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Ageing transitions in a network 
of Rulkov neurons
Dhrubajyoti Biswas1,2 & Sayan Gupta2,3*

The phenomenon of ageing transitions (AT) in a Erdős–Rényi network of coupled Rulkov neurons 
is studied with respect to parameters modelling network connectivity, coupling strength and the 
fractional ratio of inactive neurons in the network. A general mean field coupling is proposed to 
model the neuronal interactions. A standard order parameter is defined for quantifying the network 
dynamics. Investigations are undertaken for both the noise free network as well as stochastic 
networks, where the interneuronal coupling strength is assumed to be superimposed with additive 
noise. The existence of both smooth and explosive AT are observed in the parameter space for both 
the noise free and the stochastic networks. The effects of noise on AT are investigated and are found 
to play a constructive role in mitigating the effects of inactive neurons and reducing the parameter 
regime in which explosive AT is observed.

Investigating the dynamical behaviour of an animal brain, formed as an intricate web of large number of inter-
connected  neurons1, requires modelling it as a complex dynamical system with underlying network  structure2–4. 
Here, each neuron is a dynamical entity. A complex dynamical system approach enables investigating the time 
evolution of a large number of interconnected subsystems, the dynamics of each of which are reasonably well 
understood in isolation but whose collective dynamical behaviour can be significantly different due to the inter-
action effects. The complexity arises from the interactions, on account of the coupling between the subsystems. 
Each subsystem is modelled as a node and the mutual interactions due to coupling are modelled as links/edges 
forming a complex network. One of the most widely investigated complex networked system is the Kuramoto 
model of phase  oscillators5,6. The scale of such complex networked systems can range from 10 to 20 in “low” 
dimensional oscillator  networks7 to billions of interacting neurons, for example in the human brain  model8. 
Phenomena like  synchronization9–11, explosive  synchronization12–14 and explosive  death15,16 are the hallmarks of 
such complex systems and have been studied across domains ranging from networks of  neurons17, mechanical 
 oscillators18 to chemical  systems19.

Investigating the capability of a networked system to operate dynamically even when segments of the system 
malfunctions is of interest to estimate its robustness to external and/or internal perturbations/malfunctions. 
Such robustness is observed in many biological systems—such as the  brain1—which continue to function, maybe 
sub-optimally, after trauma. In this context, one of the more interesting recent developments has been to study 
Ageing Transitions (AT) in networks of dynamical systems. In ageing neuronal networks, some nodes (neurons) 
lose their functionality and become inactive dynamically. When the fraction of inactive nodes is low, the net-
worked system might be able to compensate the loss through coupling and continue to exhibit “active” dynamical 
behaviour. However, as the fraction of inactive nodes increase, the system collectively transitions to a state where 
there is no significant “active” dynamical behaviour in the system. AT was first observed in Stuart-Landau (SL) 
 oscillators20 and later in many systems like globally coupled  networks21,22, locally coupled  oscillators23, fractional 
order SL  oscillators24, Hindmarsh-Rose  neurons25–27 and time-delayed interaction  systems28 among others. The 
nature of AT from the active state of the network to the inactive state can be gradual, monotonic or explosive and 
depends on several key parameters associated with the problem. A sudden or explosive transition is characterised 
by a sharp change in the system’s dynamical characteristics on a slight change of one of the parameters. These 
type of transitions are potentially detrimental as this leads to a total loss of capability of the network, without 
prior warning. There is therefore a need to investigate the parameter regimes at which these explosive transitions 
occur. An order parameter, which is a measure of the collective dynamical characteristic of a complex network 
in which the individual components can behave quite differently, is defined to qualitatively and quantitatively 
investigate the parameter regimes at which these ageing transitions are observed.
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This article focuses on investigating the phenomenon of AT in a network of Rulkov neurons, with the frac-
tion of “inactive” neurons as one of the important parameters. As is well known, neuronal dynamics is typically 
characterized as a discontinuous system comprising of two distinct states—a silent or inactive state and a spiking 
or active state. The Rulkov neuron is a simple map based model which captures the discontinuous nature of the 
neuronal dynamics and unlike differential equation based models, enables numerical studies at significantly 
cheaper computational costs. This enables carrying out parametric studies for networked systems with a large 
number of Rulkov neurons. A mean field coupling model is proposed for the neuronal interconnections and 
the conditions for AT are investigated using measures based on standard order parameters. Subsequently, the 
dynamics of the networked system is investigated when the mean field coupling model is modified to be stochas-
tic. Parametric studies on the stochastic system reveal that noise could play a constructive role in altering the 
dynamical characteristics of the network by delaying the onset and the nature of AT. In investigating the dynamics 
of ageing systems for a given set of parameters, the fraction of “inactive” nodes are taken to be constant as the 
time-scale of ageing is usually several orders of magnitude larger than the time-scale of the system dynamics.

Mathematical model
The Rulkov  map29,30 involves two state variables xn and yn , where the former represents the membrane potential 
of the neuron and is the primary quantity of interest while the latter is an internal variable necessary to capture 
the dynamics; see Eqs. (1–3). The suffix “n” represents the n-th discrete time step. Depending on the choice of the 
parameters, a solitary neuron exhibits three distinct long-time dynamical  states29: dead/silent (DS), tonal spiking 
(TS) and spiking bursting (SB). In this study, the parameters are selected such that the individual neurons exhibit 
either the DS or TS states. In the case of networked neurons, the map consists of additional terms (see Eqs. (4–8)) 
that take into account the coupling effects between the i-th and j-th neuron of the network. A symmetric mean 
field coupling model is adopted where the strength of the coupling is proportional to the mean of the differences 
between the membrane potential of the i-th neuron and the corresponding membrane potential of all other 
neurons with which it is directly connected; see Eqs. (6a–6b). This implies that depending on the instantaneous 
values of the membrane potentials, the nature of the coupling between any two neurons could be either inhibi-
tory or excitatory. The coupling proportionality constant gij,n is assumed to be time dependent comprising of a 
constant mean term gm denoting the average coupling strength and an additive fluctuating component, modelled 
as Gaussian white noise. The fluctuating component accounts for the time dependent modelling uncertainties 
in the coupling, with the intensity of the fluctuations being represented by D. The network is in the form of a 
random coupled map lattice (CML)31, with each node (neuron) having a connection probability Pn . Small values 
of Pn lead to a sparsely connected network, while higher values implies a highly connected or dense network. 
The probability that a particular neuron is inactive (or dead) is defined using parameter Pd . For larger values of 
Pd , it is expected that the number of inactive neurons in the network increases, implying an increase in the “age” 
of the network. The network dynamics is governed by an intricate interplay between the four parameters gm , D, 
Pd and Pn . To quantify the collective dynamical characteristics of the network, an order parameter A is defined, 
which is a normalised measure for the largest amplitude of the oscillations in the steady state condition aver-
aged across all neurons in the network; see Eqs. (10–11). A can take values between unity and zero, with zero 
indicating that none of the neurons are oscillating and hence the network collectively becomes inactive (or dead).

Results
Exhaustive parametric investigations have been carried out numerically. The representative interesting results 
that bring out the salient features for both the noise-free and the stochastic cases are discussed next.

Noise free system. The noise free system is when the intensity D = 0 . The collective dynamics is quantified 
in terms of A as a function of Pd for different values of gm and Pn . Figure 1 shows the variation of A with respect 
to Pd , for a sparse ER network with Pn = 0.1 . Figure  1a,b consider the cases when gm = 0.0 and gm = 0.05 
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Figure 1.  The order parameter A plotted as a function of Pd for Pn = 0.1 and (a) gm = 0.0 and (b) gm = 0.05 
exhibiting smooth AT.
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respectively. The former case essentially considers a set of uncoupled neurons and the latter represents very weak 
coupling in an already sparse network. In both cases, A is observed to decrease linearly with Pd . This is expected 
as with increasing values of Pd , the number of inactive neurons increases, thereby bringing down the value of 
the averaged normalised order parameter. The zero coupling or low coupling strength implies that the active 
neurons have little effect on the network. In both cases, A → 0 as Pd → 1.

Next, simulations are carried out for an ER network with Pn = 0.5 , which represents a more connected 
network. The variation of A with respect to Pd is shown for gm = 0.35 in Fig. 2a and for gm = 0.45 in Fig. 2b.

These gm values indicate a higher coupling strength. These figures reveal that there is a sudden drop to zero 
in the value of A at a particular value of Pd indicating a sudden transition of the network to the DS.

This sudden discontinuous transition in the state of the network is defined as explosive AT. To gain insights 
into the collective dynamics of the network, raster plots which show the time histories of the dynamics of each 
neuron are investigated; see Fig. 3. Here the abscissa is iterate n, the ordinate is the neuron number i and the 
colour code denotes the values of the state variable xn for each neuron in the network. Figure 3a shows the plots 
for the case Pn = 0.5 , gm = 0.35 and Pd = 0.1 for n = 6800–7000. The choice of Pd indicates that the regime is 
to the left of the explosive AT seen in Fig. 2. A homogeneous banded figure pattern is observed, with the bands 
appearing vertically, indicating that almost all the neurons undergo spiking synchronously. A closer inspection 
reveals that in between there are neurons which do not undergo any oscillations and these appear as horizontal 
lines. These are the inactive neurons. The numerical values of xn of these inactive neurons is not zero; in fact, 
they have different values at the DS which remain constant for all iterates indicating a lack of dynamics. A similar 
plot for the network having identical parameters but with Pd = 0.9—which is in the regime to the right of the 
explosive AT—is shown in Fig. 3b. Here, one can see that the figure comprises of a set of parallel lines indicating 
that none of the neurons exhibit spiking. All the neurons are therefore in the DS state, and though they have 
different values of xn , the order parameter A by its definition is zero. It is important to note that as the number of 
inactive neurons increase in the network, the effects of the active neurons on the network dynamics diminishes 
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Figure 2.  The order parameter A plotted as a function of Pd for Pn = 0.5 and (a) gm = 0.35 and (b) gm = 0.45 
exhibiting sudden AT.

(a)Pd = 0.1, before explosive AT (b)Pd = 0.9, after explosive AT

Figure 3.  Time history diagrams showing the dynamical behaviour of each of the N = 2× 103 neurons 
(plotted on the ordinate) with time/iterate (plotted on the abscissa for n = 6800 to n = 7000 ); (a) the dynamics 
for the system before AT ( Pn = 0.5 , gm = 0.35 and Pd = 0.1 ); (b) the dynamics for the system after AT 
( Pn = 0.5 , gm = 0.35 and Pd = 0.9).
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and beyond a critical threshold value of Pd , the higher coupling strength of a reasonably connected ER network 
ensures that the effects of the active neurons die down with time and the entire network exhibits a DS. Note 
that Fig. 3a shows the time histories only after the effects of the transients have died down. Also, unlike in other 
systems associated with explosive transitions, hysteresis is not observed here.

A parametric study is carried out to investigate in detail the behaviour of the network as Pd , gm and Pn are 
varied. Figure 4a–c show the contours of the order parameter A as a function of Pd and gm for three different 
values of Pn , corresponding to network topologies that are sparse, intermediate and dense.

The colour-map is same for all cases, with yellow denoting A → 1 and black denoting A → 0 . The black region 
in these figures denote the parameter regime where the network is globally in the DS. An explosive AT is observed 
where the colour gradients are sharp. The sharp boundary, in all three cases, indicates the boundary of explosive 
AT in the parameter space with the colour map indicating the size of the explosive transition. It is interesting to 
note that the figures look qualitatively similar in all the three cases, indicating that the collective network behav-
iour is universal irrespective of the topology of the ER network. It is seen that irrespective of the ER network 
topology or the coupling strength, the critical threshold value for Pd required to observe AT is approximately 0.4. 
This is shown by the horizontal dotted lines in these figures. The vertical dotted lines demarcate the parameter 
regime such that the region left of this line exhibits smooth transition and to the right shows explosive AT. It is 
therefore seen that gm should be at least 0.2 for explosive AT to occur, irrespective of the ER network topology.

The critical “death” or “inactivation” probability for Pd , denoted by pc , beyond which the network dynam-
ics explosively transitions to a global DS can be quantitatively estimated through the gradient measure 
γ =

∣

∣�A/�Pd
∣

∣ . As is obvious, γ shows a high value when there is a discontinuous jump in A as Pd is changed. 
Figure 5a shows the variation of γ with Pd for the case Pn = 0.5 , gm = 0.5.

From the spike, pc is identified to be 0.5 and this can be corroborated from the inset in Fig. 5a. It is interest-
ing to note that the values of γ left of the spike are small but exhibit irregular fluctuations, while the values are 
identically equal to zero to the right of the spike. This indicates that for Pd > pc , the network has globally attained 
the DS. The variation of pc with gm for the same topology of the ER network is shown in Fig. 5b. The sudden 

(a) Pn = 0.1 (b) Pn = 0.5 (c) Pn = 0.9

Figure 4.  The order parameter A plotted as a function of both Pd and gm for (a) Pn = 0.1 , (b) Pn = 0.5 and (c) 
Pn = 0.9 . The dark/black coloured region shows where A → 0 whereas yellow shows where A → 1 . The colour-
map which is common for all three figures is shown below the plots.
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Figure 5.  (a) Variation of γ with Pd ; a peak is observed when explosive AT occurs (inset shows the 
corresponding variation of A with Pd ). (b) Variation of pc with gm for Pn = 0.5 . (c) Global variation of pc with 
Pn and gm.
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transition in the nature of the curve for gm > 0.2 clearly demarcates the smooth and explosive transition regimes. 
It is also observed that pc does not take values less than 0.4 confirming the earlier observation that explosive AT 
is not observed for Pd < 0.4 . The monotonically decreasing nature of the curve underlines the fact that with an 
increase in the coupling strength and in turn a stronger coupling of the constituents in the network, the global 
DS of the network is achieved with lower Pd . This seems to imply that the DS is a stronger attractor than the 
TS. Figure 5c shows the variation of pc with respect to both gm and Pn confirming that these observations are 
irrespective of the topology of the ER network.

Stochastic system. Stochasticity is introduced in the system through additive noise to the mean coupling 
strength gm by considering D  = 0 in Eq. (8). The noise is modelled as a discretized Gaussian white noise process 
such that the additive noise at each iterate ζn is standard normal and E[ζnζm] = δnm where δnm is the Kronecker 
delta. Here, E[ · ] is the expectation operator. As E[gij,n] = gm , the noise does not affect the average coupling 
strength in the ER network. Though the noise is additive with respect to gm , it enters the system as multiplicative 
noise as gij,n is a system parameter.

Figure 6 presents the variation of A as a function of Pd , when Pn = 0.5 for the stochastic network for (a) 
gm = 0.1 and (b) gm = 0.85.

The corresponding variation for the noise-free network ( D = 0 ) is also shown in the same figures for com-
parison. A smooth transition is observed in Fig. 6a, where A → 0 as Pd → 1 . An important observation is 
that A for the stochastic network is greater in comparison to the noise free system for almost the entire regime 
indicating that the amplitude of the oscillations, on an average, increase with noise intensity D. Explosive AT is 
observed for higher values of the mean coupling strength for both the noise free as well as the stochastic case as 
can be seen in Fig. 6b. The stochastic network however does not exhibit global DS behaviour post explosive AT, 
unlike the noise free network. As characterised by the measure A, as Pd is further increased beyond pc , there is 
a steady decline in the oscillations and a global DS is attained as Pd → 1 . The magnitude of the oscillations post 
explosive AT are higher for larger noise intensities.

An important observation from Fig. 6b is that noise delays the onset of the explosive AT. This is clearly 
evident from the figure where the explosive AT for D = 0 is observed to be at Pd ≈ 0.4 , while as D becomes 
larger, explosive AT occurs at higher values of Pd . To gain further insights into the collective dynamics of the 
network, the time histories of the membrane potential xi,n for each neuron is investigated through raster plots; 
see Fig. 7a–b. Figure 7a shows the plot for D = 0.05 , Pn = 0.5 , gm = 0.85 , Pd = 0.1 and for n = 6800–7000 and 
denotes a regime prior to explosive AT. Note that the raster plots are shown only for a small segment in time 
after the initial transients have died down. The banded pattern observed is similar to Fig. 3a, indicating that 
even for the stochastic network all the active neurons exhibit synchronous spiking. The horizontal lines are 
the inactive neurons having a constant value of xi,n for all n; these values are however different for each of the 
inactive neurons. However, unlike the noise free network, the vertical bands are not equally spaced indicating 
that the spikings are no longer regular for the neurons exhibiting spiking. A similar raster plot for the stochastic 
network with identical parameters but for Pd = 0.6 , is shown in Fig. 7b. As observed in Fig. 6b, this corresponds 
to post explosive AT regime but the network does not attain global DS. A close inspection of Fig. 7b reveals 
that while the horizontal lines are predominant and therefore indicative of a large number of neurons in DS, 
vertical bands are also observed; this is in contrast to the observations in Fig. 3b. The blue-black vertical banded 
pattern interspersed among the horizontal lines indicates that some neurons are still exhibiting oscillations and 
which are synchronous. This explains the positive values of A post explosive AT for the D  = 0 case in Fig. 6b. 
These inferences are further verified from the time series plots for randomly chosen active neurons shown in 
Fig. 7c. The topmost panel shows the dynamics of a neuron before explosive AT ( Pd < pc ), the middle panel 
shows the dynamics just after explosive AT ( Pd = pc + ǫ where ǫ > 0 is a small number) and the bottom panel 
shows the dynamics for Pd significantly greater than pc and almost close to unity. The oscillations for the post 

(a) Pn = 0.5,gm = 0.10 (b) Pn = 0.5,gm = 0.85

Figure 6.  Variation of A with Pd ; Pn = 0.5 and D = 0.01, 0.03, 0.07 : (a) gm = 0.1—smooth transition is 
observed; (b) gm = 0.85—explosive AT is observed.
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explosive AT regime are observed to be inherently noisy whose amplitude as well as the mean value decrease 
with an increase in Pd.

A parametric study is next carried out to investigate the behaviour of the stochastic network as Pd , gm and 
D are varied. Figure 8 shows the contour map for A in the gm − Pd parameter space for three different cases of 
noise intensities. The colour-map scale is same for all cases, with yellow denoting A → 1 and black denoting 
A → 0 . For D = 0.001 , a sharp boundary for the black region is observed in Fig. 8a indicating explosive AT and 
that A is (or close to) zero in the regime post explosive AT. This figure is similar to Fig. 4; the bounds on gm and 
Pd for which the sharp boundary is encountered are identical. The contour maps shown in Fig. 8b,c, for D = 0.05 
andD = 0.07 respectively, are however qualitatively different. These figures still show a sharp boundary in the 
gm − Pd space, indicating explosive AT, but post explosive AT, the order parameter A does not go to zero. An 
inspection of Fig. 8 reveals that no explosive AT is observed for Pd < 0.4 for the entire parameter regime. How-
ever, as D increases, the minimum values for gm at which explosive AT is observed, increases. A comparison of 
Fig. 8a,c reveal that the regime in the range of 0.2 < gm < 0.4 which showed explosive AT for low values of D, 
exhibit smooth AT as D increases. This implies that multiplicative noise can not only increase the region in the 
gm − Pd parameter space at which dynamic neuronal activities are observed, explosive transitions which result 
in sudden loss of the functionality of the system is also impeded.

These observations are true for all network connectivities Pn as has been shown in Fig. 9, where the variation 
of critical inactivation probability pc is shown in the gm − Pn parameter space for D = 0.01 (Fig. 9a) and D = 0.07 
(Fig. 9b). These two cases represents intermediate and high noise intensity.

An additional case that has been studied is to investigate the effects of inhomogeneity associated with each 
neuron. This was carried out by considering the parameter σi , which has been so far assumed to be identical 
for all neurons, to have small variations about the mean value σ . Mathematically, this is modelled by adding a 
small random perturbation χξi to the ith neuron, where ξi is sampled from a standard normal distribution and 
χ is the strength of the perturbation. Simulations were carried out for χ = 0.01 , and as σ is taken to be 0.6, the 
variability in σi ranged from 0.57 to 0.63 with 99.99% probability. Numerical simulations revealed no appreciable 
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Figure 7.  Time series diagrams showing the dynamical behaviour of each of the N = 2000 neurons (plotted on 
the ordinate) with time (plotted on the abscissa); (a) Dynamics for the system before AT ( Pn = 0.5 , gm = 0.85 
and Pd = 0.1 ). (b) Dynamics for the system after AT ( Pn = 0.5 , gm = 0.85 and Pd = 0.6 ). (c) dynamics of 
randomly selected neurons for different values of Pd . In all cases, D = 0.05 , while Pn = 0.5 and gm = 0.85.

(a) Pn = 0.5,D= 0.001 (b)Pn = 0.5,D= 0.05 (c) Pn = 0.5,D= 0.07

Figure 8.  The order parameter A plotted as a function of Pd and gm for Pn = 0.5 and (a) D = 0.001 , (b) 
D = 0.05 and (c) D = 0.07 . The dark/black coloured region shows where A → 0 whereas yellow shows where 
A → 1 . The colour-map which is common for all three figures is shown below the plots.
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qualitative or quantitative differences in the results. This can be explained by the fact that small changes in σ are 
not strong enough to enable a transition of the Rulkov neuron from DS to TS or vice versa. Considering higher 
values of χ that enable such transitions would imply that Pd can no longer be treated as an independent parameter 
in the model and one would need to instead consider χ as the independent parameter. Instead, considering Pd 
as the independent parameter enables taking into account implicitly the larger variabilities in the parameters 
associated with a neuron.

Discussion
The phenomenon of explosive AT in an ER network of coupled Rulkov neurons has been studied, with network 
connectivity, coupling strength and the fractional ratio of inactive neurons being the parameters of interest. 
This has been investigated for both the noise free network as well as the stochastic network. In the latter case, 
the mean inter-neuronal coupling strength have been superimposed with Gaussian white noise at each iterate. 
An order parameter has been defined for quantifying the dynamical state of the network. It has been shown 
that explosive AT occurs only when at least 40% of the neurons become inactive both for the noise free and the 
noisy network, and also depends on the mean coupling strength. For the noisy network, it has been shown the 
regime at which explosive AT occurs in the parameter space reduces with increasing noise intensity. Moreover, 
increasing the noise intensity prevents the network from going to DS. However, while noise appears to play a 
constructive role in preventing explosive AT in certain regimes, the neuronal dynamics in regimes post explosive 
AT even though do not attain DS, they are noisy and irregular unlike the regular spiking nature expected of 
neurons. The observations from this study can pave the way for more detailed analysis for probable treatments 
of impaired neuronal networks.

Methods
Single neuron. The Rulkov  map29,30, involving two state variables xn and yn , is given by

Here, xn represents the membrane potential of the neuron and is the primary quantity of interest. The vari-
able yn does not have any particular biological connotation but is important to capture the neuronal dynamics 
and therefore can be thought of as an “internal” variable. The suffix “n” represents the n-th discrete time step. 
fα(x, y) is a nonlinear function, given by

α and µ are time-independent parameters that defines the qualitative nature of the dynamics of an isolated 
neuron, while βn and σn are time dependent parameters that describe the external influences (like injected cur-
rent) to the system. The spiking frequency increases with σn29. For a neuron in isolation, these parameters can 
be treated as constants and can be simplified by putting βn = 0 and σn = σ ∀ n . Depending on the choice of the 
parameters, a solitary neuron exhibits three distinct long-time dynamical  states29: dead/silent (DS), tonal spiking 
(TS) and spiking bursting (SB). In DS state, the isolated neurons show no activity; see Fig. 10a. The TS state is 
characterised by the neurons showing continuous spikes; see Fig. 10b.

(1)xn+1 = fα(xn, yn + βn),

(2)yn+1 = yn − µ(xn + 1)+ µσn.

(3)fα(x, y) =







α
(1−x) + y, x ≤ 0

α + y, 0 < x < α + y
−1, x ≥ α + y,

(a) D= 0.01 (b)D= 0.07

Figure 9.  The critical inactivation probability pc plotted as a function of gm and Pn for (a) D = 0.01 and (b) 
D = 0.07.
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In the SB state, the neuron shows bursts of spikes, which may be chaotic depending on the parameter values. 
The parameter regime considered in this study is limited to the DS and TS states and can be seen in Fig. 10c; 
here, the black region is the DS state while the yellow region denotes the TS state. Beyond α = 4 , there exists the 
SB regime which is not depicted here because it is not relevant to this study.

Network of neurons. For a network of coupled Rulkov neurons, Eqs. (1–2) are written in the modified 
form as

where 

for all i, j = 1, . . . ,N . Here, the suffices i, j denote the neuron number, N denotes the total number of neurons in 
the network, the parameters αi and σi define the individual dynamical nature of the i th neuron,

is the degree of the ith node indicating the number of connections of a particular neuron, Gij is an element of the 
N × N adjacency matrix of the underlying network, gij,n is the time dependent coupling strength between the 
i-th and the j-the neuron at time instant n and σ e and βe denote the coupling constants. When σ e = 1 and βe = 1 
(which implies that σi,n = βi,n ∀ i, n ), the model reduces to the original coupling model discussed by  Rulkov29 
for N = 2 . This also implies a symmetric coupling with respect to both xi,n and yi,n . This is a mean-field type 
coupling which is evident from the fact that the coupling term is a mean of the differences between the mem-
brane potential xi,n of the i-th neuron and the corresponding membrane potentials xj,n of all other neurons it is 
directly connected to, weighted with a coupling strength gij,n . Non-symmetric couplings can also be generated 
by choosing different values for σ e and βe.

The most general form of the time-dependent coupling strength gij,n is given by

where gm is the global mean coupling strength, ζn represents the discretized white noise process at iterate n and 
D is the noise intensity. For the noise-free case, D = 0 , which implies

(4)xi,n+1 = fαi (xi,n, yi,n + βi,n),

(5)yi,n+1 = yi,n − µ(xi,n + 1)+ µ(σi + σi,n),

(6a)σi,n =

{

1
ki

∑

j �=i

[

gij,nσ
e(xj,n − xi,n)

]

if ki �= 0

0 if ki = 0

(6b)βi,n =

{

1
ki

∑

j �=i

[

gij,nβ
e(xj,n − xi,n)

]

if ki �= 0

0 if ki = 0

(7)ki =

N
∑

j=1

Gij

(8)gij,n =

[

gm + Dζn

]

Gij ,

(9)βi,n = σi,n =

{

gm
ki

∑N
j �=i

[

Gij(xj,n − xi,n)
]

for ki �= 0

0 for ki = 0.

(a) (b) (c)

Figure 10.  Time-series plots of an isolated neuron exhibiting different dynamical states at long time: (a) dead/
silent (DS), (b) tonal spiking (TS). (c) The dynamical state in the (α, σ) parameter space: black is the DS state; 
yellow is the TS state. The arrow-marked points in (c) correspond to α = 3, σ = ±0.6 and are the values of 
these parameters used in the numerical examples.
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Order parameter. For a network with given values of gm , D, Pn—the connection probability of the net-
work—and Pd—the probability of a particular neuron being inactive, the collective dynamical state is character-
ised in terms of an order parameter measure defined as

where, for a given value of Pd,

defines a measure of the largest amplitude of oscillation averaged across all neurons for specified values of Pd , 
gm , Pn and D. Here, max

n
(xi,n) and min

n
(xi,n) indicates the maximum and minimum of xi—the potential corre-

sponding to the ith neuron over all time steps n. The denominator in Eq. (10) refers to the maximum value of 
a(Pd) when Pd is varied from 0 to 1, while Pn , gm and D are kept constant. The measure A is therefore a normalized 
average amplitude measure. These order parameters are similar to those studied for similar systems in  literature15.

Simulation details. The network structure is taken to be the Erdős–Rényi (ER) random graph with 
N = 2× 103 nodes. The connection probability Pn is varied from 0.1 to 0.9, thereby covering the whole range of 
sparse and dense random networks. The initial conditions for each node are assumed to be random and sampled 
from a uniform distribution between [−1, 1] . The map is iterated over 8× 103 iterates. In computing A, data 
from the first 5× 103 iterates are discarded and only the last 3× 103 are used. This is carried out to ensure that 
the transient effects have died down and only the values after stationarity has been achieved are used in com-
puting the quantitate measures used for the analysis. In all the simulations, µ is set to 0.001 to enable spiking 
state in the neurons. For the parametric analysis in the gm − Pd parameter space, a grid is defined by varying 
gm between [0, 1] in steps of 0.05 and Pd is varied between [0, 1] in steps of 0.01. Simulations are carried out for 
each of these grid points. The noise Dζn was generated directly using the gsl_ran_gaussian() function from the 
GNU Scientific Library (GSL), which is an open-source and freely available library. The parametric studies were 
conducted using a direct grid search type algorithm within the predefined parameter range. All the simulations 
were performed in double precision for accuracy using C++ programs which were further parallelized using 
OpenMP for improved performance. All the plots were generated using the plotting capabilities of either MAT-
LAB R2020b or gnuplot 5.2.

Data and code availability
Data generated during this study and the computer simulation codes are available upon reasonable request.
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