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Flux profile at focal area 
of concentrating solar dishes
M. Ebrahim Foulaadvand1*, Amir Aghamohammadi2, Parvin Karimi3 & Hadi Borzouei4

We analytically, experimentally and computationally explore the solar radiation flux distribution in 
the interior region of a spherical mirror and compare it to that of a paraboloidal one with the same 
aperture area. Our investigation has been performed in the framework of geometrical optics. It is 
shown that despite one can assign a quasi focus, at half the radius, to a spherical mirror, the light 
concentration occurs as well on an extended line region which starts at half-radius on the optical axis. 
In contrast to a paraboloidal concentrator, a spherical mirror can concentrate the radiation parallel 
to its optical axis both in a point-focus and in a line-focus manner. The envelope of the reflected rays 
is also obtained. It is shown that the flux distribution has an axial symmetry. The radial dependence 
of the flux on a flat circular receiver is obtained. The flux longitudinal dependence is shown to exhibit 
three distinctive regions in the interval [0, R] (R is mirror radius). We obtain the radiational (optical) 
concentration ratio characteristics and find the optimal location of the flat receiver of a given size 
at which the concentration ratio is maximised. In contrast to a parabolic mirror, it is shown that this 
location depends on the receiver size. Our findings offers that in spherical mirrors one can alternatively 
use a line receiver and gains a considerable thermal energy harvest. Our results are supported by 
Monte Carlo ray tracing performed by Zemax optical software. Experimental validation has been 
performed in lab with a silver-coated lens as the spherical mirror.

The use of renewable energy sources and replacement of traditional fossil-based fuel resources by the renewable 
ones is rapidly spreading  worldwide1. Growing energy demands and the threats of global warming have pushed 
many governments to invest a notable amount of financial resources on this extremely important  issue1–3. An 
abundant renewable energy source is sunlight and during past decades especially after oil crisis in 1973 serious 
attempts were initiated in utilising the sunlight as a source of clean energy. The solar energy is one of the cost 
effective paths to displace fossil fuels. It can be harvested and converted into energy by two paradigms of tech-
nicality: photovoltaic and Concentrated Solar Power (CSP)4,5. In CSP technology the harvest of solar irradiation 
is attained by solar  collectors6. These devices can concentrate solar radiation and convert it into low, medium or 
high temperature useful heat that can be used in power generation, thermal processes, desalination, solar fuel 
production and many other civil and industrial  applications5. A solar concentrating collector operates by focus-
ing the solar radiation onto a small focal area. Parabolic troughs and dish concentrators are two main classes 
of such  concentrators4,6,7. A parabolic trough focuses the sunlight onto a focal line and is a generic example of 
line-focus systems. On the hand, a dish concentrator (normally a parabolic dish) focuses the sunlight beam on 
a focal area (theoretically on a point) and is regarded as a point-focus system in the  literature6,8. Aside from the 
degree of concentration, for practical purposes, it is significantly important to optimally design a receiver and its 
location/orientation in the focal area for an optimal absorptance of the concentrated solar  radiation9–15. This is 
not possible unless a detailed knowledge of the radiative flux distribution is analytically or numerically available. 
In this paper our study is targeted on a spherical concentrator. The ideal point-focus collector is a paraboloidal 
dish. An ideal paraboloidal dish can concentrate the solar radiation on a point known as the focus. However, 
in practice construction of a paraboloidal dish is not an easy task especially when the size of the dish becomes 
 large16,17. From engineering viewpoint fabricating a large sheet of a parabolic reflector is a cumbersome prob-
lem. In order to circumvent this problem, CSP experts have proposed alternative ideas. Some researchers have 
proposed a faceted reflecting surface instead of a single  surface18. Others have suggested using an array of small 
flat mirrors assembled on a parabolic-like curved supporting  structure19–22.  In24 ray-tracing simulation has been 
implemented and it was demonstrated that the optimal design is a paraboloidal structural envelope with spheri-
cal facets mounted on it. It seems evident that there is a practical interest in solar thermal engineering to use 
spherical mirrors or facets instead of paraboloidal ones as alternatives or  approximates12,24,25. This paper provides 
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a detailed mathematical investigation of the spatial distribution of radiative flux in a spherical concentrating 
mirror. We will also compare the optical performance of a spherical mirror with its counterpart a paraboloidal 
mirror. Mathematical analysis of this study may shed more light on the path of solar thermal engineers for a 
better conversion of sunlight thermal energy to useful heat and can strengthen the connection between physics 
and solar thermal engineering communities. The paper’s organisation is as follows: in “Spherical mirror” section, 
we obtain the thermal flux distribution in the interior of a spherical mirror. In “Ray tracing Monte Carlo simula-
tion” section the simulation results are presented and compared to analytic ones. In “Experiment and empirical 
data” section we present our empirical data from the lab experiment. In “Concentration ratio” section there is a 
discussion on the concept of concentration ratio and we obtain the receiver optimal location for maximising this 
ratio. In “Comparison to parabolic dish” section, we compare the optical characteristics of the spherical mirror 
with a paraboloidal one. In “Sun angular diameter” corrections to sun finite angular size are discussed. Finally 
the section “Summary and conclusion” contains some concluding remarks and a technical offer to practitioners 
to use spherical mirror as a line-focus collector.

Spherical mirror
In this section, we investigate the concentrated solar irradiation flux profile everywhere, especially in the focal 
area of a spherical dish of radius R, which is exposed to sun beam parallel to its axis. In reality, the rays are not 
parallel due to the sun disk finite angular size. This point will be considered later but in this section parallel rays 
are considered. See Fig. 1 that shows the cross-section of the spherical mirror in the yz plane, where z is the mir-
ror optical axis. With no loss of generality, we take R as the unit length and all quantities with length dimension 
will be scaled with R. We set R = 1 in this paper.

We aim to study the spatial distribution of the light intensity, the concentration of reflected beam, and the 
region where the light intensity is maximum. This has been done for parabolic trough  collectors26. For this 
purpose, we adopt a ray language (geometric optics) in which the light intensity is proportional to the concentra-
tion of rays. In this framework, we need to trace each incident ray on the mirror after reflection. Consider an 
incident ray with lateral distance h < R from the mirror axis onto a spherical mirror of unit radius R = 1 . Let z 
axis be the ray’s direction. The ray hits the mirror at point B with the coordinates y = h and z =

√
1− h2 . The 

ray reflects off the mirror at the point B and crosses the z axis at point A. Denoting the angle of reflection by α , 

and as OA cosα =
R

2
 , one arrives at:

The slope of the reflected line is tan 2α , and the equation of the reflected line is

or

(1)h =R sin α = sin α,

(2)OA =
R

2 cosα
=

1

2 cosα
=

1

2
√
1− h2

.

(3)y − sin α = (z − cosα) tan 2α,

(4)y cos 2α − z sin 2α + sin α = 0.

Figure 1.  Reflection of a ray from a circular mirror. The Graph is generated using the Inkscape software.

https://inkscape.org/
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For small values of α (up to a first-order approximation of α in (4)), all the reflected beams pass through the 
same point (0, 1/2), which may be taken as the quasi focal point of the spherical mirror. In Fig. 2 the incident 
beam and the corresponding reflected rays are shown.

Some comments are in order: first, for 0 ≤ h ≤
√
2
2

 , i.e.; α ≤ π
4

 , all the reflected rays will hit the optical axis 
in the interval [ 1

2
,
√
2
2
] with positive slope. In fact, for h =

√
2
2

 the reflected ray will perpendicularly crosses the z 
axis. Second, for 

√
2
2

≤ h ≤ 1 , i.e.; π
4
≤ α ≤ π

2
 , the reflected rays will hit the optical axis with a negative slope. This 

means that for h larger than 
√
2
2

 the incident ray may suffer more than one reflection before crossing the optical 
axis and leaving the mirror. More precisely, For 

√
2
2

≤ h ≤
√
3
2

 , i.e.; π/4 ≤ α ≤ π/3 , the first reflected ray suffers 
a second reflection from the mirror surface before crossing the optical axis. For 

√
3
2

< h ≤ 1 (π/3 ≤ α ≤ π/2) , 
there may be multiple reflections before crossing the z axis. In this article, we avoid double and multiple 

Figure 2.  Reflected beam off a spherical mirror (side view). The Graph is generated using the Desmo s graph ing 
calcu lator.

Figure 3.  Dependence of r on the ray lateral distance h from the mirror axis and on the distance z of the plane 
to the origin. The figure has been made with Gnuplot 5.4.2 software.

https://www.desmos.com/calculator
https://www.desmos.com/calculator
http://www.gnuplot.info
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reflections and hence restrict ourselves to h ≤ hm =
√
2
2

 ( α ≤ π
4

 ) where hm is the mirror aperture radius. Com-
ing back to the problem geometry in Fig. 1, the point C shows the crossing point of the reflected ray to the plane 
perpendicular to the z axis located at z. Moreover, the point E shows the intersection point of z axis to this plane. 
In addition, we show the distances between points E and C by r = CE . From the geometry of Fig. 1 we have:

Using sin α = h , and somewhat trigonometry, r can be expressed in terms of h and z as follows:

In Fig. 3, r is plotted in terms of h and z.
Figure 4 shows the dependence of r on h for some values of z. As it is seen, there is a critical region for z. For 

0 < z < 0.5 (region I), and 
√
2

2
< z < 1 (region III), r is a monotonic increasing function of h. However, when 

0.5 < z <

√
2

2
 (region II), there may be one, two or three values of h for a given r and that there is a maximum 

value of r (except for h =
√
2/2 , where r diverges). We will soon come back to the physical importance of these 

regions.

Flux profile. Now, we wish to study the flux I distribution of the reflected beam in the interior of the mir-
ror. The geometry of the problem possesses the axial symmetry, including both the incident beam and also the 
spherical mirror. Consequently, the reflected beam should also have the same symmetry: the intensity of the 
reflected beam has no dependence on φ (azimuth angular variable in the cylindrical coordinates). Due to cylin-
drical symmetry, radiation intensity I(x, y, z), will be a function of r and z where r =

√

x2 + y2 is the distance 
of the intensity observation point to the z axis. To find I at the observation point (x, y, z), we need to know the 
lateral distance h of the incident ray that after reflection passes the observation point on the constant z plane. 
This is given by Eq.(6) if one succeeds in reversing the function and finds h in terms of r and z. The amount of 
radiation power intercepted by an annulus of the inner radius h, and the outer radius h+ dh on the mirror aper-
ture plane is 2πI0h dh , where I0 denotes the incident irradiation intensity. Ignoring any absorption/transmission 
from the mirror, the radiation power collected by the annulus of the inner radius r and the outer radius r + dr 
at the constant z plane satisfies

Then

where the absolute value is used to ensure the positivity of intensity. To find I(r, z) one requires to know h(r). 
Unfortunately, this is not simple. In fact, (6) gives r as a function of h. Our attempt to find the inverse function 
h(r) leads to a quartic equation which is cumbersome to handle:

As we noticed from Fig. 4, region II needs more care. In regions I ( z ≤ 0.5 ) and III ( z >
√
2

2
 ) the dependence 

of r on h is a one-to-one increasing function. However, in region II ( 0.5 < z <

√
2

2
 ) the dependence of r on h is 

not one-to-one anymore. More specifically, there is a local maximum rm and for r < rm there are three values of 
h which all correspond to a given r. See Fig. 4 for clarification. If r > rm the dependence of r on h becomes one-
to-one again. For the special case r = rm there are two values of h corresponding to rm . Physically speaking, in 
region II and when r < rm there are three distinct values of h i.e.; h1 < h2 < h3 . The associated rays to these triple 
values of h after reflection from the mirror will intersect the plane located at z at the same radial distance r. As 
a consequence, the intensity formula should be modified in region II as follows:

Let us discuss the singularities of intensity I(r, z). For regions I (Fig. 4a) and III (Fig. 4c) r(h) is a one-to-one 
function and we have:

(5)r =
∣

∣

∣

∣

(

1

2 cosα
− z

)

tan 2α

∣

∣

∣

∣

.

(6)r = h
∣

∣

∣

(

1− 2z
√
1− h2

)

1− 2h2

∣

∣

∣
.

(7)2πI0 hdh = 2πI(r, z) rdr.

(8)
I(r, z)

I0
=
∣

∣

∣

h dh

r dr

∣

∣

∣
.

(9)4(z2 + r2)h4 − 4rh3 + (1− 4r2 − 4z2)h2 + 2rh+ r2 = 0.

(10)I(r, z) =
I0

r

[

h1

∣

∣

∣

dh

dr

∣

∣

∣

1
+ h2

∣

∣

∣

dh

dr

∣

∣

∣

2
+ h3

∣

∣

∣

dh

dr

∣

∣

∣

3

]

.

I(r, z) =
I0

r
h
∣

∣

∣

dh

dr

∣

∣

∣
=

I0h

r
∣

∣

∣

dr

dh

∣

∣

∣

.
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Evidently r = 0 and the solution(s) of 
dr

dh
= 0 are potential values of r where the intensity I(r, z) may exhibit 

a singular behaviour. According to Fig. 4a,c h → 0 when r → 0 therefore r = 0 is not a singularity. To find out 

the other(s) singularities we should find the solution(s) of 
dr

dh
= 0 . However, from Fig. 4a,c we simply find out 

(graphically) that there is no point where the slope 
dr

dh
 becomes zero hence there is no singular point r in I(r, z). 

Nevertheless, the situation differs drastically in region II. When r < rm the point r = 0 exhibits a singularity in 

the terms 
I0

r
h2

∣

∣

∣

dh

dr

∣

∣

∣

2
 and 

I0

r
h3

∣

∣

∣

dh

dr

∣

∣

∣

3
 when r → 0 . In fact in the limit r → 0 we have h1(0) = 0 but 

Figure 4.  Dependence of r on lateral distance h from the mirror axis for various values of z. The figure has been 
made with Gnuplot 5.4.2 software.

http://www.gnuplot.info
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h2(0) = h3(0) =
√
4z2 − 1

2z
 . Besides r = 0 , there is a second singularity at r = rm where 

dr

dh
= 0 . The value of rm 

can be found via differentiation from Eq. (6). Figure 5 (obtained via a numerical scheme) depicts the radial 
dependence of intensity in three regions.

Figure 6 provides a further insight into the nature of flux concentration in three interior regions of the spheri-
cal mirror. The secondary maxima in region II are clearly exhibited.

envelope of reflected rays. To gain a deeper insight into the nature of flux profile we give a geometrical 
explanation of intensity profile based on the rays envelope. This is technically known as the so-called caustic 
surface. See e.g.27 and the references therein. Let us first define an envelope curve to a set of family curves defined 
by the continuous parameter parameter α.

(11)F(z, y,α) = 0,

Figure 5.  Radial dependence of intensity on the receiver plane at constant z for various values of 0 < z < 0.5 

(top); 0.5 < z <

√
2

2
 (middle) and 

√
2

2
< z < 1 (bottom). The figure has been made with Tecplot 8.0.

http://www.tecplot.com
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There may exist a curve such that it is tangent to this family of curves at different points. Tangential points 
denoted by (zt , yt) construct a curve which is called the envelope of the family of curves F(z, y,α) = 0 . The 
tangential points of two curves of the family which are only infinitesimally different, i.e.; F(z, y,α) = 0 , and 
F(z, y,α + δα) = 0 are on an infinitesimal intersection of the envelope. In the limit δα → 0 we have:

In our problem we take parameter α as the incident angle of a ray. Therefore, each point of envelope of the 
reflected beam should satisfy

These set of equations leads to the following parametric equations for the envelope:

The envelope has a cusp at the point (0, 1/2), or α = 0 , which is the so-called quasi focal point of the spherical 
mirror. See Fig. 7 for illustration.

Due to axial symmetry for a spherical mirror, the envelope of reflected rays is a two-dimensional surface 
having axial symmetry. It is a surface of revolution generated by rotating the curve shown in Fig. 7 around y axis.

All of the reflected beam will enter the disk, shown by the line AB in the Fig. 8, passing through the green 
region and exit from the revolutionary surface of the envelope shown by the segments FA, and FB in the figure. 

(12)F(zt , yt ,α) = 0,

(13)
∂F(zt , yt ,α)

∂α
= 0.

(14)yt cos 2α − zt sin 2α + sin α = 0,

(15)yt sin 2α + zt cos 2α −
1

2
cosα = 0.

(16)yt = sin3 α,

(17)zt =
3

2
cosα − cos3 α.

(18)r = sin3 α,

(19)z =
3

2
cosα − cos3 α.

Figure 6.  Three dimensional intensity plots on z constant surface (colour online). Top left: z = 0.44 (region 
I); top right: z = 0.72 (region III), bottom left: z = 0.57 (region II) and bottom right: z = 0.63 (region II). The 
secondary maxima in region II are noticeable. The figure has been made with MATLAB 2009a software.

http://www.mathworks.com
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The geometry of the green region in Fig. 8 can be of practical importance. In fact, it can give solar thermal engi-
neers a hint how to optimise the design of a cavity receiver. An optimal design could have a horn-like shape in 
accordance to the highly concentrated green  region12,13,22,23.

We can express h and r in terms if α as follows:

(20)h = sin α

(21)r =
∣

∣(
1

2 cosα
− z) tan 2α

∣

∣ =
∣

∣

− sin α(1− 2z cosα)

2 cos2 α − 1

∣

∣,

Figure 7.  An envelope (red curve) of the reflected beam from the spherical mirror (blue curve). The figure has 
been made with Gnuplot 5.4.2 software.

Figure 8.  Envelope of the reflected beam and highly concentrated region (region II). The figure has been made 
with Desmo s graph ing calcu lator.

http://www.gnuplot.info
https://www.desmos.com/calculator
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α = arccos(
1

2z
) leads to a non-physical solution for α in the regions I and III. Using (20) and (21) we can evaluate 

rI(r, z)

I0
 in terms of parameter α:

It diverges at

Substitution of this z in (21) gives rm = sin3 αm the radius for which rmI(rm, z) diverges. Therefore, for any 
0 < z < 1 , there is ring of radius rm on the plane of constant z, at which the intensity diverges. Geometrically 
this radius is the intersection of the constant z plane and the envelope.

Ray tracing Monte Carlo simulation
In order to check the accuracy and validation of our theoretical analysis, we performed Monte Carlo ray tracing 
simulations. Monte Carlo simulation is a useful tool for characterising the properties of systems constituting a 
large number of interacting particles and has been applied to many areas of science and engineering during the 
past  decades28,29. The Monte-Carlo ray-tracing methodology replicates the real photon interactions, in which 
stochastic paths of a large number of rays are followed as they interact with surfaces. We have used the Zemax, a 
widely used commercial optical software, as our optical simulation software. Figure 9 shows the optical setup of 
ray tracing in non-sequential mode. We use the circle source and the Sobol sampling method with N = 107 rays 
to model a collimated spread source. All of the rays are emitted from the source parallel to the z-axis. Several 
rectangular detectors are placed in optical axis in order to the record the intensity distribution. The detectors 
have 800 × 800 pixels and, 40 × 40  cm2 area.

The results of ray tracing Monte Carlo simulations are shown in Fig. 10. The figure includes three dimensional 
colour plots of intensity profiles at various distances z of the receiver plane. As you can see the results of Monte 
Carlo simulation are in a good agreement with analytical results. The slight difference is due to finite difference 
approximation of derivatives in (10), finite number of rays, and Monte Carlo systematic errors.

Experiment and empirical data
In order to validate our theoretical results, an experiment was devised. In this lab experiment a small spherical 
mirror was exposed to a parallel beam of light. The spherical concave face of a negative ophthalmic lens is used as 
the spherical reflector. The ophthalmic lens diopter is −18 and, its refractive index is n = 1.7 . This ophthalmic lens 
is flat-concave. The lens clear aperture is d = 61.5mm and the concave face depth is h = 22.0mm . The surface 
radius of spherical curvature R is determined from the equation:R = (r2 + h2)/2h where r is the aperture radius 
and h is the concave face depth. The formula gives:R = 39.0mm . The concave face is silver coated with DC sput-
tering technique. A collimated beam of high bright white LED light is projected onto the spherical surface. The 
LED source is placed 10 m away from the mirror to satisfy the plane wave propagation criteria. The plane wave 
of light is incident to the mirror and reflected. A narrow ribbon of white paper ( 1.2× 70mm2 ) which scatters 

(22)
rI(r, z)

I0
=
(2 cos2 α − 1)2 sin α cosα

2 cos3 α − 3 cosα + 2z
,

(23)z = − cos3 αm +
3

2
cosαm,

Figure 9.  Optical setup of ray tracing in non-sequential mode. The figure has been made with Zemax 13 R2 
SP4 software.

http://www.Zemax.com
http://www.Zemax.com
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the light is placed near the focal plane. An imaging system was placed in front of the diffuser (white paper rib-
bon) and acquires the image of the spot profile. The setup is shown in Fig. 11. We use a 10-bits coloured CCD 
camera to capture the images. An aberration corrected lens with focal distance of 75 mm mapped the image of 
spot profile into the CCD sensor. The white ribbon was fixed on a mechanical holder and the spherical mirror 
was placed on a micro positioner stage. The distance z between ribbon and the mirror is changed from z = 15 
mm to z = 22 mm with the δz = 25 µm span. In any step, the intensity profile at the focal point is captured. 
Figure 12 exhibits the intensity profile for some values of z. All distances are scaled with the spherical mirror 
radius R. As you can see, there is a satisfactory overall agreement between empirical data and theoretical find-
ings. Most importantly, the second intensity peak in the region II(0.5 ≤ z ≤ 0.71) is observed in experiment. 
However, the second peak is smoothed and not so sharp as the theoretical results. The reasons are mainly due to 
imperfection and deviation of reflector surface from purely theoretical one, and partial ability of the collimator 
to produce a parallel beam of light. Note that in experiment there is no more a radial symmetry. We actually 

Figure 10.  Three dimensional intensity plots, obtained by Monte Carlo ray tracing simulation, on z constant 
surface (colour online). Top left: z = 0.44 (region I); top right: z = 0.72 (region III), bottom left: z = 0.57 
(region II) and bottom right: z = 0.63 (region II). The secondary maxima in region II are noticeable. The figures 
have been made with Zemax 13 R2 SP4 software.

Figure 11.  Left: The measurement optical setup. A ribbon of white paper with the size 1.2 × 70  mm2 is placed 
close to focal point. The mirror is translated by the micro positioner along the spherical mirror optical axis. 
Right: silver coated lens spherical mirror.

http://www.Zemax.com
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measured the line profile along an arbitrary direction. The empirical results for other directions were similar in 
nature to the one presented in the paper.

Concentration ratio
In the previous section we explored the spatial dependence of the radiation flux in the focal area of a spherical 
mirror. As we noticed, analogous to a parabolic mirror, a spherical mirror is also able to concentrate the solar 
irradiation. However, the nature of concentration is substantially different. Particularly, there is no focal point. 
Nevertheless, we may consider the point R/2 as the quasi focal point of the mirror because the intensity is nota-
bly large in the vicinity of z = R/2 . In this section we discuss the receipt of concentrated irradiation near quasi 
focal area and its physical aspects. To receive the concentrated light, we place a receiver in the focal area where 
intensity is large. Normally the receiver is placed vertically to the optical axis. The main question is where should 
the receiver be placed to maximize the amount of irradiated flux on it? To address this question the concept 
of concentration ratio has been introduced in the  literature6,30. Principally two types of concentration ratio is 
defined: geometric and radiation. Geometric concentration ratio is defined as the ratio of the dish aperture area 
to the area of the focal spot. The ambiguity arises when we want to define the focal spot size. The radiation-based 
concentration ratio is defined as the averaged intensity over the flat receiver area, divided by the incident beam 
intensity onto the collector aperture. Here we obtain the radiation-based concentration ratio for a flat circular 
receiver of dimensionless radius a. The circular receiver is placed perpendicular to the z axis at distance z from 
the mirror origin. The receiver centre is on the z axis. By definition, the concentration ratio is:

As it is seen in Fig. 4, for the regions I ( 0 < z < 0.5 ), and III ( 
√
2/2 < z < 1 ), there are one to one corre-

spondence between h and r, and we can simply evaluated the integral in (24). Replacing rI(r, z)dr from (7) by 
hdh in the integrand of (24) it turns out:

(24)C(a, z) :=
1

I0

∫ a
0
I(r, z) 2πrdr

πa2
.

Figure 12.  The profile of spot intensity in regions close to focal point f = R
2
 of the spherical mirror ( R = 39.0

mm). The figures have been made with MATLAB 2020a software.

http://www.mathworks.com
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where h(a, z) is the solution of (6) with r = a . Physically speaking, all the rays with lateral distance smaller than 
h(a, z) will hit the receiver therefore the amount of irradiation intercepted by the receiver will be I0 times the area 
of the circle with radius h(a, z) in the aperture plane. In region II ( 0.5 < z <

√
2/2 ), one needs to be cautious. 

Regarding the triple solutions for h in this region we have:

Physically speaking none of the rays with lateral distance between h1(a, z) and h2(a, z) will hit the receiver 
disk. Those which hit the disk come from two regions: 0 ≤ h ≤ h1(a, z) and h2(a, z) ≤ h ≤ h3(a, z) . See Fig. 4b 
for illustration. The concentration ratio will therefore be:

where hi ’s are the solutions of (6) ( h1 ≤ h2 ≤ h3 ) which can be found numerically. Figure 13 depicts the depend-
ence of the concentration ratio on the receiver distance z from the mirror centre for a circular receiver disk with 
reduced radius a.

Line receiver. As it is seen from Fig.  8 all the reflected rays passing through the aperture with 
h < hmax =

√
2/2 , cross the z line in the range 0.5 ≤ z ≤

√
2/2 . This implies that any line receiver on this range 

could collect all the incident beam. Here we wish to obtain the power per unit length by a line receiver, denoted 
by J(z) on the z axis. Conservation of irradiated power gives:

which gives

We recall that the reflected ray which intersects the z axis at z has originated from the incident ray having the 
lateral distance h where z = 1

2
√
1−h2

 . We can simply reverse the formula and obtain h as a function of z as follows: 

h =
√
4z2−1
2z  . This allows us to obtain dhdz needed in Eq. (29). Figure 14 shows the dependence of line flux J(z) on 

z:
In contrast to a paraboloidal dish which concentrates the incoming radiation at a focal point, a spherical mir-

ror concentrates the incoming irradiation on a piece of line on the optical axis. The line starts from R/2 = 1/2 
but its endpoint depends on the mirror aperture radius. In this paper with hm =

√
2
2

 the line ends at z =
√
2
2

 . See 
Fig. 15 for illustration.

(25)C(a, z) =
h2(a, z)

a2
,

(26)

∫ a

0

I(r, z) rdr =
∫ h1

0

h dh+
∫ h3

h2

h dh

=h1(a, z)
2 − h2(a, z)

2 + h3(a, z)
2.

(27)C(a, z) =
1

a2
[h1(a, z)2 − h2(a, z)

2 + h3(a, z)
2],

(28)J(z)dz = 2πI0hdh.

(29)J(z) = 2πI0h
dh

dz
=

{

πI0

2z3
0.5 ≤ z ≤

√
2/2

0 elsewhere

Figure 13.  Plot of C(a, z) in terms of z for some values of receiver radius a. The figure has been made with 
Tecplot 8.0.

http://www.tecplot.com
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The fact that all the reflected power is concentrated on the mirror axis stimulates the idea of a line-focus type 
receiver. Despite a parabolic trough is the typical solar line-focus  concentrator2,4 we have managed to show that 
a spherical mirror can also act as a novel candidate of line-focus solar collector. More technically, a spherical 
mirror can concentrate the irradiation both in a quasi focal area and on a line segment. To explore the degree of 
axial concentration let us consider a rectangular region in the x − z plane. This region has a width w and length 

l =
√
2− 1

2
= 0.205 (in reduced unit) with its symmetry axis along the z axis. All the reflected beam crosses 

this rectangular region. The concentration ratio of the receiver is simply the ratio of the aperture area to the 
rectangular region area:

Theoretically, the concentration ration diverges as w → 0 , but there are practical limitations on the receiver 
width. To estimate the typical value of w let us consider a vacuum tube receiver that is used in line-focusing 
systems such as linear troughs and linear Fresnel  collectors6. The typical diameter of the tube is about 5 centim-
eters. Taking R = 5m as a typical radius for solar concentrator spherical mirror one finds the value of 

w = 0.05
5

= 0.01 in reduced unit. It turns out that C(0.01, 0.205) =
7.6

w
= 760 which is even larger than the 

concentration ratio of the disk receiver.

(30)C(w, l) =
π/2

lw
=

π

w(
√
2− 1)

≈
7.66

w
.

Figure 14.  
J(z)

πI0
 in terms of z for a line receiver on the z axis. The figure has been made with Gnuplot 5.4.2 

software.

Figure 15.  Line radiation concentration on the optical axis of a spherical mirror. All the reflected radiation is 
concentrated on the line segment FG having the length l =

√
2−1
2

 . The Graph is generated using the Desmo s 
graph ing calcu lator.

http://www.gnuplot.info
http://www.gnuplot.info
https://www.desmos.com/calculator
https://www.desmos.com/calculator
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Comparison to parabolic dish
In this section we compare the spherical mirror degree of concentration to its counterpart in a paraboloidal one. 
Consider a paraboloidal dish of focal length f and equivalent circular aperture area to that of the spherical mirror 

that is A = πh2m with hm =
√
2

2
 . Analogous to the spherical mirror we work in a dimensionless unit where the 

focal length, f = 1 , is set as the unit length. Mathematically it is known that all the incident rays parallel to the 
paraboloidal mirror axis will cross the focal point upon reflection from the mirror. On the other hand, the radia-
tion intensity has an axial symmetry like the spherical mirror and hence Ipb = Ipb(r, z) . Point concentration gives 
Ipb(r, z = f ) ∼ δ(r) . This means that theoretically, the concentration ratio (geometric or radiation) can be indefi-
nitely large. However, practical restrictions and the sun disk finite angular diametre (0.009 radian)31 prevent to 
have an infinite concentration ratio. Let us obtain the concentration ratio of a paraboloidal dish. Consider a 
circular receiver of radius a which is perpendicular to the dish optical axis and located at z = f  . The receiver 
absorbs all the intercepted solar power that is I0 times the dish aperture area. The average flux on this receiver 
turns out to be:

The corresponding concentration ratio turns out to be:

as an estimation of the receiver aperture size we put a = 0.02 (10 cm)13,32 and find Cpb(0.02) = 1250 , which is 
of course higher than the maximal concentration ratio of the spherical mirror having the same aperture area. 
Despite theoretically the concentration ratio of a paraboloidal dish is higher than a spherical one but we should 
notice that this might not be valid when practical limitations are taken into account. First, the size of cavity 
receivers which are used in point-focus concentrators cannot be arbitrarily small. Second, the heat loss from 
cavity receivers is higher than the vacuum tube receivers which are used in line-focus systems. Therefore, it is 
not known a priori which receiver type can exhibit a better performance. To find which type of dish has a higher 
efficiency, we offer an experimental study which can compare the thermo-optical performances of a paraboloi-
dal dish with a cavity receiver and a spherical dish (having identical aperture area) with a vacuum tube receiver.

(31)Īpb(a) =
I0π/2

πa2
.

(32)Cpb(a) = Īpb(a)/I0 =
1

2a2
.

Figure 16.  Sun is an extended light source whose angular diameter is 2β ≈ 0.53
◦ . The Graph is generated using 

the Inkscape software.

Figure 17.  While the incident angle of a light ray is δ , it is easier to solve the problem in a reference frame, 
rotated by an angle δ . The Graph is generated using the Keyno te.

https://inkscape.org/
https://www.apple.com/keynote/
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Sun angular diameter
When the angular size of a light source is less than the instrument resolution used to observe it, one can assume 
the light source is a point source. Otherwise, we should take it as an extended source. Let us consider the more 
realistic case, where the sun is not a point source but an extended one. Angular diameter or size of the sun seen 
from the Earth is 2β ≈ 0.53◦ , See Fig. 16. Consequently, incident rays on Earth are not parallel, but are up to 
about half a degree out of parallel.While the incident angle of a light ray is δ , it is easier to solve the problem in 
the reference frame, y′ − z′ , which is rotated rotated by an angle δ with respect to the y − z frame. See Fig. 17 
for details. In the rotated frame, each point of the reflected beam envelope should satisfy

This set of equations leads to the following parametric equations for the envelope:

The envelope in y − z frame is:

Due to axial symmetry of a spherical mirror, the envelope of reflected rays is a two-dimensional surface with 
axial symmetry. Indeed, it is a surface of revolution generated by rotating the curve given by equations (37,38) 
around y axis.

The cusp will appear when z takes its minimum value.

Note that for small values of δ , αm ≈ −δ . Up to first order of δ the cusp position is:

Because the incident rays are non-parallel, the incident angle may deviate from parallel rays by −β ≤ δ ≤ β . 
Consequently, the cusp will be broadened. The boundaries are shown by red and green lines in Fig. 18. In the 
right figure, β is taken its real value which is about 0.26◦ , but in the left figure, β is exaggeratedly taken much 
larger to show the effect of sun diameter on the cusp broadening. The cusp is not a point anymore and it is a spot 

of radius rs ≈
β

2
 . We recall that the mirror radius has been set as the unit length. For a dish of radius 5m , it is 

rs ≈ 1.1 cm.
In order to gain a deeper insight, we also carried out Monte Carlo ray tracing simulation to find out how much 

our previous results will change when the sun finite size is taken into account. Figure 19 exhibits the results of 
Monte Carlo simulation for the same values of z in Fig. 10.

Summary and conclusion
Solar radiation flux spatial distribution in the interior region of a spherical mirror has been analytically, experi-
mentally and computationally investigated in the framework of geometric optics. A comparison to a paraboloidal 
dish with the same aperture area was carried out. The aperture diametre of the spherical mirror was chosen at 
D =

√
2R . In technical terms, the dish rim angle was chosen at � =

π

4
 . It is shown that flux distribution I(r, z) 

which has cylindrical symmetry crucially depends on z the distance of the observation point from the mirror 

(33)y′t cos 2(α + δ)− zt sin 2(α + δ)+ sin(α + δ) = 0,

(34)y′t sin 2(α + δ)+ zt cos 2(α + δ)−
1

2
cos(α + δ) = 0.

(35)y′t =
3

4
sin 3(α + δ)−

1

4
sin 3(α + δ),

(36)z′t =
3

4
cos 3(α + δ)−

1

4
cos 3(α + δ).

(37)yt =
3

4
sin α −

1

4
sin(3α + 2δ),

(38)zt =
3

4
cosα −

1

4
cos(3α + 2δ).

(39)r =
∣

∣

∣

∣

3

4
sin α −

1

4
sin (3α + 2δ)

∣

∣

∣

∣

,

(40)z =
3

4
cosα −

1

4
cos(3α + 2δ).

(41)3 sin αm − sin(3αm + 2δ) = 0.

(42)rm = |
δ

2
|,

(43)zm =
1

2
.
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centre. Two types of concentration is shown to occur: point-focus and line-focus. Three distinctive concentration 
regions on the optical axis have been identified. The concentration is high in the middle region [R/2,

√
2R/2] 

whereas the two other regions have a low degree of concentration. In the high concentration region there exists 
two intensity maxima in the radial direction of the z constant plane. The envelope of the reflected rays is also 
obtained. The second maxima, which occurs on a circle, corresponds to the intersection of z constant plane and 
the envelope. Using beam envelope, the shape of the highly concentrated region is obtained. This shape can 
significantly help solar thermal engineers to optimally design a cavity receiver and its location. Furthermore, we 
have evaluated the radiative concentration ratio of the spherical mirror for two types of receivers: flat circular 

Figure 18.  As the sun is an extended light source, the cusp will be broadened. The boundaries of the broadened 
region are red and green curves. In the right figure, β is taken to be its real value. For a dish of radius 5m , the 
broadened cusp is a spot of radius rs ≈ 1.1 cm . In the left figure, β is taken to be much larger to show the effect 
of sun diameter on the cusp broadening. The figure has been made with Gnuplot 5.4.2 software.

Figure 19.  Three dimensional intensity plots, obtained by Monte Carlo ray tracing simulation, with considering 
the sun finite angular size., on z constant surface (colour online). Top left: z = 0.44 (region I); top right: z = 0.72 
(region III), bottom left: z = 0.57 (region II) and bottom right: z = 0.63 (region II). The secondary maxima in 
region II are noticeable. The figure has been made with Zemax 13 R2 SP4 software.

http://www.gnuplot.info
http://www.Zemax.com
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(perpendicular to the optical axis) and vacuum tube line receiver. It is shown that concentration is higher in the 
line receiver. The distinctive feature of the spherical mirror to the paraboloidal mirror is that the optimal location 
of the flat receiver depends on its size. The smaller the receiver size, the closer to the quasi focus R/2 the optimal 
location should be. Our findings offer that in a spherical mirror one can alternatively use a line receiver and gains 
a reasonable thermal energy harvest. What can justify our suggestion is the lower heat loss of the vacuum tube 
line receivers. The overall efficiency of the dish depends on the interplay of concentration ratio and heat loss 
amount. Experimental data can reveal which dish can have higher overall efficiency. Work along this experimental 
line is jointly being considered by a group of CSP researchers.
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