
1

Vol.:(0123456789)

Scientific Reports |          (2022) 12:518  | https://doi.org/10.1038/s41598-021-03725-7

www.nature.com/scientificreports

Ensemble streamflow forecasting 
based on variational mode 
decomposition and long short term 
memory
Xiaomei Sun1,2,3,4, Haiou Zhang1,2,3,4, Jian Wang1,2,3,4, Chendi Shi1,2,3,4, Dongwen Hua1,2,3,4 & 
Juan Li1,2,3,4*

Reliable and accurate streamflow forecasting plays a vital role in the optimal management of water 
resources. To improve the stability and accuracy of streamflow forecasting, a hybrid decomposition-
ensemble model named VMD-LSTM-GBRT, which is sensitive to sampling, noise and long historical 
changes of streamflow, was established. The variational mode decomposition (VMD) algorithm 
was first applied to extract features, which were then learned by several long short-term memory 
(LSTM) networks. Simultaneously, an ensemble tree, a gradient boosting tree for regression 
(GBRT), was trained to model the relationships between the extracted features and the original 
streamflow. The outputs of these LSTMs were finally reconstructed by the GBRT model to obtain the 
forecasting streamflow results. A historical daily streamflow series (from 1/1/1997 to 31/12/2014) 
for Yangxian station, Han River, China, was investigated by the proposed model. VMD-LSTM-GBRT 
was compared with respect to three aspects: (1) feature extraction algorithm; ensemble empirical 
mode decomposition (EEMD) was used. (2) Feature learning techniques; deep neural networks 
(DNNs) and support vector machines for regression (SVRs) were exploited. (3) Ensemble strategy; 
the summation strategy was used. The results indicate that the VMD-LSTM-GBRT model overwhelms 
all other peer models in terms of the root mean square error (RMSE = 36.3692), determination 
coefficient (R2 = 0.9890), mean absolute error (MAE = 9.5246) and peak percentage threshold statistics 
(PPTS(5) = 0.0391%). The addressed approach based on the memory of long historical changes with 
deep feature representations had good stability and high prediction precision.

Streamflow forecasting is of great significance for the optimal management and effective operation of a water 
resources system. Therefore, it has been investigated by many researchers, and numerous forecasting models have 
been developed in the past decades. Among these models, forecasting techniques based on statistical modeling, 
data-driven models, seem to be in fashion for their simplicity and robustness1–3. Regularization has played an 
important role in forecasting4–6.

These data-driven models can be classified into time series models and artificial intelligence (AI) models. 
Many previous researchers have applied time-series models to forecast streamflow, including autoregression 
(AR), moving average (MA), autoregressive moving average (ARMA), and autoregressive integrated moving 
average (ARIMA) models7–9. However, due to the linear hypothesis of these models, they are not suited to forecast 
streamflow with non-linear and non-stationary characteristics. Therefore, AI models that have the ability of non-
linear mapping are applied to streamflow forecasting, i.e., support vector machines for regression (SVRs)1,10, fuzzy 
inference systems (FIS)11,12, Bayesian regression (BR)13,14, and artificial neural networks (ANNs)15,16. However, 
most of the AI models, which belong to the “shallow” learning category, cannot sufficiently represent instinctual 
information17. The deep learning models, e.g., the deep belief network (DBN) and recurrent neural networks 
(RNNs), can overcome this drawback due to their deeper representation ability17. However, these deep learning 
models completely rely on historical observed data, and some of the earlier changes of streamflow may or may not 
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influence future streamflow. It is entirely possible for the gap between the streamflow information from further 
back in time and the current point where it is needed to become large. Therefore, using a deep learning model 
that can automatically “remember” or “forget” previous information should be able to enhance the accuracy of 
streamflow forecasting. Fortunately, LSTM18, one of the deep learning models, has the ability to tackle this task. 
LSTM has been successfully used in some fields, e.g., accident diagnosis19, electricity price prediction20, water 
table depth forecasting21, and others.

Unfortunately, due to the complicated non-linearity, extreme irregularity and multiscale variability of natural 
streamflow, the models directly built on original streamflow cannot appropriately identify streamflow change 
patterns1. For this reason, the processes of transformation, data pre-processing and feature extraction have 
attracted the attention of many researchers. In addition, feature extraction can efficiently improve the capabil-
ity of these models1,17,22,23. Huang et al.1 applied a modified empirical model decomposition (EMD) method to 
remove the most nonlinear and disorderly noise from the original series and then established one SVR-based 
model that computed a summation of all prediction results of all sub-series as an ensemble result. Wang et al.24 
used the EEMD technique to develop insight into the runoff characteristics and forecast each characteristic by 
the ARIMA model; the forecast results were summed to formulate an ensemble forecast for the raw runoff. Bai 
et al.17 used EEMD to extract multi-scale features and reconstructed three deep neural networks (DNNs) by a 
summing strategy to forecast reservoir inflow. Yu et al.10 exploited both Fourier transform (FT) and SVR mod-
els to extract and learn features and to forecast monthly reservoir inflow by adding all feature learning results. 
Obviously, feature representation of original data can contribute to the performance improvement of streamflow 
forecasting because of the advantage of feature extraction, which removes noise components and detect the hid-
den structures inside the raw time-series.

However, some recent commonly-used feature extraction methods, e.g., EMD, EEMD, and wavelet transforms 
(WT), suffer from drawbacks with respect to different aspects of actual signal decomposition. For example, EMD 
has limitations of sensitivity to noise and sampling25, EEMD is not theoretically well-founded26, and the effective-
ness of WT heavily relies on the choice of the basic wavelet function27. Recently, a theoretically well-founded and 
robust VMD model25 has been successfully applied to container throughput forecasting28, vibro-acoustic feature 
extraction29, chatter detection in milling processors30, and other applications. This model is much more sensitive 
to noise and sampling than existing decomposition algorithms, such as EMD and EEMD25.

Moreover, the ensemble strategy plays a vital role for integrating feature forecasting results to predict original 
streamflow. A straightforward and frequently used ensemble technique is summation, although it may cause 
error accumulation problems due to summation errors of the sub-results of streamflow prediction. Sometimes, 
the gap between the summation of extracted features and the original values may not be small. Even a model 
that can achieve great performance in the prediction of sub-features may still not be able to accurately forecast 
the original time series. Therefore, building another supervised model3, such as GBRT, for ensembles seems to 
be a good choice to avoid an accumulation of errors and obtain better performance.

Based on the above outline, this study addresses a decomposition-ensemble-based multiscale feature deep 
learning method to forecast streamflow. Our goal is to plug a memory framework into the process of deep fea-
ture learning that is robust to noise and sampling as well as long historical changes of streamflow, integrate an 
ensemble tree model with the capability to remove impacts caused by error accumulation and model the rela-
tionship between decomposition results and the original series to exploit the sophisticated nature of streamflow 
with a long history. To this end, VMD was used to extract smooth features, LSTM was applied to learn features 
sensitive to long historical streamflow changes, and GBRT was used to obtain an ensemble model to forecast the 
streamflow. This approach was evaluated by observed daily streamflow of the Yangxian station, Han River, China.

Methodologies
Variational mode decomposition (VMD).  The VMD algorithm, an entirely non-recursive variational 
mode decomposition model proposed by Dragomiretskiy and Zosso25, is used to concurrently decompose a 
sophisticated signal into several band-limited intrinsic modes.

The VMD model assumes each mode uk to be mainly compact around a center pulsation ωk calculated with 
the decomposition. The following scheme proposed by Dragomiretskiy and Zosso25 is applied to assess the 
bandwidth of a mode. The related analytic signal of each mode uk is first computed by the Hilbert transform to 
acquire a unilateral frequency spectrum. Then, the frequency spectrum of each model is shifted to “baseband” 
by mixing with an exponential tuned to the respective evaluated center frequency. The bandwidth is finally 
assessed by the H1 Gaussian smoothness of the demodulated signal, i.e., the squared L2-norm of the gradient25. 
To solve the decomposition problem of time series f  , the constrained variational problem can be equivalently 
solved by the following equation:

where {uk} := {u1, . . . , uk} and {ωk} := {ω1, . . . ,ωk} denote the set of modes and their center frequencies, respec-
tively. To solve this variational problem, a Lagrangian multiplier � and a quadratic penalty term are introduced 
to render the problem unconstrained. The augmented Lagrangian ℓ is defined as follows:
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in which α indicates the balancing parameter of the data-fidelity constraint. In VMD, the Alternate Direction 
Method of Multipliers (ANMM) is used to solve Eq. (2). Equation (3) is used to update the mode uk(ω) in the 
frequency domain. The center frequencies ωk are updated by Eq. (4), and � is simultaneously updated by Eq. (5). 
In the time domain, the mode uk(t) can be obtained as the real part of the inverse Fourier transform of uk(ω) 
expressed by Eq. (3)

The implementation process of the VMD model is summarized as Algorithm 1.

Long short‑term memory (LSTM).  Long short-term memory networks (LSTMs) are a very specific kind 
of Recurrent Neural Networks (RNNs) for modeling sequential data. Therefore, it is essential to first introduce 
a normal version of an RNN. RNNs have chain-like structures of repeating modules that produce an output 
at each time step and have recurrent connections from the output at one time step to the hidden units at the 
next time step, illustrated in Fig. 1a. The chain-like structure with self-connected hidden units can help RNNs 
to “remember” the previous information, which allows the RNNs to build a model for an arbitrarily-long time 
sequence.

The forward propagation algorithm is used to calculate the output for the RNN pictured in Fig. 1a. Begin with 
a specification of the initial state h0 = 0 for each time step from t = 1 to t = τ ; the following equations are used31:
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where the parameters are the bias vectors bh and bo along with the weight matrices U, V and W for input-to-
hidden, hidden-to-output and hidden-to-hidden connections, respectively. Xt represents the input vector at time 
step t and ht−1 denotes the hidden cell state at time step t − 1.

Back-Propagation Through Time (BPTT) is used to compute the gradients of the RNNs32. However, owing to 
the gradient vanishing or exploding problem, it is difficult and inefficient for BPTT to learn long-term depend-
encies in RNNs33,34. LSTMs are explicitly designed by Hochreiter and Schmidhuber18 to avoid this long-term 
dependency problem. LSTMs also have chain-like repeating modules, although with complicated structures. 
Each repeating module of LSTMs includes a memory block called a “cell”. This memory block help LSTMs to 
store or remove information over a long duration.

The LSTM memory block diagram is illustrated in Fig. 1b. The LSTM memory block contains four parts, a 
cell state in addition to three special structures called gates. The horizontal line running through the top of the 
diagram is the cell state, which runs straight down the entire chain without any activation function; it is very 
easy for information to just flow along it unchanged. Therefore, the gradient does not vanish or explode when 
training an LSTM by BPTT. Moreover, the LSTM does have the ability to add or remove information to the cell 
state, regulated by the input, forget and output gates. Each gate is composed of a sigmoid unit and a pointwise 
multiplication operation, which can optionally pass information.

The corresponding forward propagation equations of LSTM are expressed for time steps from t = 1 to t = τ 
with initial state C0 = 0 and H0 = 0 as:

(7)ot = Vht + bo

(8)it = σ(WiXt + Uiht−1 + bi)

(9)ft = σ
(

Wf Xt + Uf ht−1 + bf
)

(10)ot = σ(WoXt + Uoht−1 + bo)

(11)C̃t = tanh (WCXt + UCht−1 + bC)

(12)Ct = ft ⊗ Ct−1 + it ⊗ C̃t

Figure 1.   (a) Chain-like structure of the RNN. Because of the connections between hidden units, information 
can be passed from one time step to the next. (b) A graphical representation of the LSTM recurrent network 
with the memory cell block.
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where W, U and b are input weights, recurrent weights and biases, respectively, and the subscripts i , f  and o 
represent the input, forget and output gates, respectively. The activation function logistic sigmoid is indicated 
by σ . it , ft , ot and Ct are the input, forget, output gates and cell state vectors at time step t  , respectively. ht is the 
output vector of the memory cell block, and ⊗ denotes element-wise multiplication.

Gradient Boosting Regression Trees (GBRTs).  Gradient boosting is a powerful machine learning 
strategy to efficiently produce highly robust, competitive, interpretable procedures for both regression and 
classification35,36. The key to boosting is to combine the output of many weak prediction models (“learners”), 
typically decision trees, into a single strong ensemble model. Gradient boosting builds models in a forward 
stage-wise fashion. Therefore, for each stage m , 1 ≤ m ≤ M , of gradient boosting:

in which hm(x) are the basic estimators referred to as weak prediction models (small regression trees in the case 
of GBRT) and Fm(x) is the summation of m small regression trees for GBRT. For iterations from m = 1 to m = M , 
the GBRT algorithm improves on Fm by adding a new regression tree hm to its predecessor to provide a better 
model. Simultaneously, the procedure estimates the target value y based on the perfect hm from the training set, 
which would imply:

which is equivalent to

Therefore, hm is the regression tree model that fits the current residuals γm = y − Fm−1(x) , and the residuals 
y − Fm−1(x) for a given model are the negative of the squared error loss function, i.e.:

Gradient boosting is thus a gradient descent algorithm obviously proved by Eq. (17), and generalizing it entails 
substituting the squared error with a different loss function and its gradient. For a more detailed description, 
see Friedman35 and Hastie et al.37.

Moreover, the implicit idea behind gradient boosting is to apply a steepest-descent step to minimize the loss 
values between the response values and estimates to find an optimal approximation F̂(x) . Therefore, for a training 
set 

{(

x1, y1
)

, . . . ,
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)}

 , the ensemble model would be updated in accordance with the following equations35,37:

where the derivatives are obtained with respect to the function Fi for i ∈ {1, 2, . . . ,m} . In the m-th iteration of 
the GBRT model, the gradient boosting algorithm fits a regression tree hm(x) to the pseudo-residuals. Let Jm 
be the number of tree leaves; the regression tree splits the input space into Jm disjoint regions R1m, . . . ,RJmm 
and obtains a constant value for each region. The output of hm(x) for input x can thus be written as the sum35:

where bjm is the constant value predicted for the region Rjm and 1(·) is an indicator function that has the value 1 
if its argument is true and zero otherwise. Then, each coefficient bjm is multiplied by an optimal value γjm35, and 
the model is then updated by the following rules:
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The implementation process of the generic gradient boosting tree is summarized as Algorithm 2.

The decomposition‑ensemble model VMD‑LSTM‑GBRT.  After discussing each key constituent 
separately, the approach of the proposed model VMD-LSTM-GBRT can be concluded as follows and is dia-
grammed in Fig. 2.

Step 1. Collect raw daily streamflow data X = {x1, x2, . . . , xN }.
Step 2. Use VMD to decompose the raw series X into several components.
Step 3. Plot the partial autocorrelation coefficient figure of each component obtained in step 2 to select 

optimal numbers of inputs for it. Divide each of the components into three sub-sets: the training set (80%) for 
training multiple LSTM structures, the development set (10%) for searching optimal structure, and the test set 
(10%) for validating the ensemble model VMD-LSTM-GBRT.

Step 4. Given the test set, predict each component based on the optimal LSTM structure of each mode 
obtained in step 3.

Step 5. Build the ensemble tree model GBRT using the components obtained in step 2 as input and the origi-
nal series obtained in step 1 as output. Use GBRT to reconstruct the predictions given by step 4.

Step 6. Output the forecasting streamflow results and perform error analysis.
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Case study
Study site and observational data.  In this paper, historical daily streamflow of the Yangxian hydrologi-
cal station on the upstream of Han River were collected to assess the proposed model. The location of Yangxian 
station is illustrated in Fig. 3. The Han River, the biggest tributary of the Yangtze River, lies within 30°–34.5° N 
and 107°–114.5° E in the middle of China and has a total drainage area of 151,000 km2. The location of this basin 
is in a subtropical monsoon zone that has a humid climate and differentiated seasons. The water resources in 
this area are rich, with an annual average precipitation of more than 900 mm/year. The precipitation in the rainy 

Figure 2.   Application of the proposed model VMD-LSTM-GBRT.
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season (July to September) accounts for 75% of the annual total, and the runoff has a similar seasonality. The 
study area of this paper is the upper source area of the Han River, which lies between BoZhong Mountain located 
in the south of the Qinling Mountains and the Yangxian hydrological station. The drainage area controlled by 
the Yangxian hydrological stations is 14,484 km2. As the main stream control station, forecasting the daily runoff 
of the Han River at Yangxian hydrological station can evaluate the short-term water production at the source of 
this basin.

As shown in Fig. 4, daily streamflow records (total of 6574 samples) of the Yangxian hydrological station 
from 1/1/1997 to 31/12/2014 were used to develop the present model. For simplicity, the observation dates on 
the horizontal axis have been replaced with series numbers. These records were collected from the hydrological 
information datacenter of Shaanxi Hydrographic and the Water Resources Survey Bureau. The instantaneous 
value (m3/s) observed at 8 a.m. was selected as the average daily streamflow.

Data pre‑processing.  Since the range of the streamflow time series and its decomposition sequences vary 
widely, in some cases of building machine learning models, the optimization algorithms applied for the loss 
function will not work well without feature normalization. Therefore, all the variables used for the model devel-
oped in the present study were normalized to the same scale. This pre-processing strategy can ensure that the 
optimization algorithm converges much faster than without normalization38. The normalization formula is as 
follows:

where Xnormalized is the normalized vector and X is the raw vector. Xmax and Xmin are the maximum value and 
minimum value of X , respectively, and Xnormalized is calculated by element-wise mathematical operations. Once 
we have finished the simulation, the predictions can be re-normalized following the inverse procedure of Eq. (23).

Model evaluation criteria.  The hidden layer is set with 1, 2, 3, 4 and 5; The learning rate is set to 0.001, 
0.003, 0.007, 0.01, 0.03, 0.07, 0.1; The number of hidden layer neurons is set to 1–25, and the other parameters 
use the default parameters used by TensorFlow (the activation function of each layer is Rectified Linear Unit, 
the optimization algorithm is Adam algorithm, the loss function is mean squared error, the kernel initializer is 
Xavier uniform initialization, the bias initializer is zero initialization).

(23)Xnormalized = 2 ∗
X − Xmin

Xmax − Xmin
− 1

Figure 3.   Location of the Yangxian hydrological station.

Figure 4.   Daily Streamflow of the Yangxian station from 1/1/1997 to 31/12/2014.
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To evaluate the performance of the proposed model based on the decomposition-ensemble strategy, four 
error analysis criteria were applied. The expression of these criteria is shown in Table 1. The RMSE evaluates the 
performance of predicting high streamflow values, whereas the MAE accesses the average performance of the 
entire data set. The coefficient of determination R2 indicates how well the observations are replicated by the pro-
posed model. The peak percentage of threshold statistics, PPTS, denotes the ability to forecast peak flow17,39. The 
lower the PPTS, the better the capability to forecast peak flow. Note that the records are arranged in descending 
order to compute the PPTS and that the threshold level γ denotes the percentage of bottom data removed from 
this order; the parameter G is the number of top data at the threshold level γ.

Results and discussion
Data decomposition with VMD.  As mentioned in “The decomposition-ensemble model VMD-LSTM-
GBRT”, when building the decomposition-ensemble based model, we first decomposed the raw daily streamflow 
data of the Yangxian hydrological station via VMD. The raw series and its decomposition results and the fre-
quency spectra are shown in Fig. 5. However, it is hard to tell how many components the original series should be 
decomposed into. Too few components may not properly extract features inside raw data, whereas too many may 
be computationally expensive for training the model. By experiments, we found that the optimal decomposition 
mode number can be determined by the obvious aliasing phenomenon of the center frequency for the last com-
ponent. It was first found in this study that when k = 10, the frequency spectrum of the 10th mode had obvious 
aliasing phenomena (area surrounded by a red rectangular border shown in Fig. 6). To make the decomposition 
result satisfy orthogonality and avoid the spurious components as much as possible, the number of components 
was chosen to be 9.

Multiscale deep feature learning with LSTM.  The numbers of inputs, network structure and other 
hyper-parameters are vital variables in an LSTM model. Therefore, according to the input selection method 
introduced by He et al.11, Huang et al.1, and Wang et al.16, the input variables could first be easily obtained by 
observing the plot of Partial Autocorrelation Functions (PACFs) illustrated by Fig. 7, in which PACF1-PACF9 
denotes the PACFs of each component. In other words, we assume that the output is X(t + 1) and X(t + 1− k) 
is then selected as one of the input variables under the condition that PACF at lag k is out of the 95% confidence 
interval indicated by the blue lines in Fig. 7. Figure 7 shows that almost all the PACFs of each component are 
out of the range. Therefore, we select the 20 days of lag form X(t − 19) to X(t) as the input variables of each 
sub-series.

Since there is no mature approach in theory to determine the number of hidden units and hidden layers, 
an experimental method can be used to select these two parameters for the LSTM network structure. In the 
experiment of this study, the sub-series shown in Fig. 5, first normalized by Eq. (23), were split into three parts: 
the training data set (1/1/1997–27/5/2011), the development set (28/5/2011–14/3/2013) and the testing set 
(15/3/2013–31/12/2014). The training set is used to train the model, that is, to train the parameters such as weight 
matrix and threshold in LSTM model; The development set is used to optimize model super parameters, such 
as learning rate, number of network neurons, number of network layers, etc.; The testing set is used to validate 
the accuracy of the model and to show the confidence level. The number of hidden units for each hidden layer 
was designed for 11 levels ranging from 15 to 25, and the number of input variables equaled the median of this 
interval. The hidden layers of LSTM were initialized from 1 to 5. Therefore, for each component of the original 
series, there were 55 LSTM network structures in this experiment. Training and developing the LSTM model to 
predict the first component, IMF1, is an example used to describe the experimental process.

For each network structure mentioned in the previous paragraph, we first initialized an LSTM model with 
20 input units and then trained these 55 structures using the training set. Then, the streamflow during the 
development period was forecast based on the trained structures. To find the optimal model structure, PPTS(5), 
illustrated in Fig. 8, was calculated for the training and development set. Figure 8a shows the changes of PPTS(5) 
of the training and development set for different levels of the hidden layers. According to the rule of bias and 
variance tradeoff40, when the PPTS(5) of the development set is close to the PPTS(5) of the training set and both 
of these values are small, the model structure will obtain a great generalization and predicting ability. There-
fore, we selected 20–15–1, 20–19–19–1, 20–19–19–19–1, 20–17–17–17–17–1 and 20–21–21–21–21–21–1 as 

Table 1.   Formulas for error analysis criteria. N is the number of samples, x(t) is the original series, x(t) is the 
average of the original series and x̂(t) is the predicted series.

Error analysis criteria Definition

Root mean square error RMSE =

√

∑

N

t=1 (x(t)−x̂(t))
2

N

Mean absolute error MAE =
∑

N

t=1 |x(t)−x̂(t)|
N

Determination coefficient R
2 = 1−

∑

N

t=1 (x(t)−x̂(t))
2

∑

N

t=1
(x(t)−x(t))2

Peak percentage threshold statistics (%) PPTS(γ ) = 1

100−γ
1

N

G
∑

t=1

∣

∣

∣

x(t)−x̂(t)
x(t)

· 100
∣

∣

∣
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the optimal structure of the 1–5 hidden layers, respectively. 20–19–19–1 means that the structure has 20 input 
features, 1 output target, and two hidden layers, with 19 hidden units for each layer. Figure 8b shows the boxplots 
of optimal structure for each level of the hidden layers, where the upper and lower quartiles are determined by 
the PPTS(5) of the training and development set. The range between the upper and lower quartiles indicates the 
degree of bias and variance tradeoff; the smaller the range, the better the tradeoff. From Fig. 8b, one can find 
that the structure 20–15–1 has the best bias and variance tradeoff. Therefore, the model structure 20–15–1 was 
selected as the optimal model to predict IMF1.

To validate the optimal model for forecasting each sub-series, the predictions during the test period were 
renormalized to the original scale and are plotted in Fig. 9. The PPTS(5) and R2 of the whole components during 
the training and development period are listed in Table 2. From Fig. 9 and Table 2, we can see that all the trained 
LSTM structures of all the sub-series have good accuracy.

Training ensemble tree model GBRT.  We can simultaneously build an ensemble tree, the GBRT model, 
to represent the relationship between the original series and the sub-series decomposed by VMD; the GBRT 
algorithm can learn an ensemble function to reconstruct all the sub-series into a streamflow series. To find the 
optimal hyper-parameters, Bayesian optimization based on Gaussian processes was applied41,42. The entire data 

Figure 5.   VMD decomposition results: (a) the decomposition sequence waveform and (b) the frequency 
spectrum representation.
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Figure 6.   Schematic diagram of the center frequency aliasing of the last IMF: (a) the last two sequence 
waveforms and (b) the frequency spectrum representations. The area surrounded by the red rectangular border 
indicates the aliasing.

Figure 7.   PACFs of subseries of daily streamflow during the period 1997/01/01 to 2014/12/31 for the Yangxian 
hydrological station.
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set for building the GBRT mode, consisting of nine sub-series as input and raw streamflow as the output target, 
was divided into two parts: the training–validating set (1/1/1997–14/3/2013) and the testing set (15/3/2013–
31/12/2014). The training–validating set is used to training the GBRT model and select the optimal parameters, 
while the testing set is used to validate the prediction performance of the models and to show the confidence 
level. The famous machine learning toolkit scikit-learn43 was applied to train the GBRT model by use of the 
training–validating set. To improve the performance of GBRT, sixfold cross-validation was used. The optimal 

Figure 8.   PPTS(5) of different LSTM structures for predicting streamflow of IMF1 during the training and 
development period: (a) line chart plots of PPTS(5) for different hidden layers and (b) boxplots of the optimal 
structure of each hidden layer.
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value of the hyper-parameters for GBRT, i.e., learning rate, maximum depth, maximum features, minimum sam-
ple split and minimum sample leaf, were 0.08, 25, 9, 9 and 10, respectively. The performance evaluation results of 
RMSE = 45.9766, R2 = 0.9825, MAE = 11.4565 and PPTS(5) = 0.0438% indicate that GBRT had a good precision 
for multiscale feature ensembles.

Figure 9.   Forecasting result of sub-series during the testing period.

Table 2.   Results of evaluation criteria with different hidden layers and hidden units for sub-sequences.

Sequence Hidden layers Hidden units

Training Developing

PPTS(5) (%) R2 PPTS(5) (%) R2

IMF1 1 15 0.0025 1.0000 0.0024 0.9999

IMF2 2 22 0.0396 0.9999 0.0227 0.9999

IMF3 1 16 0.2684 0.9999 0.2163 0.9997

IMF4 3 20 0.7646 0.9997 0.7156 0.9966

IMF5 4 20 0.8728 0.9993 0.2523 0.9983

IMF6 2 21 0.5031 0.9986 1.9367 0.9960

IMF7 2 23 1.2368 0.9973 0.4885 0.9943

IMF8 5 20 1.8371 0.9952 4.4562 0.9832

IMF9 1 25 1.5380 0.9972 2.1116 0.9897
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Predicting results of VMD‑LSTM‑GBRT.  Once the feature learning models based on LSTM were built, 
we could ensemble the sub-results to forecast the original streamflow. There are two ensemble methods: sum-
mation and GBRT. We first summed all nine sub-results obtained in “Multiscale deep feature learning with 
LSTM” to obtain the forecasting results of the original streamflow. The streamflows predicted by the model with 
ensemble summation, VMD-LSTM-SUM, are illustrated in Fig. 10. It can be observed from Fig. 10a that the 
predictions of a summation method can follow the changes of records during the test period but the accuracy of 
the peak streamflow forecasting is poor. Moreover, the scatter plot as shown in Fig. 10b indicates that the peak 
predictions are not appropriately concentrated near the ideal fit. The detailed plot of the predictions during the 
period 07/09/2014–28/09/2014 illustrated in Fig. 10c can also prove that point. By experiment, we found that the 
summation results of the nine components decomposed by VMD were quite different from the original stream-
flow at the peak. Therefore, we could not simply sum the predictions of the 9 components to forecast the original 
streamflow; the ensemble tree model obtained in “Training ensemble tree model GBRT”, GBRT, was applied to 
ensemble the sub-predictions predicted by LSTM. The final forecasting results forecast by the proposed model, 
VMD-LSTM-GBRT, are also shown in Fig. 10. From Fig. 10a, one can find that the peak predictions obtained by 
VMD-LSTM-GBRT are closer to the original streamflow. Moreover, the scatter plot as shown in Fig. 10b indi-
cates that the predictions forecast by VMD-LSTM-GBRT concentrated near the ideal fit and agreed better with 
the records, which could also be proved by the small angle between the linear fit and the ideal fit. The predictions 
of the sub-set (07/09/2014–28/09/2014) of the test set shown in Fig. 10c denotes that the proposed model has 
better performance at the peak flow. Therefore, the proposed model, VMD-LSTM-GBRT, has a better capability 
of peak streamflow forecasting than VMD-LSTM-SUM.

To assess the forecasting performance of the proposed model, a different decomposition algorithm, EEMD, 
and two different feature learning models, DNN and SVR, were applied for the comparisons using the identical 
dataset shown in Fig. 4. The building process of these models is the same as the approach mentioned in “Multi-
scale deep feature learning with LSTM”, except that the decomposition algorithm and the feature learning model 
are replaced, respectively.

Figure 11 plots the streamflow predictions of Yangxian station by the proposed model VMD-LSTM-GBRT and 
the decomposition method-substituted model EEMD-LSTM-GBRT. As shown in Fig. 11a, the proposed model 
performed better for peak flow forecasting than the traditional decomposition method EEMD, which can be 
validated by Fig. 11c. From the scatter plot illustrated by Fig. 11b, one can find that the recorded predicted values 
of the proposed model are much more concentrated than the model using EEMD. Moreover, the comparison 

Figure 10.   Comparison of prediction results of the test dataset using different ensemble techniques, GBRT and 
summation: (a) plots of the prediction results and records, (b) scatters for the test set (15/3/2013–31/12/2014), 
and (c) plots of the prediction results for the period 07/09/2014–28/09/2014.
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of prediction performance between the proposed feature learning model LSTM and the other two machine 
learning models, DNN and SVR, were conducted and are indicated by Fig. 12. However, from the forecasting 
results shown in Fig. 12a and the scatters shown in Fig. 12b, one can observe that the difference between the 
three feature learning models is not that obvious. However, we can still determine that the best feature learning 
model is the LSTM from the quantitative evaluations given in Table 3 and the detailed predictions shown in 
Fig. 12c. As shown in Table 3, the proposed model VMD-LSTM-GBRT has the lowest RMSE, MAE, PPTS(5) 
and the highest R2 among these decomposition-ensemble-based models, which illustrates the proposed model 
superiority for both peak streamflow forecasting and global changes.

In the light of the above comparisons, all results fully indicate that the proposed model based on the decom-
position algorithm, VMD, the multiscale deep feature learning model, LSTM, and the ensemble tree model, 
GBRT, performs very well for streamflow forecasting.

In order to verify that the proposed method will obtain similar performance on other flow data sets, the 
model is applied to Huaxian hydrological station which is located at the Wei River Basin in China, the result is 
as shown in Fig. 13 and Table 4. The results show that the performance of the proposed method is consistent 
with that in Yangxian hydrological station.

Conclusions
In this paper, a decomposition-ensemble-based multiscale feature learning approach with hybrid models was 
developed for forecasting daily streamflow, and the approach was evaluated based on a historical river stream-
flow dataset for Yangxian station, Han River, China. To improve the accuracy and stability of forecasting, three 
aspects were considered in a comprehensive way: (1) multiscale feature extraction by the algorithm with much 
more robustness with respect to sampling and noise; nine feature terms were extracted by VMD in this paper. 
(2) Deep feature learning with a model that can predict streamflow depending on the long historical changes of 
river flow; nine LSTMs were applied to sufficiently learn each feature. (3) An ensemble model with supervised 
learning; an ensemble tree GBRT was used to reconstruct the sub-results to obtain the final forecasting results. 
The daily streamflow forecasting capability of this decomposition-ensemble-based approach was compared with 
respect to three aspects: comparison with an approach that has the same feature learning model and ensemble 
technique but uses the traditional decomposition algorithm EEMD, comparison with an approach with the same 
decomposition algorithm and feature learning model but using the summation ensemble strategy, and compari-
son with an approach that has the same decomposition algorithm and ensemble technique but uses two different 

Figure 11.   Comparison of prediction results of the test dataset using the different decomposition algorithms 
VMD and EEMD: (a) forecasting results, (b) scatters for the testing data (15/3/2013–31/12/2014), and (c) plots 
of the prediction results for the period 07/09/2014–28/09/2014.
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models, DNN and SVR. The results denote that the proposed model VMD-LSTM-GBRT exhibits the best fore-
casting performance among all the peer approaches for both global changes and peak streamflow forecasting.

This study proposes an approach to gain insight into the sophisticated features of natural river streamflow by 
designing a decomposition-ensemble framework. The three segments of this approach, i.e., using a robust model, 
VMD, to extract features that adequately represent natural river flow; using a long dependency model, LSTM, to 
remember or forget the historical changes of river flow; and reconstructing the extracted features by a tree model 
to remove the effect of error accumulation, are combined to determine what the values of the future streamflow 
should be. Note that the three segments of this framework can be replaced by other models, e.g., VMD can be 
replaced by an algorithm that is much more robust to sampling and noise but that still uses a regression strategy 
and replaces GBRT with DNN. Therefore, the present approach has value for river flow forecasting.

Streamflow forecasting is worthy of in-depth study. In the future, we will continue to study streamflow 
forecasting models. For instance, we could apply dynamic selection approaches44,45 to improve the ensemble’s 
performance in streamflow forecasting, and residual series modeling could be used to improve the accuracy of 
statistical and machine learning models46,47. It can make streamflow forecasting more and more accurate.

Figure 12.   Comparison of forecasting results of the test dataset using the different feature learning models 
LSTM, DNN and SVR: (a) forecasting results, (b) scatters for the testing data (15/3/2013–31/12/2014), and (c) 
plots of the forecasting results during the period 07/09/2014–28/09/2014.

Table 3.   Comparison of the forecasting performances using different models.

Model

Performance criteria

RMSE R2 MAE PPTS(5) (%)

VMD-LSTM-GBRT 36.3692 0.9890 9.5246 0.0391

VMD-LSTM-SUM 67.8297 0.9619 27.8412 0.1500

EEMD-LSTM-GBRT 87.4506 0.9366 22.0321 0.0883

VMD-DNN-GBRT 44.9735 0.9832 12.1853 0.0451

VMD-SVR-GBRT 47.0555 0.9816 12.8919 0.0472

Linear regression 224.5310 0.5820 69.0201 0.2740

Multilayer perceptron 225.1806 0.5796 64.2869 0.1858
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