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Geoinformation‑based 
landslide susceptibility mapping 
in subtropical area
Xiaoting Zhou, Weicheng Wu*, Yaozu Qin & Xiao Fu

Mapping susceptibility of landslide disaster is essential in subtropical area, where abundant rainfall 
may trigger landslide and mudflow, causing damages to human society. The purpose of this paper 
is to propose an integrated methodology to achieve such a mapping work with improved prediction 
results using hybrid modeling taking Chongren, Jiangxi as an example. The methodology is composed 
of the optimal discretization of the continuous geo‑environmental factors based on entropy, weight 
of evidence (WoE) calculation and application of the known machine learning (ML) models, e.g., 
Random Forest (RF), Support Vector Machine (SVM) and Logistic Regression (LR). The results show the 
effectiveness of the proposed hybrid modeling for landslide hazard mapping in which the prediction 
accuracy vs the validation set reach 82.35–91.02% with an AUC [area under the receiver operating 
characteristic (ROC) curve] of 0.912–0.970. The RF algorithm performs best among the observed 
three ML algorithms and WoE‑based RF modeling will be recommended for the similar landslide risk 
prediction elsewhere. We believe that our research can provide an operational reference for predicting 
the landslide hazard in the subtropical area and serve for disaster reduction and prevention action of 
the local governments.

Landslide is a common geological disaster leading to destruction and damages to human society in subtropical 
areas. With the socioeconomic development and the continuous expansion of human activities into the natural 
environment, landslide occurs more and more frequently and constitutes the main disaster threatening the 
safety of life and restricts the economic development in the hilly and mountainous  areas1–4. Accurate and reliable 
mapping of landslide risk is a key step for local decision-makers and authorities to plan reasonable land use and 
implement disaster reduction and prevention measures to reduce the massive  damage5–9.

Actually, a number of scientists have been exploring reliable approaches for landslide hazard  mapping10,11. 
With the advent of geoinformation technology including remote sensing (RS), Geographic Information System 
(GIS), Global Positioning System (GPS) or Beidou System (BDS) and powerful computer processing facility, 
acquisition and processing of geo-environmental factors with high resolution have been greatly  facilitated8,12. 
The prediction of landslide hazard has been also upgraded from knowledge-driven qualitative analysis to data-
driven quantitative  modeling13–15. The knowledge-driven model is to sort out and weight the limited landslide 
influencing factors based on a priori knowledge to conduct a landslide susceptibility  mapping16,17, while the 
data-driven modeling is to achieve the same purpose but able to avoid the subjective uncertainty of experts and 
has higher accuracy and  reliability17–20.

Statistical analysis and machine learning (ML) modeling are two major data-driven approaches. The calcula-
tion process of the statistical models such as frequency ratio (FR), certainty coefficient (CF), information value 
(IV) and weight of evidence (WoE) is simple; and qualitative or categorical factors can be converted into quan-
titative weights by these approaches, and thence, they are widely employed for landslide risk  assessment15,21–23. 
However, the statistical models are sensitive to the nonlinear phenomena which require specific algorithms to 
sort them  out23,24.

Since the appearance of artificial intelligence, different ML algorithms including deep learning have been 
applied in the field of landslide risk  mapping11,25–28. Based on the target definition, or rather, collection of 
samples for training, ML approaches can automatically analyze and extract rules from the input data to make 
 predictions14. Meanwhile, it is highly efficient in calculating high-dimension data and can fit the nonlinear 
relationships between target and  factors8,29–31. Nevertheless, the prediction accuracy of the most studies, even 
including those harnessing the hotspotted deep learning  techniques32–35, comes between 75 and 85%, except for 
those of Huangfu et al.36, Ou et al.26, Zhang et al.27 and Zhou et al.28, who have achieved landslide risk prediction 
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with an accuracy of 86–94.54%. This is not ideal for government to target effectively and accurately the high 
risk zones for implementing disaster reduction and prevention measures in the subtropical areas. Hence, it is 
necessary to effectuate some improvement in certain technical aspect of the ML approaches.

It has been decades since hybrid models were proposed for landslide risk assessment. Hybrid models are 
in fact constructed by integrating two or more models in aspect of sample  selection28,37, feature  selection21,38, 
information extraction and finally landslide hazard prediction with reasonable  accuracy10,22,25,39–41. Hence, 
hybrid modeling has gained recently a momentum in improving the accuracy and reliability of landslide risk 
 mapping26,36,40,42,43. However, there are still uncertainty in processing both categorical and continuous factors 
which may influence directly the prediction accuracy.

Based on the above understanding, the main objective of this study is to improve the landslide risk modeling 
and prediction using hybrid models by coupling WoE with ML algorithms such as Logistic Regression (LR), Sup-
port Vector Machine (SVM) and Random Forest (RF) taking Chongren, Jiangxi, China, a typical county in the 
subtropical area, as an example. A specific objective is to test the effectiveness of the discretization approach based 
on entropy to see whether it can bring us the expected improvement while discretizing the continuous factors.

Data and methodology
The methodological procedures involved in the research are depicted as follows: (1) data preparation of landslide 
samples and geo-environmental factors; (2) entropy-based optimal discretization of the continuous factors; (3) 
WoE-based processing of both continuous and categorical geo-environmental factors and establishment of the 
hybrid models; (4) modeling and mapping of landslide susceptibility; (5) accuracy assessment and validation 
of the proposed models (Fig. 1).

Study area. Chongren is a county situated in the central part of Jiangxi, within the extent of longitude from 
115° 49′ 16″ E to 116° 16′ 55″ E and latitude from 27° 24′ 29″ N to 27° 57′ 29″ N (Fig. 2), encompassing an area of 
1520  km2. The general landform is an incomplete hilly basin surrounded by mountains on three sides and open-
ing toward the northeast. The annual average temperature from 1981 to 2010 is 17.6 °C, and the annual average 
precipitation from 1959 to 2017 is 1783.8 mm driven by monsoon in the subtropical climate zone. There are 
more than 140 small rivers or streams in the study area with an accumulated running course of 910 km. All these 
rivers or streams constitute a part of the Fuhe River watershed as tributaries and subtributaries. Geologically, the 
exposed strata are from the Upper Proterozoic, e.g., Sinian (Nanhua) to the Upper Palaeozoic, e.g., Devonian, 
Carboniferous, and to the Mesozoic, i.e., Triassic, Jurassic, and Cretaceous and at last the Quaternary. Since the 
Proterozoic era, the study area had experienced sedimentation, magmatism, tectonism and metamorphism with 
intense and complex development and transformation, forming a complex structural pattern composed of tec-
tonic entities such as ductile faults, superimposed folds, brittle faults and depression basins.

Regarding the geological disasters, small-scale shallow landslides are dominant in the study area. After slope 
cutting for infrastructure construction, the natural loose deposits (i.e., soil) or cracked rock masses (mainly 
phyllitic slate and rocks with downslope bedding or fracture) lose support and balance, forming a new free 
dangling surface. In case of heavy rainfall, the slope slips downward due to heavy load and instability. Such 
landslides generally have no signs, and the time from creeping to occurrence of an obvious slip is short, which, 
therefore, often causes major geological disasters leading to house collapse and casualties. Moreover, in the site 
of such landslides, a new scarp (or back wall) is formed, inducing the generation of new landslides at the trailing 

Figure 1.  Methodological flowchart.
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edge of the slope. This process is the same as the development of headward erosion in a slope valley, producing 
a chain of landslides.

Field investigation revealed that heavy rains triggered several landslides near the town Xiangshan on July 
7, 2019, severely blocking the traffic with more than 30,000  m3 of landslide bodies; and on August 23, 2017, a 
landslide with a total volume of about 10,000  m3 occurred in the village Pingshan due to a rainstorm, causing 
power outage, interruption of telecommunication and severe road congestion.

Field observation data. The prediction of landslide disaster based on data-driven method is to calculate 
the probability of landslide occurrence in the study area by fitting the relationship between the historical land-
slides and the geo-environmental  factors44. A detailed field survey of the historical landslides in the past decade 
was conducted in Chongren during the campaign of 1/50,000 Geological Disaster Survey by the 264 Geological 
Brigade of Jiangxi Nuclear Industry in 2017 and 588 landslides that took place in the period 2008–2017 (Fig. 3) 
were obtained as points. In reference to Google Earth (©Google) images, these landslide points were verified and 
vectorized into polygons. Meanwhile, the same number of stable points were stochastically selected in the stable 
areas, e.g., where the slope is less than 3°. A value of 1 was assigned to landslides and 0 to non-landslide points. 
As proposed by Zhang et al.27, Huangfu et al.36, Ou et al.26, and Zhou et al.28, 70% of the landslides and non-
landslide samples were randomly picked out to constitute a training set (TS) to model landslide susceptibility, 
and the remained landslides and non-landslide samples (30%) as a validation set (VS) to evaluate the accuracy 
of modeling.

Geo‑environmental factors. Preparation. The occurrence of landslides is a consequence of the long-
term joint action of the endogenous factors, i.e., geology, landform, vegetation and soil, etc., and the short-term 
predisposing factors, i.e., rainfall, earthquake and anthopogenic  activities18,27. According to previous research 
on the landslide-causative  factors27,28,36 and landslide field investigation in Chongren, geological and geomor-
phological data, hydrological data, land cover and transport system data were used to establish geoinformation 
datasets for landslide hazard analysis.

Figure 2.  Geographical location of Chongren and distribution of the historical landslides. The map was created 
using ArcGIS version 10.6 (https:// www. esri. com/).

https://www.esri.com/
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Geological factor layers such as lithology, geological boundary and faults were generated by vectorization, 
buffering, and rasterization from the 1/50,000 Geological Map (Fig. 4a,b). The soil data including soil types and 
texture were provided by the Bureau of Jiangxi Coal Geology.

Slope and aspect factor layers were extracted from the digital elevation model (DEM), ASTGTMV003 (30 m), 
which were obtained from NASA (www. earth data. nasa. gov) (Fig. 4c,d). The topographic wetness index (TWI) 
was also calculated using DEM data (Fig. 5a), using Eq. (1)20:

where AS is the upslope area of contribution per unit length of contour  (m2/m), and β is the slope gradient.
The normalized difference vegetation index (NDVI) is a good representative of vegetation dynamics and can 

hence be considered as a controlling factor of landslide. For this reason, the multiyear autumn average NDVI 
was adopted to reduce the influence of uncertainty factors related to cloud cover and vegetation phenological 
change. Obtained from the USGS data server, Landsat 5 TM (30 m) and Landsat 8 OLI (30 m) images of the 
period 2007–2017 were used for this purpose. These Landsat images were acquired in late autumn, i.e., late 
October and early November, when crops are mostly harvested and only forests and woodlands are still green. 
After atmospheric correction using the COST  model45–47, these Landsat images were employed for deriving the 
mean autumn NDVI (Fig. 5b), and Landsat 8 OLI images dated May 2017 and Sept 2019 were used for land 
cover mapping (Fig. 5c) using the approach developed by Wu et al.29.

Daily precipitation data from 2008 to 2017 were obtained from 14 meteorological stations in Chongren. Our 
previous studies revealed that the precipitation from May to July has a higher impact on the landslide occur-
rence than the combination of other  months27,28. Thus, the May–July accumulated mean rainfall was generated 
by interpolation approach of the Inverse Distance Weighting (IDW) (Fig. 5d).

Linear feature factors such as roads and rivers were vectorized from Google Earth (©Google) (Fig. 6a,b) and 
buffered into belts with intervals at 30, 60, 90, 120 and 150 m, respectively.

Optimal discretization of the continuous factors. The supervised discretization approach based on entropy was 
used to divide the continuous variables into intervals to realize optimal discretization. Using the entropy value 
to represent the purity of the dataset after partition is the basic idea of the approach. The smaller the entropy, 
the greater the data purity and the higher the availability of the discrete data obtained. The formula of entropy 
is presented as follows:

where Pi represents the probability of class i of sample appearing in the data interval. The results of division for 
continuous factors are shown in Table 1.

WoE‑based processing of geo‑environmental factors. Originally developed for mineral potential mapping based 
on Bayesian probability by Bonham-Carter et al.48, WoE has been introduced into the prediction of landslide 
hazard in recent years and achieved a good  result15. The weight values of the evidential variables (i.e., geo-
environmental factors) are statistically calculated by the spatial relationship of landslide events with geo-envi-
ronmental  factors7,49.

The positive weight  (W+) and negative weight  (W−) are provided by the following equations:

(1)TWI = lnAs
/

tanβ

(2)E =
∑

−Pi log2 Pi

(3)W+ = ln
P(B|D)

P(B|D)

Figure 3.  Photos of the rainfall triggered landslides in the study area.

http://www.earthdata.nasa.gov
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where W+ and W− are the weighted values of the occurrence and non-occurrence of the observed geo-environ-
mental factor, respectively. B and B is occurrence and non-occurrence of the geo-environmental factor, respec-
tively; D and D are the occurrence and non-occurrence of landslide events, respectively; P is the  probability7,49.

(4)W− = ln
P(B|D)

P(B|D)

Figure 4.  Geo-environmental factors: (a) lithology; (b) fault; (c) slope; (d) aspect. The maps were created using 
ArcGIS version 10.6 (https:// www. esri. com/).

https://www.esri.com/
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The weight contrast (C) is a global measurement of the spatial interconnection between the landslide points 
and the geo-environmental factors, incorporating the effects of the  W+ and  W−. Calculation of C is shown as 
 follows48:

where if C is > 0, it indicates that the occurrence of landslide is positively correlated with the geo-environ-
mental factor; and if C is < 0, it implies that the occurrence of landslide is negatively correlated with the 

(5)C = W+ −W−

Figure 5.  Geo-environmental factors: (a) TWI; (b) NDVI; (c) landuse; (d) May–July accumulated mean 
rainfall. The maps were created using ArcGIS version 10.6 (https:// www. esri. com/).

https://www.esri.com/
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geo-environmental factor. The weight of evidence values of all the geo-environmental factors are shown in 
Table 1.

Each interval of the divided continuous factors and each type of feature within the categorical factor were 
considered as a “subset”. The positive weight  (W+) and negative weight  (W−) of different intervals or subsets for 
the geo-environmental factors were calculated using Eqs. (3) and (4). Lithology, soil type, soil texture, distance 
to faults, distance to geological boundary, distance to rivers, distance to roads, elevation, slope, aspect, TWI, 
autumn mean NDVI, May–July accumulated mean rainfall and land use were transformed into raster layers with 
30 m resolution as input variables (e.g., C values) for WoE-based hybrid modeling.

The calculation of WoE and C are implemented within Arc-WofE, an extension to ArcView 3.3 developed 
jointly by the USGS and the Geological Survey of  Canada50.

Machine learning modeling. Based on the WoE calculation, the following machine learning algorithms 
were applied for landslide susceptibility modeling, or rather, hybrid modeling. LR model was established within 
SPSS 19.0 software, meanwhile, SVM and RF modeling was implemented within EnMap-Box 2.11, a software 
package developed using Interactive Data Language (IDL)51.

LR modeling. 

(1) Collinearity analysis
  Prior to the LR modeling, it is necessary to understand the collinearity among the independent variables, 

that is to say, to ascertain whether there exists linear correlation among the independent geo-environmental 
factors. This collinearity may lead to an instability of the LR model and affect the contribution of variables 
to the  model52. Common indicators to evaluate the collinearity of geo-environmental factors are the vari-
ance inflation factor (VIF) and tolerances (TOL)53. The statistical model and LR require that there be no 
collinearity among the factors, that is, TOL > 0.1 and VIF <  1027,54.

(2) LR modeling

LR is an algorithm that learns a model for binary  classification46,55 whose kernel function is sigmoid (Eq. 6).

The purpose of the conventional regression algorithms is to fit a polynomial function (Eq. 7) that minimizes 
the error between the prediction and the reality.

(6)p(x) =
1

1+ e−x

Figure 6.  Geo-environmental factors: (a) rivers; (b) roads. The maps were created using ArcGIS version 10.6 
(https:// www. esri. com/).

https://www.esri.com/
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Factor Class Area of intervals  (km2) Number of landslides W+ W- C

Lithology

Magmatic rocks 177.67 138 1.22 − 0.20 1.42

Metamorphic rocks 363.12 199 0.87 − 0.26 1.13

Clastic rocks 535.62 127 0.03 − 0.01 0.04

Carbonatic rocks 38.56 12 0.31 − 0.01 0.31

Quaternary sediments 380.69 106 0.20 − 0.04 0.23

Geological boundary (m)

0–30 109.88 43 1.15 − 0.05 1.20

30–60 105.46 51 1.36 − 0.07 1.43

60–90 96.85 34 1.04 − 0.04 1.08

90–120 87.93 37 1.22 − 0.05 1.26

 > 120 4309.44 423 − 0.24 1.16 − 1.40

Fault (m)

0–60 50.96 47 2.02 − 0.07 2.09

60–120 51.68 47 2.00 − 0.07 2.08

120–180 51.55 33 1.65 − 0.05 1.70

180–240 49.95 30 1.59 − 0.04 1.63

240–300 47.86 22 1.32 − 0.03 1.35

 > 300 4518.63 409 − 0.30 1.67 − 1.98

Soil type

Yellow–red soil 39.19 9 0.01 0.00 0.01

Paddy soil 411.39 124 0.28 − 0.06 0.34

Red soil 15.32 0 0.00 0.00 0.00

Neutral skeletal soil 1031.71 449 0.65 − 0.93 1.58

Clay (%)

0–15.58 434.99 − 0.55 0.26 − 0.11 0.37

15.58–24.38 757.90 − 3.53 0.16 − 0.16 0.32

24.38–26.26 30.51 1.32 − 2.88 0.02 − 2.90

26.26–37.97 194.96 − 0.99 − 0.16 0.02 − 0.18

37.97–37.98 98.73 − 0.55 − 4.21 0.06 − 4.27

Sand (%)

0–22.57 360.09 60 − 0.45 0.10 − 0.55

22.57–25.06 98.73 1 − 3.47 0.06 − 3.53

25.06–61.93 838.92 481 0.44 − 0.89 1.32

61.93–61.94 219.35 46 − 0.90 0.09 − 0.99

Elevation (m)

1–67 24.95 1 − 1.74 0.01 − 1.74

67–82 358.67 208 0.94 − 0.29 1.22

82–347 163.95 54 0.37 − 0.03 0.40

347–1218 900.69 313 0.42 − 0.33 0.76

Slope (°)

0–9.51 976.12 281 − 0.17 0.21 − 0.38

9.51–60.75 644.04 307 0.21 − 0.17 0.38

11.44–18.34 65.38 24 0.48 − 0.02 0.50

Aspect

Flat 38.36 1 − 1.55 0.01 − 1.56

North 598.05 63 − 0.15 0.02 − 0.17

Northeast 611.22 78 0.04 − 0.01 0.05

East 560.31 74 0.07 − 0.01 0.08

Southeast 613.75 70 − 0.07 0.01 − 0.08

South 603.14 98 0.28 − 0.05 0.33

Southwest 582.89 78 0.09 − 0.01 0.10

West 555.59 77 0.12 − 0.02 0.14

Northwest 620.55 49 − 0.44 0.05 − 0.49

TWI

2.80–5.21 315.60 154 0.76 − 0.17 0.94

5.21–6.26 561.57 234 0.60 − 0.26 0.87

6.26–7.46 373.10 123 0.37 − 0.08 0.45

7.46–9.00 187.68 52 0.20 − 0.02 0.21

9.00–16.80 79.20 25 0.33 − 0.01 0.34

NDVI

− 0.30 to 0.25 36.25 1 − 2.03 0.02 − 2.05

0.25 to 0.55 349.08 332 0.92 − 0.53 1.45

0.55 to 0.68 579.05 225 0.17 − 0.11 0.27

0.68 to 0.75 420.29 30 − 1.97 0.26 − 2.24

0.75 to 0.84 132.42 0 0 0 0

Continued
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where xi (i = 1, 2, 3, … n) are independent features of the samples; ci (i = 1, 2, 3, … n) are the coefficients of the 
features, and c0 is a constant. f(x) is transformed into a sigmoid function so that it has a good logistic judgment 
property and can directly express the probability in which the sample with the given features is classified into a 
certain class. p(x) = 1 is the probability of samples being assigned to category 1, then p(x)/(1 − p(x)) is defined 
as odds ratio (OR) to introduce the natural logarithm (Eq. 8).

p(x) is expressed as following function (9):

The training samples and their corresponding attributes of environmental factors were inputted into a statis-
tic package SPSS 19.0 to calculate the coefficients of environmental factors. Then, in the GIS environment, the 
probability of landslide occurrence in the study area was calculated through formula (9).

SVM modeling. As a classical classification and regression algorithm, SVM has clear advantages in dealing with 
high-dimensional data with limited samples. SVM attempts to find or construct a set of hyperplanes through 
kernel functions to separate clusters that are usually not linearly separable in low-dimensional feature space, 
minimizing the empirical error and uncertainty to improve the generalization  performance56,57. The kernel func-
tions include Linear, Polynomial, Sigmoid and Radial Basis Functions (RBF), among which the RBF, similar to 
Gaussian distribution and thus termed also Gaussian function (Eq. 10), performed  best29,30 and has been widely 
used in classification and regression as it has fewer parameters and stronger  flexibility34. The RBF kernel was 
hence used to establish the SVM model in this study.

where xi and xj are the input vectors, and g is the width parameter of the Gaussian kernel function k.

RF modeling. RF is a decision-trees-based classification and regression algorithm that outputs the final out-
come by voting all the results of these  trees58. The classification decision-maker used in the RF algorithm is 
the Classification and Regression Tree (CART)59. The training samples of the decision-trees are obtained by 
randomly replaceable sampling in the original TS. The remaining samples, called the out-of-bag (OOB) data, are 
used for establishing an unbiased estimate of error during generalization and estimating the importance of each 
factor. The metric of attribute of CART in branch processing is Gini Coefficient (Eq. 11).

(7)f (x) = c0 + c1x1 + . . .+ cnxn

(8)f (x) = ln(
p(x)

1− p(x)
)

(9)p(x) =
1

1+ e−(c0+c1x1+...+cnxn)

(10)k
(

xi , xj
)

= exp
(

−g
∥

∥xi − xj
∥

∥

2
)

Table 1.  The weight contrasts (C) of the geo-environmental factors.

Factor Class Area of intervals  (km2) Number of landslides W+ W- C

Land use

Forest 337.22 37 − 0.73 0.07 − 0.80

Woodland 589.43 185 0.32 − 0.12 0.44

Artificial area 117.12 187 1.95 − 0.34 2.29

Cropland 366.13 139 0.51 − 0.12 0.63

Shurb 67.02 27 0.57 − 0.02 0.59

Bareland 6.44 12 2.10 − 0.02 2.12

May–July mean rainfall (mm)

687.7–693.14 11.46 23 2.12 − 0.05 2.17

693.14–738.75 1008.95 277 − 0.23 0.30 − 0.53

738.75–763.90 496.68 288 0.38 − 0.23 0.61

River (m)

0–30 55.45 18 0.97 − 0.02 0.99

30–60 52.14 20 1.14 − 0.02 1.16

60–90 48.94 30 1.61 − 0.04 1.65

90–120 46.11 34 1.79 − 0.05 1.84

 > 120 4573.73 486 − 0.14 1.33 − 1.48

Road (m)

0–30 174.65 52 0.87 − 0.05 0.93

30–60 158.86 32 0.48 − 0.02 0.50

60–90 142.32 29 0.49 − 0.02 0.51

90–120 126.23 40 0.93 − 0.04 0.98

 > 120 4105.85 435 − 0.16 0.69 − 0.85
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where pi represents the probability of which the observed sample falls in category i, so the probability of this 
sample being misclassified is (1 − pi).

In order to distinguish each predictor in the ensemble classifier, a specific number of variables are stochasti-
cally selected for generating the necessary nodes in the decision-tree. This construction method enables the 
RF to further improve the prediction performance through the increase of the difference among the individual 
classification trees and to avoid over-fitting. The number of variables at each node can be the square root of all 
features or logarithm (log) of all features or a user-defined value. In this study, the square root of all features, 4, 
was selected.

Model performance assessment. The confusion matrix is often used for evaluation of the performance 
of the ML models. It mainly includes the following basic indicators: True Positive (TP) is the number of land-
slide samples correctly predicted by the model; False Negative (FN) is the number of landslide samples wrongly 
predicted as stable points by the model; False Positive (FP) is the number of stable samples mistakenly classified 
as landslide samples; True Negative (TN) is the number of stable samples correctly predicted by the model. The 
performance indicators of landslide hazard model, e.g., Precision, Recall, F-measure, Kappa Coefficient (KC), 
Overall Accuracy (OA) and AUC [area under the Receiver Operating Characteristic (ROC) curve], were calcu-
lated on the basis of confusion  matrix8,34.

According to previous studies, the smaller the very high susceptible zone and the more landslide samples 
predicted, the higher the accuracy of the landslide risk  map60. To assess the accuracy of the latter, the FR was 
also calculated, which is the ratio of the percentage of the cell number of landslides at each susceptibility level 
to the percentage of the cell number of each hazard  level61. For a reliable landslide prediction model, the very 
high risk level shall possess the highest FR.

Results
Collinearity of the geo‑environmental factors. As demonstrated in Table 2, the minimum TOL and 
maximum VIF values of the variables processed by WoE method were 0.878 and 1.139, respectively. The col-
linearity of WoE-based variables was significantly lower than that of the original variables, in which the mini-
mum TOL and the maximum VIF are 0.215 and 4.642, respectively. Processing based on WoE can effectively 
reduce the collinearity among the factors. The collinearity among the geo-environmental factors selected for this 
research is low, and thus, they can be used for susceptibility modeling.

Hybrid models. WoE‑based LR models. Regression coefficient (β) and  R2 of the WoE-based LR model is 
shown in Table 2. The single LR model was also established for comparison. The fitting degree of the WoE-based 
LR Model  (R2 = 0.886) was better than that of the single model  (R2 = 0.707). The WoE-based LR and single LR 
model were expressed using Eqs. (12) and (13). The probabilities of the landslide are calculated as follows:

(11)Gini = 1−

2
∑

i=1

p2i

Table 2.  Regression coefficients (β) and collinearity of the variables.

Factors

LR WoE-LR

β TOL VIF β TOL VIF

Lithology − 0.585 0.917 1.090 0.929 0.829 1.207

Geological boundary − 0.028 0.962 1.039 1.017 0.910 1.099

Fault − 0.005 0.962 1.039 0.804 0.942 1.062

Slope 0.049 0.723 1.383 0.014 0.928 1.077

Aspect 0.001 0.985 1.015 1.784 0.977 1.024

Elevation − 0.002 0.643 1.555 0.837 0.889 1.125

Land use 0.304 0.735 1.361 1.200 0.560 1.785

NDVI − 5.636 0.743 1.345 0.784 0.549 1.822

May–July accumulated mean rainfall 0.023 0.862 1.160 1.689 0.812 1.232

River 0.017 0.984 1.017 − 0.844 0.962 1.039

Road − 0.030 0.953 1.049 0.977 0.856 1.168

Sand − 0.003 0.990 1.010 0.516 0.958 1.043

Clay − 0.156 0.215 4.642 0.655 0.878 1.139

Soil type 0.865 0.974 1.027 − 1.104 0.971 1.030

TWI − 0.136 0.960 1.041 1.119 0.977 1.023

Constant − 8.685 − 0.033

R2 0.707 0.886
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where x1-lithology, x2‑geological boundary, x3-fault, x4-slope, x5-aspect, x6-elevation, x7-land use, x8-NDVI, x9-
May–July mean rainfall, x10-river, x11-road, x12-sand, x13-clay, x14-soil type and x15-TWI.

According to the modeled probability of each cell, the landslide risk zoning maps from WoE-based LR and 
the single LR model were created.

WoE‑based SVM model. The width parameter g and the regularization parameter c of the optimal Gaussian 
kernel function were obtained by using the internally validated 2D grid search method, which were 1, 0.1 and 
0.1, 100 in the WoE-based SVM and the single SVM model respectively. The c parameter indicates the penalty 
level for the error  item8. The c value of the single SVM model was much higher than that of the WoE-based SVM 
model, implying that the penalty of the single SVM model for misclassification of the samples in the training 
process was bigger than that of the WoE-based SVM model, implying that the latter has stronger generalization 
capacity.

WoE‑based RF model. The number of decision-trees (NT) has an important effect on the accuracy of RF model. 
The prediction performance of RF is poor when NT is small, and it becomes better when NT is larger. However, 
with the increase of NT, the complexity of RF model gradually increases, and the modeling time is also longer. 
Several experiments show that when NT was increased to 300, the prediction performance of RF was  stable28. 
Based on this, the RF model for predicting landslide hazard was established with the NT of 300.

Landslide susceptibility maps (LSM). The generated probability of landslide occurrence from the above 
hybrid models was reclassified into five levels: 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1, representing the five 
levels of landslide susceptibility, i.e., very low, low, moderate, high and very high, and the zoning maps are pre-
sented in Fig. 7. It is seen that most of the occurred landslides are distributed along the roads.

As revealed in Table 3, the very high susceptibility areas of the WoE-based LR and single LR, the WoE-based 
SVM and single SVM, the WoE-based RF and single RF were 88.80  km2, 110.78  km2, 137.47  km2, 110.78  km2, 
77.87  km2, 79.13  km2, respectively, accounting for 5.94%, 7.30%, 9.06%, 8.71%, 5.93% and 6.43% of the studied 
territory, respectively. In all landslide susceptibility maps, FR values range from 0.01 to 14.05, and the very low 
risk level had also the very low FR and vice versa. With the increase of the susceptibility level, the area of the 
corresponding level decreases and the percentage of landslides increases, denoting the high prediction accuracy 
by all the coupled hybrid models. Our analysis also exhibits that the WoE-based RF modeling map grasps the 
highest FR but with the least surface area at very high risk level, indicating that this hybrid model performs bet-
ter than others and may allow us to target accurately the zones for implementing landslide risk reduction and 
prevention measures.

Comparison of the LSMs. As shown in Table 4, the statistic indicators based on the confusion matrix show 
that the OA and KC of the coupled hybrid models, i.e., WoE-based LR, WoE-based SVM and WoE-based RF, 
were 82.35%, 87.86%, 91.20% and 0.6470, 0.7573, 0.8199 respectively, and the OA and KC of the single models 
of LR, SVM and RF were 76.75%, 81.00%, 89.00% and 0.5350, 0.6210, 0.7800 respectively. It is evident that the 
coupled hybrid models are able to effectuate a prediction with higher accuracy than the single models, and the 
WoE-based RF model had the highest OA and KC, and hence performed best. In accordance with the FR calcu-
lated by the landslide risk map, the accuracy and reliability of the coupled models with WoE-based variables are 
improved with regard to the single prediction model.

The ROC curves and AUC of the coupled hybrid models in this study are shown in Fig. 8. It is seen that AUC 
of the WoE-based LR, WoE-based SVM and WoE-based RF are 0.912, 0.950 and 0.970 respectively, and that of 
the single models of LR, SVM and RF are 0.905, 0.917, 0.954, respectively.

Discussion
Advantages of the hybrid modeling. Based on the optimal discretization of the continuous factors, the 
WoE approach itself is able to provide the probability information of landslide in line with the a priori knowledge 
of the contribution of each geo-environmental factor to the historical  landslides15. This should be favorable for 
the successive ML modeling of the landslide susceptibility. As a preprocessing approach, WoE has the following 
advantages: (1) the response degree of different subsets or intervals of these factors to landslide occurrence is 
quantitatively evaluated by the evidence weight; (2) the categorical variables are converted into numerical ones 
without subjective assignment; (3) the interference of outliers to the model is reduced by providing evidence 
weights to the geo-environmental factors. Hence, the WoE can simplify the ML processes and improve their 
prediction accuracy.

This research illustrates that WoE-based ML modeling performs better than single ML model and may lead 
to a reliable prediction, and the RF algorithm performs better than LR and SVM algorithms. The integration and 
random sampling characteristics make the RF model to have clear advantages over the others in the following 
aspects: (1) prediction less affected by the disturbance of data, (2) higher accuracy, and (3) more effective to pre-
vent over-fitting thanks to using the Strong Law of Large Numbers for construction of the decision-trees. Some 

(12)p(x) =
1

1+ e−(−8.685−0.028x1+...−0.136x15)

(13)p(x) =
1

1+ e−(1.119+0.929x1+...+1.119xn)
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authors have specifically discussed the performance of ML models in predicting landslide hazard and showed 
that the RF algorithm may derive a higher prediction accuracy than other models, and is hence more suitable 
for landslide susceptibility  mapping11,14,18,27,28,62,63. Our result is consistent with the conclusions of these authors.

Comparison with other researches. As above mentioned, the reasonable processing, e.g., discrete pro-
cessing of the continuous geo-environmental factors, together with WoE can improve the performance of ML 
 models10,21,38. In this research, the OA and KC of all the coupled models are better than those of single models, 
which reflects the usefulness of such preprocessing prior to ML modeling.

The landslide susceptibility of the Chongren area had also been modeled by other authors. The one of Hong 
et al.64 shows that the index of entropy (IOE) model obtains a better accuracy than other binary models with an 
AUC value of 0.817. Two other studies conducted by Chen et al.62,65 show that RF can achieve satisfactory results 
among the ML algorithms with an AUC value of 0.851. Compared with the existing works, even those conducted 
in other areas with deep learning techniques, the accuracy of this study, with AUC values of 0.912–0.970, is greatly 
improved. This implies the effectiveness of the WoE-based hybrid ML modeling and entropy-based optimal 
discretization of the continuous factors. Thus, the methodology proposed in this study is considered effective 
and extendable to other subtropical areas for landslide hazard mapping.

Conclusions
This paper presents an integrated study on landslide hazard mapping taking Chongren county as an example. 
Though the single known ML algorithm including deep learning and even the hybrid models have been applied 
by other researchers, the methodology proposed in this study, composed of an integrated procedure as mentioned 
above, does make an improved landslide risk prediction possible.

Our study reveals the effectiveness of the hybrid modeling for landslide risk mapping in which the WoE was 
applied for preprocessing the geo-environmental factors and ML algorithms for modeling. The coupled hybrid 

Figure 7.  Landslide susceptibility zoning maps from different hybrid models: (a) WoE-based LR; (b) WoE-
based SVM; (c) WoE-based RF; (d) single LR; (e) single SVM; (f) single RF model. The maps were created using 
ArcGIS version 10.6 (https:// www. esri. com/).

https://www.esri.com/
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models, e.g., WoE-based LR, WoE-based SVM and WoE-based RF, have higher precision and better generaliza-
tion ability than the single models for landslide hazard prediction. We also note that the decision-tree-based 
ensemble algorithm has achieved rather satisfactory results in comparison with others and that the WoE-based 
RF model offers a robust landslide prediction, and will be hence recommended for the similar landslide predic-
tion elsewhere.

As we have noted, road construction is the most important geo-environmental factor provoking landslides 
and this confirms what we have observed in previous  studies26–28,36. This requires our attention to the potential 
disaster that may be induced while planning future urbanization and road development.

Another innovation of this research is using the optimal discretization approach for numeric factors prior to 
the application of the WoE approach. After this, the landslide susceptibility prediction based on ML algorithms 
becomes more reliable. We believe that our research provides an operational methodology for predicting the 
hazard of landslide and collapse in the subtropical area, and may serve better for local authorities to accurately 
target the risk zones to implement disaster early warning and prevention measures.

Table 3.  Landslide distribution with different susceptibility levels.

Model Geohazard level Area  (km2)
Number of historical 
landslides

Proportion of 
landslides (%)

Proportion of levels 
(%) FR

WoE-based LR

Very low 1244.87 116 19.73 83.25 0.24

Low 73.24 44 7.48 4.90 1.53

Moderate 45.58 46 7.82 3.05 2.57

High 42.87 63 10.71 2.87 3.74

Very high 88.80 319 54.25 5.94 9.14

Single LR

Very low 1017.92 54 9.18 67.03 0.14

Low 181.03 51 8.67 11.92 0.73

Moderate 112.91 49 8.33 7.44 1.12

High 95.98 108 18.37 6.32 2.91

Very high 110.78 326 55.44 7.30 7.60

WoE-based SVM

Very low 1101.38 15 2.55 72.59 0.04

Low 123.77 27 4.59 8.16 0.56

Moderate 79.05 24 4.08 5.21 0.78

High 75.50 43 7.31 4.98 1.47

Very high 137.47 479 81.46 9.06 8.99

Single SVM

Very low 1087.54 31 5.27 71.68 0.07

Low 140.88 18 3.06 9.29 0.33

Moderate 83.36 26 4.42 5.49 0.80

High 73.30 50 8.50 4.83 1.76

Very high 132.09 463 78.74 8.71 9.04

WoE-based RF

Very low 977.28 4 0.68 64.42 0.01

Low 236.35 14 2.38 15.58 0.15

Moderate 135.68 24 4.08 8.94 0.46

High 89.97 100 17.01 5.93 2.87

Very high 77.87 446 75.85 5.13 14.78

Single RF

Very low 935.89 6 1.02 61.69 0.02

Low 262.60 23 3.91 17.31 0.23

Moderate 142.03 29 4.93 9.36 0.53

High 97.52 99 16.84 6.43 2.62

Very high 79.13 431 73.30 5.22 14.05

Table 4.  The statistic indicators based on the confusion matrix versus the validation set (VS).

Item WoE-based LR LR WoE-based SVM SVM WoE-based RF RF

Precision (%) 78.50 69.75 86.11 74.02 91.67 88.24

Recall (%) 88.70 93.79 90.29 86.78 91.24 90.00

F-measure 83.29 80.02 88.15 79.89 91.45 89.11

KC (%) 64.70 53.50 75.73 62.10 81.99 78.00

OA (%) 82.35 76.75 87.86 81.00 91.02 89.00
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