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Integrative measurement analysis 
via machine learning descriptor 
selection for investigating physical 
properties of biopolymers in hairs
Ayari Takamura1, Kaede Tsukamoto2, Kenji Sakata1 & Jun Kikuchi1,2,3*

Integrative measurement analysis of complex subjects, such as polymers is a major challenge 
to obtain comprehensive understanding of the properties. In this study, we describe analytical 
strategies to extract and selectively associate compositional information measured by multiple 
analytical techniques, aiming to reveal their relationships with physical properties of biopolymers 
derived from hair. Hair samples were analyzed by multiple techniques, including solid-state nuclear 
magnetic resonance (NMR), time-domain NMR, Fourier transform infrared spectroscopy, and 
thermogravimetric and differential thermal analysis. The measured data were processed by different 
processing techniques, such as spectral differentiation and deconvolution, and then converted into a 
variety of “measurement descriptors” with different compositional information. The descriptors were 
associated with the mechanical properties of hair by constructing prediction models using machine 
learning algorithms. Herein, the stepwise model refinement via selection of adopted descriptors based 
on importance evaluation identified the most contributive descriptors, which provided an integrative 
interpretation about the compositional factors, such as α-helix keratins in cortex; and bounded water 
and thermal resistant components in cuticle. These results demonstrated the efficacy of the present 
strategy to generate and select descriptors from manifold measured data for investigating the nature 
of sophisticated subjects, such as hair.

A scientific measurement provides information regarding a subject based on analytical principles. Efficient 
extraction and integration of various types of measured information is an ultimate interest in scientific analysis 
to comprehensively understand the nature of a subject. However, such data integration could be difficult if a 
subject is complicated; if multiple measurements are conducted complementarily; and if various complicated 
information are involved in the measured data.

A polymer is one of the most challenging analytical subjects since it is composed of a huge number of atoms 
and the assembled or higher-order structure is also crucial to determine the net properties. Such complicated 
polymer structures could not be assessed by previous computational descriptors which only represent “mono-
mer” or “oligomer” structures based on atomic composition, molecular dynamic simulation1, quantum chemical 
calculation2, string notation (e.g., SMILES), and graph representation3–6. In contrast, experimental investigations 
of polymers can be conducted by various analytical techniques that target primary, secondary, higher-order, and 
large-scale structures, respectively. Therein, the association techniques of such manifold data are worth exploring 
in order to reveal the origins or compositional factors of polymers’ properties. In this study, we investigate the 
analytical strategies to extract and integrate the information measured by various analytical techniques, applying 
to sophisticated biological polymers derived from hair.

Hair is mainly composed of keratin fibers7. A small amount of lipids, water, and pigments are also present 
in hair8. Hair exhibits distinctive properties of high flexibility and high mechanical- and thermal- resistance. 
Histologically, hair consists of two structures: cortex (85–90%)9,10 and cuticle (around 10%)11,12. Cortex is the 
dominant inner material of hair, wrapped by cuticle and composed of an assembly of spindle-shaped macrofi-
brils. The macrofibrils have two main compositions: intermediate filaments (IF) and surrounding matrix, called 
intermediate filament associated proteins (IFAP)7,13,14. IF is composed of bundles of keratin fibers that form 
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crystalline α-helical coiled-coil structures15,16. IFAP has amorphous matrix components with a relatively high 
amount of cysteine and, thus, contributes to the stabilization of the IF structure via disulfide linkage7,17,18. On 
the other hand, cuticle is the outermost layer and is composed of overlapping flattened cells, like scales, with a 
total thickness of ~ 5 μm14,19. Keratin fibers in cuticle are also amorphous and are rich in disulfide linkage, which 
is responsible for the chemical and mechanical resistance of hair7,11,18,20.

Hair has been studied on different structure levels for many years. At the level of monomer molecules, the 
amino acid composition of each hair component has been studied using liquid chromatography and color 
tests8,10,21,22. The establishment of isolation techniques for cortex and cuticle has also assisted these studies20. 
Vibrational spectroscopy, such as Fourier transform infrared (FT-IR) spectroscopy23,24 and Raman scattering25–28, 
has been helpful to understand conformation, oxidation state, and interaction with keratin surroundings. Nuclear 
magnetic resonance (NMR) spectroscopy has been a powerful tool in revealing the higher-order structure and 
mobility of the keratin complex, as well as molecular-level compositions9,11,15,28,29. X-ray diffraction has dem-
onstrated, from molecular conformation to organization of the secondary structure of hair components9,13,30. 
Thermal analysis, such as differential scanning calorimetry and thermogravimetric analysis, has shown the 
thermal behaviors and resistance of different hair components according to their molecular compositions and 
higher-order structures11,31. As for the macrostructure, early histological observations have demonstrated fine 
layers in the cuticle19, hair diameter, and medullary index32 via transmission electron microscopy and scanning 
electron microscopy. These previous studies have provided multiphasic perspectives about hair structure and 
have indicated the sophisticated properties. Thus, integrative interpretation via different analytical techniques 
is required to deepen understanding of hair’s properties, but has not been achieved yet.

The main objective in this study is to demonstrate an analytical strategy to discover the most correlative 
information from various measured data to physical properties of biopolymers, which then enables integrative 
interpretations between them. Herein, we acquired the measured data of hairs by multiple analytical techniques, 
including solid-state NMR, time-domain (TD)-NMR, attenuated total reflection (ATR) FT-IR spectroscopy, and 
thermogravimetric and differential thermal analysis (TG–DTA). Different data-processing techniques, such as 
binning, spectral differentiation, dimension reduction, and curve deconvolution, were applied to the measured 
data. Then, a variety of “measured descriptors” were generated to involve different measured information, such as 
molecular compositions, morphologies and mobilities33–38. At the same time, a tensile tester was used to evaluate 
physical properties of hair, such as breaking force, elastic modulus, extension, and yield strength. These physi-
cal properties were expected to depend on molecular composition and morphology, as well as the histological 
architecture, of hair. Subsequently, the relationship between the generated measured descriptors and the physical 
properties were investigated by constructing predictive models based on machine-learning algorithms. Herein, 
evaluation of the “importance” of each descriptor were utilized to select more contributive ones for predicting 
respective physical properties. Rigorous stepwise selection of the descriptors adopted achieved to determine the 
most contributive descriptor sets for respective physical properties via two different machine-learning algorithms. 
Consequently, the selected measured descriptors enabled integrative interpretation about the compositional 
origins of the physical properties. In addition, this study demonstrated the efficacy of the present descriptor 
selection strategy as well as the data-processing to generate the measurement descriptors for integrative analysis.

Experimental
Hair samples.  Hair samples in the present study were collected from cats, cows, humans, and pigs. The 
species were chosen to cover diverse ranges of physical properties. Nine cat hair pools were acquired from two 
domestic cats brushed on different days. Twelve cow hair pools were provided from Sermas Co. Ltd. (Chiba, 
Japan). Twenty-one human hair pools were collected from 10 volunteers, cut on different days. Twenty-one pig 
hair pools were provided by Sermas Co. Ltd. (Chiba, Japan). Each sample pool was composed of hair collected 
from individual donors. The hairs were stored in a desiccator at room temperature of 22 °C, in specified rooms, 
until used. All experimental procedures involving animals and human subjects were approved by the Institu-
tional Ethics Committee of RIKEN Yokohama Branch and carried out in accordance with relevant guidelines 
and regulations39. Informed consent was obtained from all human donors and a legal guardian, as well as owner 
and volunteer for the animal studies.

Evaluation of physical properties.  Cross-section areas of hairs from the individual hair pools were eval-
uated based on the diameter gauged by a micrometer. Mechanical physical properties (i.e., breaking force, elastic 
modulus, extension, and yield strength) of the hairs were evaluated using a tensile tester (EZ-L-5 kN; Shimadzu 
Co. Ltd., Japan). Single hair fibers with lengths of 10 mm were tested at a strain rate of 30 mm/min. The software 
included with the tester (TRAPEZIUM2 ver. 2.36; Shimadzu Co. Ltd.) was used to operate the instrument and 
to calculate each physical property based on the measured stress–strain curves and hair cross-section areas. Ten 
hair fibers from each sample pool were subjected to the measurements, and averaged values and the standard 
deviations of the respective physical properties were obtained.

Measurements.  Solid-state NMR spectra were recorded on a DRX-500 spectrometer (Bruker-BioSpin, 
MA, USA), equipped with a Bruker MAS VTN 500SB BL4 probe. The spectrometer frequency was 500.132 MHz 
for 1H NMR spectra and 125.758 MHz for 13C NMR spectra. The instruments were operated by TopSpin 3.2 
software (Bruker, MA, USA). Hair samples were measured at room temperature. 1H NMR spectra were recorded 
without and with magic angle spinning (MAS) at a rate of 12 kHz and designated as 1H wide-line (anisotropic) 
spectra and 1H MAS (isotropic) spectra, respectively. The dwell time was 2.5 μs for 1H wide-line spectra and 
20 μs for 1H MAS spectra. The dead time was 6.5 μs, and the recycle delay was 5 s for all 1H NMR spectral 
measurements. 13C NMR spectra were measured using cross polarization (CP)-MAS with a contact time of 
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1.2 ms and MAS rate set to 12 kHz. 13C chemical shifts were externally referenced to the glycine carbonyl signal 
at 176.03 ppm.

TD-NMR spectra of hairs were measured using a Minispec mq20 NMR spectrometer (Bruker, MA, USA) at 
298 K. The instrument was operated at a 1H frequency of 19.9 MHz (0.5 T) and equipped with a VT temperature 
control system operating with nitrogen gas. A standard solid echo pulse sequence was used with a dead time 
of 9.3 μs and π/2 pulse of 2.88 μs. The signal decays were recorded up to 1.0 ms. TD-NMR measurements were 
conducted five times for each hair pool.

FT-IR spectra were measured by an FT-IR spectrometer (Nicolet 6700 spectrometer, Thermo Fisher Scientific 
Inc., MA, USA) using an ATR accessory with a diamond crystal. The spectral range was 650–4000 cm−1 with a 
resolution of 4 cm−1. Each spectrum was acquired via scans run 16 times. At least three spectra were collected 
from each sample pool. The FT-IR instruments were operated using the included software (OMNIC; Thermo 
Fisher Scientific Inc.).

Prior to TG–DTA, hairs from individual sample pools were crushed by a freezing-crushing device for 5 min. A 
10–25 mg mass of the hair fragments was stuffed into an aluminum pan and then inserted into the thermogravi-
metric and differential thermal analyzer (EXSTAR TG/DTA 6300; SII Nanotechnology Inc., Japan). The thermo-
gravimetry values were recorded from 40 to 500 °C, at a rate of 5 °C/min, under nitrogen flowed at 200 mL/min. 
Derivative thermogravimetry (DTG) curves (g/min) were provided by TA/7000 software (Hitachi Co., Japan).

Pre‑treatment of measured data.  Prior to being processed into descriptors, all the raw measured data 
were subjected to consistent pre-treatment including profile-differentiation and normalization. The measured 
data by different analytical technique also needed specific pre-treatment depending on the data-property and 
data-ranges as follows.

For the solid-state NMR spectra, baseline and phase corrections were performed by MNova software (Mestre-
lab Research, Spain). The NMR spectra were subsequently processed using IGOR Pro software (WaveMetrics 
Inc., OR, USA). NMR spectra were aligned with consistent axes of chemical shift by cubic spine interpolation. 
Furthermore, second-order derivative NMR spectra were acquired using the third polynomial Savitzky–Golay 
method. The nonderivative and second-derivative NMR spectra were truncated so that they maintained the 
following informative spectral regions: − 102 to 102 ppm for the 1H wide-line spectra, − 8.0 to 14.2 ppm for the 
1H MAS spectra, and 2.8–185.2 ppm for the 13C CP-MAS spectra. The NMR spectra were finally normalized 
by the total area.

The decay curves of TD-NMR were fitted as a combination of three components using the Abragamian func-
tion with TD-NMR Analyzer software ver. 7.0 (Bruker), calculating intensity proportion and the relaxation time 
of each component. The measured curves were then normalized so that the sum of the intensities of the fitted 
curves was one at time equal to zero seconds.

The FT-IR spectra were second-order differentiated by the third polynomial Savitzky–Golay method. The 
spectral regions of 1711–2669 and 3400–4000 cm−1 were excluded due to crystal interference40–42. Derivative 
FT-IR spectra were normalized by the total area. Finally, the averaged derivative FT-IR spectra were obtained 
based on the spectra collected from the respective hair pools.

The DTG curves acquired from 44 to 497 °C were first binned into the unit size of 1 °C. Then, the curve 
intensities were normalized by the sample weight, resulting in the unit of %/min. The DTG curves were further 
second-order differentiated by the third polynomial Savitzky–Golay method to enhance features.

Generation of measurement descriptors.  The pre-treated data were subsequently converted into 
“measurement descriptors” via two common processing techniques of binning and dimension reduction by 
principal component analysis (PCA). The 1H wide-line NMR spectra and TD-NMR decay curves were also 
applied to curve deconvolution analysis. All generated measurement descriptors are listed in Table  S1 with 
detailed data information.

Binning of the nonderivative and second-order derivative profiles of the solid-state NMR spectra, the FT-IR 
spectra, and the DTG curves was performed for the data-regions involving significant signals as detailed in 
Table S1. The data-regions were split into series of small regions (i.e., bins) with even steps so as to keep the 
characteristic peaks resolved. The number of split bins for respective data were listed in Table S1. Meanwhile, 
the decay curves of TD-NMR were split into 40 bins with logarithmic steps up to 1.0 ms. Then, average value 
within each bin was calculated as a descriptor.

PCA was implemented for the respective datasets (i.e., the nonderivative and second-order derivative profiles 
of the solid-state NMR spectra, the FT-IR spectra, and the DTG curves; and pre-fitted and fitted decay curves 
of TD-NMR) after mean-centering. Proportions of variance of the principal components were calculated for 
each dataset. Corresponding scores of the principal components with a proportion of variance greater than 1% 
were adopted as descriptors.

Curve deconvolution was conducted for the 1H wide-line NMR spectra and TD-NMR decay curves. The 1H 
wide-line NMR spectra were decomposed into three peaks of a Voigt function using the multipeak fitting pack-
age in IGOR Pro software. Then, the area proportion and the full width at half maximum (FWHM) of each peak 
were obtained. Deconvolution of the TD-NMR decay curves was performed as described above, depending on 
the intensity proportion and the relaxation time of each component. The obtained area proportion and FWHM 
of the 1H wide-line NMR spectra and the intensity proportion and relaxation time of the TD-NMR decay curves 
were further processed into inverses, exponentials, logarithms, and mutual ratios. The values of the respective 
TD-NMR descriptors were obtained via averaging the results of five measurements for each sample pool.
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Selection of measurement descriptors for physical property prediction.  Data analysis to associ-
ate measurement descriptors with physical properties was conducted using R software with the Rstudio environ-
ment. The relationship between generated descriptors and physical properties was first overviewed by canonical 
correlation analysis (CCorA) using the CCorA function in the R package “vegan.” The examined sets of meas-
urement descriptors were determined such that the Pearson correlation coefficient of each set was less than 0.4 
and 0.3 for individual measurement methods and the all-method, respectively. The datasets of physical proper-
ties and measurement descriptors were standardized before CCorA.

Prediction models for the physical properties were trained based on random forest (RF) or partial least 
squares regression (PLSR) algorithms. The RF models were built using the randomForest function in the R 
package, “randomForest,” and the number of trees to grow was set to 1000. The PLSR models were built using 
the plsr function in the R package: “pls.” The explanatory variables of the measurement descriptors (input) were 
standardized. The response variables of the physical properties (output) were mean-centered. The number of 
latent variables adopted in the PLSR models was determined so as to provide the minimum predicted residual 
error sum of squares evaluated by a ten-fold cross-validation (CV). The technique of ten-fold CV prepares ten 
randomly split sub-datasets. A model was trained using the nine sub-datasets, then validated by the one sub-
datasets left. The procedures repeated time times, changing the sub-dataset used for validation. The regression 
errors of each model were evaluated based on the root mean squared error (RMSE) and coefficient of deter-
mination (R2) obtained through 100 repeats of the ten-fold CV. Adjusted R2 was not applied because neither 
RF nor PLSR algorithm relies on direct multiple regression with explanatory variables. In addition, CV avoids 
overestimation and variations of model performance evaluation. To find more contributive descriptors for the 
physical properties, the importance of each descriptor was evaluated using the randomForest function with an 
augment of “importance” for the RF models and the varImp function in the R package, “caret,” for the PLSR 
models and. The importance was averaged for 100 repeats of the ten-fold CV. The descriptors were sorted in 
decreasing order of averaged importance, and 90% of the higher-rank descriptors were then successively used 
in the next model training. Consequently, the descriptor set that provided the best prediction accuracy (i.e., the 
highest R2) was determined for each series of the prediction models.

Results and discussion
Physical properties and measurements of hair.  The hair samples collected from different species were 
analyzed by several measurement techniques: solid-state NMR, TD-NMR, FT-IR, and TG–DTA. For solid-
state NMR, the 1H wide-line (anisotropic) spectra, 1H MAS (isotropic) spectra, and 13C CP-MAS spectra were 
recorded. Figure 1 shows the averaged data of each measurement. The 1H wide-line spectra exhibited the typical 
line shape of solid samples, which broadens over a range of 100 ppm due to the various orientations of dipolar 
interactions (Fig. 1a and Fig. S1a). At the same time, a relatively narrow peak was observed around 0 ppm. These 
line shapes in the 1H wide-line spectra indicated that hair samples contained compositions with different molec-
ular mobilities, or anisotropic interaction15. Meanwhile, the 1H MAS spectra showed characteristic peaks within 
a narrower spectral region owing to averaged isotropic interactions by MAS (Fig. 1b). Some sharp peaks, from 
0.8 to 2.3 ppm, were ascribed to lipid compositions43,44. The lipid peaks were the most distinct in cat hairs and 
hardly observed in pig hairs (Fig. S2a). The relatively broad peak around 2.8–7.0 ppm encompasses Hα of amino 
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Figure 1.   Measurements of hairs. Hair samples were subjected to (a) solid-sate NMR experiments to provide 
1H wide-line spectra, (b) 1H MAS spectra, and (c) 13C CP-MAS spectra; (d) TD-NMR for magnetization decays, 
(e) FT-IR spectroscopy, and (f) TG–DTA to yield DTG curves. The averaged data after normalization are shown.
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acids, which is mainly keratins43,45. In addition, the line shape widely expanding from − 5 to 14 ppm may repre-
sent highly anisotropic and rigid components, such as structured keratins. The 13C CP-MAS spectra exhibited 
distinctive peaks of side-chain aliphatic carbons, Cα methine carbons of amino acids, aromatic carbons, and car-
bonyls carbons around 10–40 ppm, 45–60 ppm, 115–158 ppm, and 165–178 ppm, respectively (Fig. 1c)9,28,43,46–

48. The pig hairs showed a relatively higher intensity of carbonyl carbons, assignable to the α-helix form around 
176 ppm, among the hair types (Fig. S3a)9,28,46,47. The signals observed by TD-NMR rapidly decayed at an earlier 
time, then gradually decreased to zero (Fig. 1d). The decay curves demonstrated the presence of compositions 
with different relaxation rates, or mobilities, in hairs49. This was consistent with the line shapes of the 1H wide-
line NMR spectra. The TD-NMR curves of hairs showed a similar tendency for each species, whereas substantial 
donor-dependent differences were simultaneously involved (Fig. S4a). The FT-IR spectra also showed charac-
teristic absorption peaks of proteins and lipids (Fig. 1e). Peaks of Amide A, Amide I, Amide II, and Amide III, 
derived from proteins, were observed around 3277, 1634, 1516, and 1234  cm−1, respectively50–52. Methyl and 
methylene stretching at 2958 and 2850 cm−1 were representative of lipids53. The hairs of each species showed 
similar spectral patterns with intensity variations, particularly at lipid peaks (Fig. S5a). TG–DTA provided DTG 
curves of the hair samples (Fig. 1f). The mass loss under 100 °C represented the removal of free water54–56. Dis-
tinct mass loss up to around 240 °C was considered pyrolysis of cortex according to previous reports11,31. After 
the pyrolysis of cortex, the remaining cuticle forms “micro-tubes” emptied of cortical material. Mass loss that 
follows should correspond to decomposition of the micro-tubes, which could possibly be preceded by the elimi-
nation of bound water54,57. The carbonization of the remaining constituents proceeded further until reaching the 
end temperature of 500 °C. The human hairs showed slightly higher values in DTG curves at around 240–260 °C 
than those of other species (Fig. S6a).

The hair samples were also subjected to a tensile tester to evaluate the following physical properties: breaking 
force, elastic modulus, extension, and yield strength. The averaged physical property values of each hair sample 
are plotted with the standard deviations in Fig. S7. The breaking force was high for pig hairs (median of 6.02 N) 
and relatively low for cat hairs (median of 0.21 N), which were well correlated with the cross-section areas 
(Fig. S7a). Meanwhile, cow hairs demonstrated relatively high elastic modulus (median of 4.6 GPa) (Fig. S7b), and 
human hairs showed a bit higher extension (median of 65%) (Fig. S7c) among tested hair types. Yield strength 
among tested hair types was relatively low for cat (99 MPa) and human hairs (105 MPa), whereas it was high for 
cow hairs (177 MPa) (Fig. S7d). Owing to the characteristic properties depending on species, as well as individual 
donors, the collected hair samples provided a substantial variety of physical property values. Here, it should be 
noted that because of intrinsic biological variations within each hair sample pool, the observed values showed 
considerable variations, resulted in the substantial standard deviations (Fig. S7).

Generation of measurement descriptors.  The measurement data of hairs were converted into “meas-
urement descriptors” by the data-processing, including spectral differentiation, binning, dimension reduction 
by PCA, or curve deconvolution (Fig.  2). Second-order differentiation was applied to the 1H wide-line, the 
1H MAS, 13C CP-MAS NMR spectra, the FT-IR spectra and the DTG curves in order to enhance the profiles’ 
features. The differentiation is also effective to correct offset or linear drift of baseline. Binning was conducted 
to calculate the average values within certain regions in the profiles so as to represent the characteristic peaks 
as resolved. Dimension reduction aimed to extract correlating variable sets for representing the data’s features 
efficiently. Curve deconvolution for the 1H wide-line NMR spectra and the decay curves of TD-NMR was sepa-
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Figure 2.   Schematic of development of measurement descriptors. The raw measured data of hairs were pre-
treated with or without differentiation. The pre-treated data were subsequently subjected to the processing of 
binning, dimension reduction, or curve deconvolution. Then, a variety of “measurement descriptors” were 
generated from the data measured by different analytical techniques: a total of 902 descriptors.
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ration of the mixed signals into a small number of components via function fitting. Schematics of the generated 
bins and deconvoluted components are shown, along with their respective measurement results, in Figs. S1–S6. 
Consequently, a total of 902 descriptors were generated. All measurement descriptors are detailed in Table S1. 

To overview the relationship between the generated descriptors and physical properties, CCorA was con-
ducted. CCorA determines a set of linear combinations of variables in two datasets (i.e., physical properties and 
measurement descriptors) so as to maximize the correlation between them58. CCorA results were obtained for 
descriptor sets of each measurement (Fig. S8) and the combined set (Fig. 3). Breaking force was plotted with a 
relatively large score (~ 1) on the first, or the most dominant, canonical axes in all plots. This tendency demon-
strated that breaking force was well explained by the prepared descriptors. On the other hand, elastic modulus, 
extension, and yield strength were expressed mainly on the second canonical axis in most plots. In addition, 
elastic modulus and yield strength were plotted close to each other. This result shows that these two properties 
have similar correlation with measured data. Meanwhile, extension was plotted on the opposite side of the plot, 
indicating different and distinctive correlation with the measurements (Fig. 3). Relative contributions of the 
measured information to physical properties were difficult to compare based on these CCorA results. However, 
some of the less-promising descriptors indicated by small scores for physical properties were descriptors of 1H 
wide-line NMR spectra for extension (Fig. S8a) and descriptors of 1H-MAS NMR spectra for elastic modulus 
(Fig. S8b).

Prediction of physical properties by measurement descriptors.  The measurement descriptors were 
further associated with physical properties by building prediction models using RF and PLSR, which are non-
linear and linear algorithms, respectively. Herein, each of the physical properties (output) was predicted by the 
measurement descriptors (input) generated from their respective or all of the measurements. The constructed 
models were validated by ten-fold CV. The ten-fold CV was repeated 100 times, and the averages and standard 
deviations of RMSE and R2 were then calculated (Table S2). According to the results of CCorA, breaking force 
was predicted accurately with a high R2 of ~ 0.913; meanwhile, the predictions for elastic modulus, extension, 
and yield strength showed relatively poor accuracies or no significant correlations (R2 < 0.4). The descriptor 
set combined from all the measurements was expected to provide superior predictions using multiple types 
of measured information. However, the prediction accuracies obtained by the combined descriptor set were 
comparable or a bit poorer than those by the descriptors from each measurement. This result indicated that the 
presence of uncorrelated measurement descriptors in the explanatory variable set possibly hindered efficient 
prediction, making the integrative interpretation difficult. Therefore, selection of the descriptors adopted for the 
predictive modeling were requisite to improve the prediction accuracy, then determine the ones with significant 
contributions to the physical properties.

Selection and interpretation of measurement descriptors.  To realize reliable integrative interpre-
tation from multiple measured information, sufficient correlations by predictive modeling are expected. Thus, 
selection of contributive measurement descriptors from all 902 generated was subsequently performed, aiming 
to improve model’s performance. When building a RF or PLSR model, the importance of each measurement 
descriptor was evaluated via 100 repeats of ten-fold CV. Followingly, 90% of measurement descriptors ranked 
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with higher importance values were used for the next model building, then the number of the descriptors adopted 
was reduced stepwise. Prediction accuracies (i.e., RMSE and R2) of the RF and PLSR models built at each step are 
shown for their respective physical properties (output) in Fig. 4. As a general trend, starting from 902 descrip-
tors, R2 values first increased (and RMSE decreased), then reached the maxima. This process should correspond 
to elimination of insignificant descriptors. Further reduction of the number of the descriptors resulted in the 
decrease of the R2 values, indicating that the contributive descriptors were excluded. Consequently, the refined 
descriptor sets that showed the highest R2 values were determined to be the best among each selection series. At 
the same time, the R2 values of more than 0.5 were assured for the significant correlations. Fig. S9 shows plots of 
predicted physical properties values with the best descriptor sets versus observed values. As a result, the RF and 
PLSR models for each physical property showed common descriptors of the 20th-best importance (Fig. 5). Such 
descriptors commonly selected by two different algorithms indicated the reliable descriptors selection based on 
the importance evaluation, and would be especially useful for interpretations of the association with the physical 
properties. As tendencies, breaking force greatly relied on the descriptors of 1H MAS and 13C CP-MAS NMR 
spectra; the predictions of elastic modulus, extension, and yield strength were mainly attributed to descriptors 
of the FT-IR spectra and DTG curves. Moreover, the descriptor selection process significantly contributed to 
decreases of the prediction errors (Fig. 4 and Table 1). Even though the observed physical properties themselves 
involved considerable variations within each hair sample (Fig. S7), the RMSE obtained in the best models were 
significantly lower than the experimental standard deviations and the R2 exceeded 0.5 (Table  1). This result 
represents that the developed predictive models substantially reflected the correlation between the observed 
physical properties. At the same time, not-excessive R2 indicates a result from avoiding over-fitting to the experi-
mental errors in the observed physical properties as well as the respective measurements.  

Based on the descriptors commonly selected by RF and PLSR algorithms up to the 20-th best (Fig. 5), the 
integrative interpretation of the relationship between the respective physical properties are described. Breaking 
force selected several descriptors of the 1H MAS NMR spectra, around 3.1–3.9 ppm and 5.6–6.8 ppm, which 
indicate both sides of the peak involving amino acid Hα (blue arrows in Fig. 6a). These signals could be attrib-
uted to proteins with strong anisotropic dipolar coupling and, thus, slow mobility. Additionally, the descriptor 
selected on the 13C CP-MAS spectra (“cpmas.95”) corresponds to carbonyl carbons in α-helix form around 
176 ppm (Fig. 6b)9,28,46,47. The α-helix and coiled-coil structures of crystalline fibrous keratins are distinctive 
of the cortex component. Therefore, the fraction of rigid α-keratin bundles in the cortex was linked to tensile 
resistance of hair, as well as the cross-section area. This result also demonstrated that the measurement descrip-
tors successfully represented the secondary structure and the mobility of keratins. Meanwhile, the descriptors 
of the 1H wide-line NMR spectra and TD-NMR were also expected to exhibit molecular mobility; however, they 
were rarely selected. This result indicated that the descriptors of the 1H MAS and 13C CP-MAS NMR spectra 
were substantially efficient because they were well resolved into the spectra and then associated with respective 
molecular compositions. 

The distinctive descriptors selected for elastic modulus were “dtg.2der.36” and “dtg.2der.37” of the DTG curves 
and “ftir.2der.51” of the FT-IR spectra. “dtg.2der.36” and “dtg.2der.37” correspond to the 265–276 °C range of 
the second-derivative DTG curves (orange arrows in Fig. 6c). This temperature region could be associated with 
decomposition of the cuticle, specifically micro-tubes after the cortex has vanished11,31. The cow hairs with high 
elastic modulus showed high, or positive, values for these descriptors, which indicated the relatively slow rate of 
mass loss in this temperature region. Moreover, “ftir.2der.51” indicates Amide I absorption at 1631–1649 cm−1, 
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Figure 5.   Measurement descriptors selected to predict physical properties of hairs. The 20 best descriptors 
selected using random forest (RF) (top, black bars) and partial least squares regression (PLSR) (bottom, gray 
bars) are listed with the evaluated importance for (a) breaking force, (b) elastic modulus, (c) extension, and (d) 
yield strength. The descriptors commonly selected by RF and PLSR are highlighted with red.

Table 1.   Prediction of physical properties using sets of measurement descriptors selected as the best. a Mean 
experimental standard deviation of observed physical property was calculated as square root of average of 
experimental variances in ten times of testing each hair sample pool. b Each value was evaluated by 100 repeats 
of ten-fold CV (average ± standard deviation).

Physical property (output)
Experimental standard 
deviationa

RF PLSR

No. of selected descriptors 
(input) RMSEb R2 b

No. of selected descriptors 
(input) RMSEb R2 b

Breaking force (N) 1.182 255 0.773 ± 0.022 0.925 ± 0.005 349 0.745 ± 0.025 0.919 ± 0.005

Elastic modulus (GPa) 1.41 8 1.24 ± 0.089 0.546 ± 0.073 7 1.30 ± 0.052 0.500 ± 0.038

Extension (%) 21.5 34 14.4 ± 0.3 0.506 ± 0.027 150 13.5 ± 0.3 0.527 ± 0.021

Yield strength (MPa) 59.4 12 49.1 ± 1.7 0.593 ± 0.030 16 47.8 ± 1.3 0.606 ± 0.022
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which is assignable to random coil structure (Fig. 6d)50–52,59–61. The FT-IR ATR technique measures only the 
sample surface, with a depth of several micrometers. Thus, “ftir.2der.51” supposedly corresponds to amorphous 
keratins in cuticles. Meanwhile, fibrous crystal keratins in cortex remain in α-helical forms during elongation 
from zero to several percent for evaluating elastic modulus based on Hooke’s law14,62–64. Therefore, we assumed 
that elastic modulus is dependent on the amount of disulfide links or the entanglement of amorphous keratin 
in the cuticle, rather than the cortex.

Extension was associated with some descriptors of DTG curves (“dtg.21,” “dtg.22,” and “dtg.45”) (Fig. 6c), 
FT-IR spectra (Fig. 6d), and 13C CP-MAS NMR spectra (“cpmas.66”) (Fig. 6b). The referred range (244–263 °C) 
of the DTG curves in the aforementioned descriptors is possibly related to loss of bound water in the cuticle. 
“ftir.2der.52” and “ftir.2der.31” represent peaks of Amide I and Amide III at 1651–1669 and 1246–1264 cm−1, 
respectively (pink arrows in Fig. 6d). These regions are assignable to β-turn or random coil structures50–52,59–61,65. 
At the same time, extension of hair reportedly increases with humidity14,64. Thus, the selected descriptors 
potentially demonstrated that the nonorganized amorphous keratins in the cuticle provided accessibility to 
water and then enhanced the hair extension. The other regions selected on the FT-IR spectra were 2763–2781 
(“ftir.2der.60”), 976–993 (“ftir.2der.17”), 822–839 (“ftir.2der.9”), and 783–800 cm−1 (“ftir.2der.7”). Although the 
assignments were difficult, these descriptors possibly represent hydrophilic groups (e.g., C–O and N–H) in 
proteins that are related to water association. “cpmas.66” is a signal around 124 ppm in the 13C CP-MAS NMR 
spectra, which may result from hydrophilic aromatic amino acids, such as tyrosine. “dtg.45” is also difficult to 
understand, but could represent carbonization of heat-resistant compositions.

Lastly, yield strength was considerably dependent on the descriptors of the DTG curves (Fig. 6c) and the 
FT-IR spectra (Fig. 6d). Some of the selected descriptors (i.e., “dtg.2der.36,” “dtg.2der.37,” and “ftir.2der.51”) 
were common with elastic modulus, which was consistent with the CCorA results (Fig. 3 and Fig. S8). “dtg.22” 
and “dtg.23” represent the 254–273 °C range on the DTG curve and almost cover the regions of “dtg.2der.36” 
and “dtg.2der.37.” “dtg.31”–“dtg.34” for the 344–383 °C range were distinctive for yield strength (green arrows 
in Fig. 6c), which was higher for cat hair and lower for cow and pig hairs. These descriptors presumably indicate 
highly heat-resistant components in cuticle layers, which induce brittleness in hair.

The prediction accuracies for elastic modulus, extension, and yield strength were not high compared with 
those for the breaking force (Table 1). This result indicates that elastic modulus, extension, and yield strength 
need additional information to be sufficiently described. At the same time, errors of evaluated physical property 
values, which were not considered in model building, possibly hindered to achieve higher prediction accura-
cies. Nevertheless, the measurement descriptors and the selection strategy demonstrated in the present study 
successfully provided perspective on relationships with the respective physical properties. In addition, other 
selected descriptors, which were not discussed above, may support the interpretation of the physical properties. 
The improvement of model performance can be expected by enriching the variety of hair donors and increas-
ing the repetition number of physical property testing and measurements by respective analytical techniques. 
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Furthermore, importance evaluation and selection of descriptors can be performed using other modeling 
algorithms66. These are worth further detailed investigation in the future.

As for data processing, differentiation was effective to enhance the features of overlapped or broad signals, 
particularly in the 1H MAS NMR spectra and the DTG curves. Moreover, the measurement descriptors selected 
above were mostly generated by binning rather than dimension reduction and curve deconvolution. This is 
because binning enables the compression of the measured information more specifically for certain molecular 
structures, dynamics, and experimental events. At the same time, there have been alternative methods of dimen-
sion reduction and deconvolution such as independent component analysis67, nonnegative matrix factorization68, 
and t-distributed stochastic neighbor embedding69, which may be useful for more efficient extraction of measured 
information than PCA. Further investigation of data-processing techniques would contribute to the development 
of descriptors with more efficient and potential compositional information.

Conclusions
The associations of multiple measured data of hair with its physical properties was investigated by developing a 
variety of measurement descriptors with different compositional information and by building prediction models 
based on machine-learning approaches. Descriptor selection based on the “importance” evaluation discovered 
the most contributive ones for physical property prediction. This then allowed an integrative interpretation of 
the corresponding relationship based on the manifold measured information: the α-helix and coiled-coil keratins 
in cortex for breaking force, amorphous keratins or heat-resistant components in cuticle for elastic modulus and 
yield strength, and water bound to amorphous keratins in cuticle for extension. The results demonstrated the 
promise of the analytical strategy used in the current study: to associate the various measured information selec-
tively, even if they contribute only partially and even in the presence of substantial errors in objective variables 
(i.e., physical properties). This analytical strategy will also be applicable to explore compositional information 
related to other properties of hair for cosmetic purposes; and physicochemical properties of industrial materials 
composed of cellulose and synthesized polymers with additives, and so on. Further investigation for integrat-
ing various measurement data will provide novel and detailed perspectives to comprehensively understand the 
nature of sophisticated subjects, such as listed above.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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