beam intensity patterns for a particular input beam condition. This 
happens as a result of a little difference between laboratory coupling conditions and those we have considered 
in our simulations for any specific power of the input laser beam. But as it can be seen, the general process of the 

Figure 5.  Numerical results of the output beam intensity patterns versus the number of excited modes at the 
input of the fiber for (a–d) 10 kW input peak-power in the nonlinear regime and (e–h) 0.1 kW input peak-
power in the linear regime, scale bars 10 μm.

Figure 6.  Numerical results of spatial reshaping of beam propagating in step-index few-mode fiber as a 
function of input peak power for (a) 0.5 kW, (b) 2 kW, (c) 4 kW, (d) 6 kW, (e) 7 kW, (f) 10 kW, (g) 13 kW, scale 
bars 10 µm. (h) Fraction of input power coupled into the different guided modes.
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variations in beam intensity pattern by transformation from linear to nonlinear regime is exactly the same for 
experimental and numerical results. It should be noted that we didn’t observe any significant change in spectral 
width in our simulations.

Conclusion
In conclusion, we experimentally demonstrate that Kerr nonlinear spatial reshaping of a pulsed beam to a nearly 
Gaussian mode at the output of a few-mode step-index fiber can be observed for specific distributions of initially 
excited modes. However, in the cases where the index of higher order modes is much more than that of funda-
mental mode and lower order modes, it is impossible to reach Kerr-beam self-cleaning. The initial distribution 
of guided modes affects the self-imaging distance, which has a significant rule on the Kerr-beam self-cleaning 
effect, and also a higher fraction of fundamental modes leads to irreversible decoupling of the central mode. 
Therefore, there is a final limitation for the initial coupling conditions and propagating mode numbers to achieve 
a condensed output beam pattern in few-mode step-index fibers.

We also demonstrated experimentally that Kerr nonlinear spatial cleaning can transform the output pattern 
into the  LP11 mode of a few-mode step-index optical fiber while it has a speckled profile in linear regime. A 
necessary condition for nonlinear spatial reshaping into  LP11 mode is to adjust the laser beam angle at the fiber 
input, which leads to a modal distribution in favor of the  LP11 mode. Our numerical simulations are in agreement 
with experimental results. The observation of the possibility of output pattern engineering in step-index few-
mode fibers may find practical importance in the delivery of high-power laser beams for a variety of applications 
including micromachining and nonlinear microscopy.
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