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Weakly‑supervised deep learning 
for ultrasound diagnosis of breast 
cancer
Jaeil Kim1,9, Hye Jung Kim2,9, Chanho Kim1, Jin Hwa Lee3, Keum Won Kim4, Young Mi Park5, 
Hye Won Kim6, So Yeon Ki7, You Me Kim8 & Won Hwa Kim2*

Conventional deep learning (DL) algorithm requires full supervision of annotating the region of 
interest (ROI) that is laborious and often biased. We aimed to develop a weakly‑supervised DL 
algorithm that diagnosis breast cancer at ultrasound without image annotation. Weakly‑supervised 
DL algorithms were implemented with three networks (VGG16, ResNet34, and GoogLeNet) and 
trained using 1000 unannotated US images (500 benign and 500 malignant masses). Two sets of 
200 images (100 benign and 100 malignant masses) were used for internal and external validation 
sets. For comparison with fully‑supervised algorithms, ROI annotation was performed manually and 
automatically. Diagnostic performances were calculated as the area under the receiver operating 
characteristic curve (AUC). Using the class activation map, we determined how accurately the 
weakly‑supervised DL algorithms localized the breast masses. For internal validation sets, the 
weakly‑supervised DL algorithms achieved excellent diagnostic performances, with AUC values 
of 0.92–0.96, which were not statistically different (all Ps > 0.05) from those of fully‑supervised 
DL algorithms with either manual or automated ROI annotation (AUC, 0.92–0.96). For external 
validation sets, the weakly‑supervised DL algorithms achieved AUC values of 0.86–0.90, which were 
not statistically different (Ps > 0.05) or higher (P = 0.04, VGG16 with automated ROI annotation) from 
those of fully‑supervised DL algorithms (AUC, 0.84–0.92). In internal and external validation sets, 
weakly‑supervised algorithms could localize 100% of malignant masses, except for ResNet34 (98%). 
The weakly‑supervised DL algorithms developed in the present study were feasible for US diagnosis of 
breast cancer with well‑performing localization and differential diagnosis.

Abbreviations
DL  Deep learning
ROI  Region of interest
CAM  Class activation map
CNN  Convolutional neural networks
GAP  Global average pooling
POM  Probability of malignancy
AUC   Area under the receiver operating characteristics curve
ROC  Receiver operating characteristics curve
CI  Confidence interval
CAD  Computer-aided diagnosis
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Ultrasound (US) is the mainstay of differential diagnosis between benign and malignant breast masses and has 
traditionally been used in diagnostic settings with renewed interest of its use in screening  settings1,2. Despite 
such wide applicability, breast US has intrinsic limitations, including interobserver variability in diagnostic 
performance that is often worse among non-experts3. This interobserver variability contributes to a high rate of 
false-positives, causing unnecessary biopsies and surgeries. With expectations to overcome these limitations, 
there has been a growing interest in the application of deep learning (DL) technology for breast US  diagnosis4–6. 
Conventional approaches using DL algorithms have involved full supervision that require image annotation pro-
cesses usually performed by drawing the region of interest (ROI) of the lesion by humans. Even with automated 
ROI segmentation methods, verification of ROI by humans is still needed. As DL is a data-driven technology, 
time- and labor-intensive image annotation process may hinder the development of well-performing models 
due to the need of massive training data. Moreover, manual annotation can be biased as this task necessarily 
involves subjective pre-judgment of the lesion.

DL with weak supervision (weakly-supervised DL) is a form of DL where unannotated images with only 
image-level labels (i.e., malignant and benign) are used in training for differential diagnosis and  localization7–9. 
Weakly-supervised DL has advantages over fully-supervised DL approaches in the development of DL algorithm 
and its clinical application. For developing DL-based algorithm, a method without image annotation can compile 
large-scale image sets in a time- and labor-saving manner. For clinical application, weakly-supervised DL algo-
rithms allow us to use the entire image as input to the trained model, leading to an improvement in workflow 
efficiency over fully-supervised algorithms as the additional task of marking lesions can be avoided. Despite these 
benefits of weakly-supervised DL algorithms, only a few studies have demonstrated their feasibility in radiology. 
Weakly-supervised DL algorithm was evaluated in magnetic resonance imaging (MRI) or chest x-ray images 
and demonstrated good diagnostic performances in the classification of breast lesions and thoracic  disease10,11. 
However, weakly-supervised DL algorithm has not been well studied in breast US images.

The main hypothesis of this work is that weakly-supervised DL algorithms for US images are feasible for 
diagnosing breast masses and comparable to conventional fully-supervised DL algorithms. The purpose of this 
study was to develop a weakly-supervised DL algorithm that detects breast masses in US images and make a 
differential diagnosis between benignity and malignancy synchronously.

Material and methods
Institutional review board (IRB) of Kyungpook National University Chilgok Hospital approved this retrospective 
study and all methods were carried out in accordance with relevant guidelines and regulations. The requirement 
of informed consent was waived under the IRB of Kyungpook National University Chilgok Hospital.

Datasets. We retrospectively collected 1400 US images for breast masses of 971 patients from two institu-
tions (institution A: A University A′ Hospital; institution B: B University Hospital; Fig. 1) for training and valida-
tion sets. Although multiple masses per patient were allowed, the most representative image per mass (usually 
showing the largest slice of a mass) was used. Among the 1400 images, 700 were images with cancers confirmed 
by biopsy or surgery, and 700 were images with benign masses that were confirmed by biopsy (n = 163) or at 
least 2 years of follow-up imaging (n = 537). The training set contained 500 benign and 500 malignant masses 
obtained from institution A (data collection period: January 2011–May 2015). The validation sets were divided 
into internal and external validation sets, each with 200 images of 100 benign and 100 malignant masses. Images 
for internal validation were temporally split from institution A (data collection period: September 2013–July 
2014) and were not used for algorithm training. Images for external validation were consecutively obtained from 
institution B (data collection period: May 2011–August 2015). All breast US images were extracted from picture 
archiving and communication systems and were stored in JPEG format. For the training and internal validation 
sets obtained from institution A, only one US equipment manufactured by Philips was used to generate images, 

Figure 1.  Overview of the data acquisition.
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while multiple US machines manufactured by Philips, GE, and Siemens were used for the external validation set 
(obtained from institution B).

Image annotation and preprocessing. Images were anonymized by minimal trimming of the edge of 
images to eliminate body mark and text annotation. For the weakly-supervised DL algorithms, further data 
curation was not performed to test the feasibility of the proposed system without ROI annotation (Fig. 2). The 
anonymized images were resized to 224 × 224 pixels for the weakly-supervised DL. Then, their pixel values were 
normalized to the range of [0, 1] by dividing them the maximum intensity value. For comparison with fully-
supervised DL algorithms, ROI annotation was performed using two methods: manual drawing and automated 
DL-based segmentation. For manual drawing, a radiologist (W.H.K.; with 11 years of experience in breast US) 
marked ROIs and made binary masks for each mass using an in-house drawing tool. For the automated DL-
based segmentation, we employed the deep segmentation network U-Net, which has been developed to segment 
medical  images12. After the ROI annotation, we extracted a square image with a fixed margin of 30 pixels that 
enclosed the corresponding mass, resized the image to 224 × 224 pixels, and the pixel intensity normalization 
using the maximum value was applied.

Deep classification models. For deep classifiers, we employed three representative convolutional neural 
networks (CNN) that have achieved the state-of-the-art performance in various computer vision tasks: VGG16, 
ResNet34, and  GoogLeNet13–15. Details for each VGG16, ResNet34, and GoogLeNet were given in our Supple-
mental Digital Content.

To test the performance of the discriminative localization by the weakly-supervised DL algorithms, we 
extended the classification models using a global average pooling layer (GAP) that is added to the final convolu-
tional layer of each  model10,16. The GAP averages each feature map ( fk ) of the last convolution layer into feature 
scores ( Fk ) as follows.

Fk =
∑

i,j fk
(

i, j
)

 where i and j are the spatial indices of fk . The number of the feature maps is same as that of 
classes ( Nc ). Then, the models perform linear classification using a fully-connected layer followed by a softmax 
function. The fully-connected layer with learnable weights 

(

W =
{

wk,c

})

 calculates class scores ( Sc ) for each 
class as follows.

The class score is given to the softmax function to yield the predicted probabilities of all classes. The predicted 
probability ( pc ) of each class and probability of malignancy (POM) was calculated as follows:

Sc =
∑

k

wk,cFk

pc =
exp(Sc)

∑Nc
k=1 exp(Sk)

POM =

{

Pc , if c = malignancy
1− Pc , otherwise

Figure 2.  Overview of weakly-supervised and fully-supervised deep learning (DL) algorithms for breast mass 
classification and localization. The weakly-supervised DL algorithm does not require image annotation of region 
of interest (ROI) of the lesion, whereas the fully-supervised DL algorithm requires tumor segmentation (manual 
or automated) and cropping for ROI before being put in the classifiers. For the weakly-supervised DL algorithm, 
a class activation map (CAM) is generated to visualize the region detected by this algorithm using a global 
average pooling layer (GAP) that is added to the final convolutional layer.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24382  | https://doi.org/10.1038/s41598-021-03806-7

www.nature.com/scientificreports/

The neural networks were trained using the L2 regularization, a batch size of 64, and the Adam optimizer with 
learning rate ( η = 0.001 ), β = 0.9 , and β2 = 0.999 . The learnable weights of the neural networks are initialized 
the He initialization. For the hyper-parameter selection, we performed grid search using a tuning set (100 for 
benign and 100 for malignancy), randomly selected from the training set. After the hyper-parameter selection, 
we trained all networks using the whole training set. The model training and all experiments were conducted 
on a workstation with NVidia TITAN XP (12 GB Memory), Intel i9 CPU, and 48 GB main memory. The neural 
networks and algorithms were implemented using Python 3.6.9 and PyTorch 1.1.0.

Discriminative localization. The class activation maps ( Mc ) of each class can be acquired by merging the 
feature maps using the weights that are learned in the estimation of the class scores.

The relative intensity of Mc is scaled using a min–max normalization for inter-subject comparison and visu-
alization. The scaled class activation maps ( M ′

c ) are acquired as follows.

Focused regions in the tumor characterization are determined by the binarization of the scaled maps with a 
threshold ( M ′

c ≥ 0.3 ). The threshold was chosen empirically considering the overlap of the binarized maps with 
the manual ROI annotation in the training set.

Performance metrics and statistical analysis. For differential diagnosis, we used area under the 
receiver operating characteristics curve (AUC) as the primary metric for comparing the algorithm performance, 
and the DeLong test of significance for comparing the AUC of two correlated receiver operating characteristics 
curves (ROCs). The exact McNemar test was used to test the differences in sensitivity and specificity. Discrimi-
native localization is regarded as correct when the segmented area overlaps with the manually annotated area. 
Fisher’s-exact test was used to compare rates of correct and incorrect localization between benign and malignant 
masses with the weakly-supervised DL algorithm. For the automated ROI segmentation performance, the dice 
similarity coefficient (DSC) was calculated to assess spatial agreement between the automatically segmented ROI 
( Ms ) and the manual ROI annotation ( Mg):

where |Ms| and 
∣

∣Mg

∣

∣ are the number of pixels of the automated and manual ROIs, respectively. Ms ∩Mg represents 
common regions to both of ROIs. All statistical analyses were performed using the MedCalc statistical software, 
version 17.1 (Mariakerke, Belgium). Two-tailed P values of < 0.05 were considered statistically significant.

Results
Baseline characteristics of data sets. Baseline characteristics of the training set and internal/external 
validation sets are described in Table 1. The mean ages of patients in training, internal validation, and exter-
nal validation sets were 49  years (range: 19–83  years), 50  years (range: 22–79  years), and 50  years (range: 
16–80 years), respectively. The mean sizes of the lesions measured via US were 15 mm (range: 1–69 mm), 14 mm 
(range: 5–60 mm), and 15 mm (range: 6–47 mm), respectively.

Performance metrics of differential diagnosis. For internal validation test set, the weakly-supervised 
DL models achieved high performances in the differential diagnosis between benign and malignant breast 
masses, with AUC values of 0.96, 0.92, and 0.94in VGG16, ResNet34, and GoogLeNet models, respectively 
(Table 2). The AUCs of fully-supervised DL models with manual annotation were 0.96, 0.94, and 0.96 in VGG16, 
ResNet34, and GoogLeNet models, respectively. The AUCs of fully-supervised DL models with automated anno-
tation were 0.96, 0.92, and 0.95, respectively. The DSC of the automated ROI annotation for internal validation 
test set was 0.89 (standard deviation, 0.12). The AUCs of weakly-supervised DL models were not different from 
those of fully-supervised DL models with either manual or automated ROI annotation (all Ps > 0.05). Sensitivi-
ties of weakly-supervised DL models were 87% (87/100), 82% (82/100), and 87% (87/100) in VGG16, ResNet34, 
and GoogLeNet models, respectively, and specificities were 91% (91/100), 91% (91/100), and 94% (94/100), 
respectively. The sensitivities and specificities were not different between weakly-supervised and fully-super-
vised DL models (all Ps > 0.05).

For external validation test set, the weakly-supervised DL model achieved high diagnostic performance 
but was slightly lower than those in internal validation sets, with AUC values of 0.89, 0.86, and 0.90 in VGG16, 
ResNet34, and GoogLeNet models, respectively (Table 3, Fig. 3). The AUCs of fully-supervised DL models with 
manual annotation were 0.91, 0.89, and 0.92 in VGG16, ResNet34, and GoogLeNet models, respectively. The 
AUCs of fully-supervised DL models with automated annotation were 0.85, 0.84, and 0.87, respectively. The 
DSC of the automated ROI annotation for external validation test set was 0.85 (standard deviation, 0.17). The 
AUCs of weakly-supervised DL models were not statistically different from those of fully-supervised DL models 
with manual ROI annotation (all Ps > 0.05). For the VGG16 network, the AUC was significantly higher in the 
weakly-supervised DL model than the fully-supervised DL model with automated ROI annotation (P = 0.04). 

Mc =
∑

k

wk,cfk

M
′

c =
Mc −min(Mc)

max (Mc)−min(Mc)

DSC =
2
∣

∣Ms ∩Mg

∣

∣

|Ms| +
∣

∣Mg

∣

∣

,
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ResNet34 and GoogLeNet networks showed no significant differences between weakly-supervised DL model 
and fully-supervised DL model with automated ROI annotation (all Ps > 0.05). Sensitivities of weakly-supervised 
DL models were 91% (91/100), 78% (78/100), and 88% (88/100) in VGG16, ResNet34, and GoogLeNet models, 
respectively, and the specificities were 72% (72/100), 80% (80/100), and 76% (76/100), respectively. The sensi-
tivities did not significantly differ between weakly-supervised and fully-supervised DL models in VGG16 and 
GoogLeNet (all Ps > 0.05). For the ResNet34 model, the sensitivity was lower in the weakly-supervised DL model 
than the fully-supervised model with manual annotation (P < 0.001) but not significantly different from the 
fully-supervised DL model with automated ROI annotation (P = 0.66). The specificity of the weakly-supervised 
DL model was not significantly different from that of fully-supervised DL models with manual ROI annotation 
in VGG16 and GoogLeNet models (all Ps > 0.05) and lower than that in the ResNet34 model (P < 0.001). The 
specificity was higher in the weakly-supervised DL model than the fully-supervised DL model with automated 

Table 1.  Baseline characteristics of datasets. *Patient-level, **image-level.

Training Internal validation External validation

Patients 818 167 125

Images 1000 200 200

Patients with malignant masses 500 100 88

Images with malignant masses 500 100 100

Patients with benign masses 346 68 39

Images with benign masses 500 100 100

Age groups*

 < 30 years 16 (2%) 3 (2%) 12 (6%)

30–50 years 431 (53%) 93 (56%) 91 (46%)

 ≥ 50 years 371 (45%) 71 (43%) 97 (49%)

Tissue composition**

Homogeneous, fat 20 (2%) 5 (3%) 14 (11%)

Homogeneous, fibroglandular 956 (96%) 191 (96%) 69 (55%)

Heterogeneous 24 (2%) 4 (2%) 42 (34%)

Lesion size**

 < 2 cm 754 (75%) 149 (75%) 163 (82%)

2–5 cm 239 (24%) 50 (25%) 37 (19%)

 ≥ 5 cm 7 (1%) 1 (1%) 0

US machine**

Phillips 1000 (100%) 200 (100%) 16 (8%)

GE 0 0 169 (85%)

Siemens 0 0 15 (8%)

Table 2.  Diagnostic performance metrics of weakly-supervised and fully-supervised deep learning algorithms 
in internal validation set. 95% confidence intervals in parenthesis.

Weakly-supervised

Fully-supervised P values

Manual Automated
Weakly-supervised vs. 
manual

Weakly-supervised vs. 
automated

AUC 

VGG16 0.96 (0.92, 0.98) 0.96 (0.93, 0.98) 0.96 (0.92, 0.98) 0.72 0.96

ResNet34 0.92 (0.88, 0.96) 0.94 (0.89, 0.97) 0.92 (0.87, 0.95) 0.57 0.76

GoogLeNet 0.94 (0.90, 0.97) 0.96 (0.92. 0.98) 0.95 (0.91, 0.98) 0.30 0.65

Sensitivity

VGG16 87% 85% 87% 0.77 1.00

ResNet34 82% 89% 79% 0.12 0.63

GoogLeNet 87% 87% 87% 1.00 1.00

Specificity

VGG16 91% 91% 94% 1.00 0.45

ResNet34 91% 90% 92% 1.00 1.00

GoogLeNet 94% 92% 92% 0.69 0.69
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Table 3.  Diagnostic performance metrics of weakly-supervised and fully-supervised deep learning algorithms 
in external validation set. 95% confidence intervals in parenthesis.

Weakly-supervised

Fully-supervised P values

Manual Automated
Weakly-supervised vs. 
manual

Weakly-supervised vs. 
automated

AUC 

VGG16 0.89 (0.84, 0.93) 0.91 (0.86, 0.95) 0.85 (0.79, 0.89) 0.28 0.04

ResNet34 0.86 (0.81, 0.91) 0.89 (0.84, 0.93) 0.84 (0.78, 0.88) 0.31 0.32

GoogLeNet 0.90 (0.85, 0.94) 0.92 (0.87, 0.95) 0.87 (0.82, 0.92) 0.32 0.19

Sensitivity

VGG16 91% 85% 89% 0.45 0.73

ResNet34 78% 89% 81% < 0.001 0.66

GoogLeNet 88% 87% 87% 0.51 1.00

Specificity

VGG16 72% 91% 52% 0.85 < 0.001

ResNet34 80% 90% 69% < 0.05 0.07

GoogLeNet 76% 92% 63% 0.85 0.04

Figure 3.  Classification results with class activation map (CAM) using the weakly-supervised deep learning 
(DL) algorithm on external validation set. Examples of true-positive (A), false-negative (B), false-positive 
(C), and true-negative (D) are shown for each network (VGG16, ResNet34, and GoogLeNet). (A) Ultrasound 
images show a 17-mm irregular, spiculated invasive ductal carcinoma, which was predicted as malignancy with 
probability of malignancy (POM) of 1.00, 1.00, and 0.999 in VGG16, ResNet34, and GoogLeNet, respectively. 
(B) Ultrasound images show an 11-mm oval, circumscribed, isoechoic mucinous carcinoma, which was 
predicted as benign with POM of 0.007, 0.000, and 0.000, respectively. (C) Ultrasound images show a 29-mm 
oval, hypoechoic mass with macrocalcifications considered as benign (unchanged during the 46-month 
follow-up period), which was predicted as malignancy with POM of 1.000, 0.994, and 1.000, respectively. 
(D) Ultrasound images show a 6-mm oval, circumscribed mass considered as benign (unchanged during the 
55-month follow-up period), which was predicted as benign with POM of 0.434, 0.006, and 0.006, respectively.
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ROI annotation with statistical significance or borderline significance (P < 0.001, P = 0.07, and P = 0.04 in VGG16, 
ResNet34, and GoogLeNet models, respectively).

Performance metrics of discriminative localization. In internal validation sets, the weakly-super-
vised DL model using VGG16 and ResNet34 network could localize 99% (99/100) of the benign and 100% 
(100/100) of malignant masses (Table 4). The weakly-supervised DL model using the GoogLeNet network could 
localize 100% (100/100) of both benign and malignant masses. In external validation sets, the weakly-supervised 
DL model using VGG16, ResNet34, and GoogLeNet networks could localize 99% (99/100), 96% (96/100), 97% 
(97/100) of the benign, and 100% (100/100), 98% (98/100), 100% (100/100) of malignant masses, respectively.

Discussion
In this study, we found that weakly-supervised DL algorithm provided excellent diagnostic performance (AUC: 
0.86–0.96) that were not inferior to the fully-supervised DL algorithm with manual (AUC: 0.89–0.96) and 
automated annotation (AUC: 0.84–0.96). Furthermore, the weakly-supervised DL algorithm could correctly 
localize the benign and malignant masses with nearly perfect rates (96%–100%). This excellent classification and 
localization performance was achieved even in our relatively small-sized dataset and in the external validation set 
with different breast imagers and US equipment. Taken together, our results suggests that weakly-supervised DL 
algorithm is feasible to detect and diagnose breast cancer in US images through a highly efficient data-curation 
process in which image-based classification can be made without manual or automated annotation.

Classification methods using the DL algorithm can be categorized into region- and image-based classification. 
Most of previous studies have used region-based classification. Regions (usually for lesions) are necessarily deter-
mined prior to classification task either manually (including semi-automatically) or automatically. Studies using 
manually determined regions showed high diagnostic performances with AUCs 0.84–0.94 depending on cases 
and strategies for  learning17–19. A commercial computer-aided diagnosis (CAD) system (S-detect) that is installed 
in certain US equipment (RS80A, Samsung Medison Co. Ltd., Seoul, South Korea) enables semi-automated region 
annotation and predicts the final assessment in a dichotomized form (possibly benign or possibly malignant). 
With this system, Park et al. found that AUC was improved with CAD (0.823–0.839 vs. 0.623–0.759), especially 
for less-experienced  radiologists20. In other studies, regions were determined more inclusively by cropping the 
image by human with excellent diagnostic performances (AUC, 0.913 and 0.951)21,22. Automated determina-
tion of regions has been proposed using various methods of region proposals. Diagnostic performances using 
the automatically determined regions were suboptimal or metrics were not-well demonstrated with the highest 
accuracy of 87.5% in a study using  DenseNet13, 60.6% of sensitivity for malignant lesions in a study using fully 
convolutional  networks23, no overall diagnostic metrics in a study using faster R-CNN24. Image-based classifica-
tion with weakly-supervised DL algorithms has been proposed in the present study and our previous  work25. 
In our previous work, we proposed a box convolution network with VGG-16 which learns kernel sizes and 
offsets of convolution filters from given datasets. We found that our proposed model had higher performances 
in diagnostic accuracy and localization than VGG-16 or dilated VGG-16. While our previous work was focused 
on box convolution network, we did not compare our model with fully-supervised DL algorithms and external 
validation or generalization to other networks were not evaluated. In the present study, using three representative 
networks and external validation test sets, the feasibility of weakly-supervised DL algorithm was demonstrated 
in comparison with a fully-supervised DL algorithm.

Weakly-supervised DL algorithms serve more closely as a human-mimicking algorithm than fully-supervised 
DL algorithm in differentiating malignant masses from benign breast masses in US images. Human-established 
algorithms employed in breast imaging reporting and data system (BI-RADS) take into account comprehensive 
sonographic features of both the mass and the surrounding breast tissue. Hence, weakly-supervised DL, using 
the information of the images in their entirety (not confined to the mass or its vicinity), may have advantages 

Table 4.  Metrics for discriminative localization of benign and malignant breast masses in the weakly-
supervised deep learning algorithm. N/A = not applicable. For discriminative localization, we created binary 
images by applying a threshold of 0.3 to a class activation map (CAM) and compared them with manual 
annotation. Discriminative localization is regarded as correct when the segmented area overlaps with the 
manually annotated area.

Internal validation External validation

Benign Malignant P value Benign Malignant P value

VGG16 1.00 1.00

 Correct 99 100 99 100

 Incorrect 1 0 1 0

ResNet34 1.00 0.68

 Correct 99 100 96 98

 Incorrect 1 0 4 2

GoogLeNet N/A 0.25

 Correct 100 100 97 100

 Incorrect 0 0 3 0
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over fully-supervised DL; the proposed algorithm can learn a significant portion of BI-RADS lexicon describing 
information outside the mass (e.g., posterior features, architectural distortion) that is known to be helpful for 
differential  diagnosis26,27.

For the fully-supervised DL as a comparative method, we implemented a U-Net based segmentation model 
as a baseline method of the automated segmentation of breast US lesions. Automated segmentation has been 
suggested in various techniques including graph-based approaches, deformable models, intensity-based thresh-
olding, region growing, and watershed  algorithm28. Recently, DL techniques including U-Net architecture have 
shown to achieve good performances on various biomedical segmentation  tasks29. In breast US, several variants 
of the U-Net for mass segmentation have been proposed. Yap, et al. demonstrated that their performing model 
based on fully convolutional networks obtained 0.76 and 0.55 of DSCs for benign and malignant breast masses, 
 respectively30. Byra, et al. proposed selective kernel U-Net model and between performances were achieved (0.80 
and 0.74 for benign and malignant breast masses, respectively) using the sample  datasets31. Hu, et al. developed 
a DL method using dilated fully CNN combined with an active contour model and their best performance 
was 0.89 of DSC based on 570 ultrasound  images32. Although it is difficult to compare our results with those 
reported due to different methods and evaluation schemes, our U-Net performances based on 1000 US images 
were comparable with the previous reports (0.89 and 0.85 for internal and external validation sets). However, 
we did not aim to propose the state-of-the-art segmentation method and U-Net was used as a basic example of 
the automated segmentation for fully-supervised method in comparison with weakly-supervised method and 
fully-supervised method with manual annotation as a lesion ground-truth was also used in our study.

GAP used in our study can enforce the feature maps to preserve spatial information relevant to the classes, so 
that they can be used to interpret the decision of the CNN  models8,33. This method for identifying areas that are 
attributed to differential diagnosis using GAP with CAM leads toward the concept of eXplainable AI (XAI)34,35. 
XAI or responsible AI is an emerging paradigm to overcome the inherent “black box problem” brought by deep 
frameworks, wherein it is impossible for us to understand how decisions are furnished. CAM as one of the feature 
attribution maps give us an insight to interpret the decision-making process implemented by AI. In addition, we 
believe that the weakly-supervised DL with CAM may facilitate the development of DL-aided detection frame-
works for clinically significant regions for healthcare  providers36,37. For the interpretability of the DL models, 
various feature attribution methods have been proposed in three  categories38: gradient-based approaches (e.g., 
Grad-CAM and Layer-wise relevance propagation), perturbation-based approaches, and surrogate models (e.g. 
LIME and SHAP). For example, as proposed in previous study, approximation a surrogate model between input 
image features and the model’s classification output for computation Shapely values, which represent the contri-
bution of each feature to the output, may enable us to recognize image regions relevant to the decision-making 
process of the classification  models39.

An important caveat in the present study was that our proposed weakly-supervised DL algorithm was not 
trained with a large-scale dataset due to our feasibility objectives. Further studies are needed using dataset with 
various institutions, imagers, and US equipment. Another limitation is that a time- and labor-efficiency was not 
directly quantified because of the complexity of data curation process.

In summary, we have developed a weakly-supervised DL algorithm without image ROI annotation to detect 
and diagnose breast masses, suggesting a highly efficient algorithm in data curation. The proposed algorithm 
showed comparable performance to fully-supervised DL algorithms for differential diagnosis and localization.
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