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Prediction of steady flows passing 
fixed cylinders using deep learning
Hiroto Ozaki* & Takeshi Aoyagi

Considerable attention has been given to deep-learning and machine-learning techniques in an effort 
to reduce the computational cost of computational fluid dynamics simulation. The present paper 
addresses the prediction of steady flows passing many fixed cylinders using a deep-learning model 
and investigates the accuracy of the predicted velocity field. The deep-learning model outputs the 
x- and y-components of the flow velocity field when the cylinder arrangement is input. The accuracy 
of the predicted velocity field is investigated, focusing on the velocity profile of the fluid flow and the 
fluid force acting on the cylinders. The present model accurately predicts the flow when the number of 
cylinders is equal to or close to that set in the training dataset. The extrapolation of the prediction to 
a smaller number of cylinders results in error, which can be interpreted as internal friction of the fluid. 
The results of the fluid force acting on the cylinders suggest that the present deep-learning model has 
good generalization performance for systems with a larger number of cylinders.

Computational fluid dynamics (CFD)  simulation1 has been hugely successful in the field of engineering. The 
scope of its application has broadened as a result of improved simulation techniques. One example of a simulation 
technique that has been improved in recent years is the modeling of fluid–structure  interactions2, 3. Fluid–struc-
ture interactions are widely analyzed in various fields; for example, in studying heart–blood  interactions4, wind-
induced effects on  buildings5, and the flight of insects with flexible  wings6. Meanwhile, the interaction between 
a fluid and solid has been studied in investigations of microscopic physical phenomena in the fields of materials 
science and chemical  engineering7–11. Simulations in these fields deal with complex geometries, such as those of 
porous  media7–10, and multiphase flows, such as fluid flows containing a large number of  particles11. Even with 
the development of computer and simulation technologies, the well-recognized problem of the computational 
cost is yet to be solved because the complexity of the simulations is increasing.

In recent years, deep-learning12 and machine-learning13 techniques have been applied to engineering problems 
with great success: medical image  processing14, designs of  materials15, and remaining useful life  estimations16, 17.  
The techniques are also attracting attention from the viewpoint of reducing the computational cost of CFD 
 simulations18–22. Guo et al. proposed a model for the real-time prediction of a steady flow passing an object based 
on convolutional neural  networks18. In their study, the velocity field around an object was estimated efficiently 
using convolutional neural networks. Hennigh later improved the network model of Guo et al. and applied it to 
the shape optimization of an airfoil and heat  sink20. With the goal of real-time CFD simulation, Umetani and 
Bickel presented a technique of predicting the drag coefficient, the pressure acting on the surface of an object, 
and the velocity field around an object adopting a Gaussian  process21. Liang et al. constructed deep neural 
networks to predict the steady-state distributions of the pressure and flow velocity inside the thoracic  aorta22. 
Their study showed that deep neural networks have the potential to be used in place of CFD simulation for the 
steady-state hemodynamic analysis of human blood vessels. The successes of the deep-learning and machine-
learning techniques will lead to the reduction of the computational cost of simulations that deal with fluids and 
solids in materials science and chemical engineering.

The present research applies a deep-learning technique to the smoothed profile method (SPM)23, a simulation 
method for multiphase flows with solid objects. The present research focuses on the flow around many cylinders 
and consists of the following two studies. The first of the two studies in the present research predicts a steady flow 
passing fixed cylinders, which is reported on in the present paper. In this study, all cylinders are considered to be 
immobile and spatially fixed. The fluid flow is induced by a boundary condition. Based on the work by  Hennigh20, 
this study constructs a deep-learning model having a U-Net-like  architecture24. The U-Net is typically applied in 
image segmentation problems, but as Hennigh did, the present study applies the model to a physics problem. The 
accuracy of the predicted velocity field, in terms of the velocity profile of the fluid flow and the fluid force acting 
on the cylinders, is investigated. The second study, which will be reported on in an adjoining paper, addresses 
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the prediction of the steady flow induced by moving cylinders. In the second study, another deep-learning model 
that treats the velocity of the cylinders is constructed by extending the present model.

The remainder of this paper is organized as follows. Section “Simulation method” describes details of the 
CFD simulation method, namely the SPM, used in preparing the dataset. Section “Problem setup” presents the 
problem addressed in this study, namely a steady flow passing many fixed cylinders. Section “Deep-learning 
model” presents the constructed deep-learning model. Section “Results and discussion” presents the results 
and a discussion, where the accuracy of the predicted velocity field is examined. Section “Conclusion” presents 
conclusions drawn from the results of the study.

Simulation method
This section presents details of the CFD simulation conducted to prepare the dataset.

The study deals with two-dimensional flows around cylinders. A number of methods have been proposed to 
deal with fluid flow around solid objects, and the  SPM23 is used in the present study because the description of 
the solid objects (i.e., cylinders in this study) in the SPM is tractable as input data for deep learning, as shown 
in the next section. In the SPM, the interface between the fluid and a solid object (i.e., cylinder) is described by 
a continuous smoothed function that takes a value of 1 inside the solid and 0 outside the solid. This allows the 
direct and efficient numerical simulation of the fluid with the solid objects on a fixed Cartesian grid without a 
remeshing process. The details of the SPM have been presented in previous  reports23, 25, 26, and only an overview 
of the method is given here.

First, the smoothed function representing the cylinders is described. The smoothed function of the ith cyl-
inder at position Ri is defined as a function of the spatial coordinates x:

where A is the radius of the cylinder, ξ is the interfacial thickness, and d is the lattice spacing. Accordingly, when 
there are N cylinders in the system, the smoothed function for all the cylinders is

Using the function φ , the total velocity field u is expressed as

where uc and uf  respectively represent the velocity fields of the cylinder region and fluid region. It is noted that 
the velocity field of the cylinder region uc takes the value 0 in the present study because this study considers 
fixed cylinders.

The time development of the total velocity field u is given by the Navier–Stokes (NS) equation:

where ρ is the density of the fluid, p is the pressure, and ν is the kinematic viscosity. The pressure p is determined 
so as to retain the incompressibility condition: ∇ · u = 0 . The term φfc represents the body force acting on the 
fluid due to the existence of the cylinders. In the SPM, the force is determined so as to make the velocity field of 
the cylinder region consistent with the cylinder velocity. (The details are given later in Eq. 11.) It is noted that 
the SPM imposes a no-slip boundary condition on the fluid–structure interface because the tangential velocity 
difference is reduced by the viscous stress even on the  interface23. Meanwhile, the hydrodynamic force FHi  acting 
on the ith cylinder is obtained as

where 
∫

Vc
 represents the volume integration of the cylinder region.

In the present simulation, the NS equation (6) is solved adopting a fractional step scheme on a semi-staggered 
 grid27 as follows. First, the evolution equation that removes the pressure and body force terms is considered:

where the forward difference is applied in the time discretization. The term �τ is the pseudo-time increment used 
in obtaining the steady-state values. The velocity ũ∗ is the provisional total velocity, and un is the total velocity 
obtained in step n. Next, the pressure term is considered. The term is determined so as to make the provisional 
total velocity divergence free by solving the Poisson equation:

(1)φi(x) = g(|x − Ri|),

(2)g(x) = h[(A+ ξ/2)− x]
h[(A+ ξ/2)− x] + h[x − (A− ξ/2)] ,

(3)h(x) =
{

exp(−d2/x2) x ≥ 0,
0 x < 0,

(4)φ =
N
∑
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φi .
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In the present simulation, the Poisson equation is solved adopting the Bi-CGSTAB  method28. Considering the 
pressure term, the divergence-free provisional velocity ũn+1 is obtained as

The term for the body force acting on the fluid is then considered. The term is determined so as to make the fluid 
velocity in the cylinder region consistent with the cylinder  velocity26:

Eventually, the velocity field in step n+ 1 is obtained as

where p̃n+1 is an additional pressure term included so as to make the velocity un+1 divergence free.
In the present study, the steady flow is obtained by fixing the cylinder position and solving the NS equation 

iteratively. The iteration ends when the unsteady effect becomes negligible in terms of the total velocity field; in 
other words, the total velocity field un+1 is considered the same as that in the previous step un . Here, the criterion 
with which to interrupt the iteration is set as

where un+1(i, j) and vn+1(i, j) ( un(i, j) and vn(i, j) ) are respectively the x- and y-components of the total velocity 
field of the present step (the previous step) at the calculation point (i, j). It is noted that the obtained steady flow 
slightly depends on the pseudo-time increment �τ . The pseudo-time increment �τ is therefore fixed to a single 
value throughout the present study as described in the next section.

Problem setup
This section describes in detail the addressed problem, namely a steady flow passing fixed cylinders. Figure 1 is 
a schematic diagram of the analysis domain used in solving this problem. A velocity inlet boundary condition 
and a pressure outlet boundary condition are imposed on the left and right walls of the analysis domain, respec-
tively. A no-slip boundary condition is imposed on the top and bottom walls. As a result, the flow direction is 
from left to right. Cylinders are randomly placed in a way that they do not overlap each other or boundaries in 
the analysis domain. (The cylinders are represented as circles in Fig. 1.) The interaction between the cylinders 
and fluid is described using the SPM (see “Simulation method”), and a no-slip boundary condition is imposed 
on the interfaces of the cylinders.

The training data are prepared in the CFD simulation described in “Simulation method”. The parameters 
of the simulation are set as follows. The units of length and time are given by the lattice spacing d and d2/ν , 

(9)∇2p∗ = ρ

�τ
(∇ · ũ∗).

(10)ũ
n+1 = ũ

∗ − �τ

ρ
∇p∗.

(11)φfc�τ = φ(uc − ũ
n+1).

(12)u
n+1 = ũ

n+1 + φfc�τ − �τ

ρ
∇p̃n+1,

(13)errn+1 ≡
∑

i,j

√

[un+1(i, j)− un(i, j)]2 + [vn+1(i, j)− vn(i, j)]2
∑
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Figure 1.  Schematic diagram of the analysis domain defined in the present study. The circles represent 
cylinders and the dashed square represents the region in which the center of each cylinder lies.
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respectively, where d = 1 and ν = 1. The density of the fluid is set as ρ = 1 . The system size is Lx = Ly = 127 . 
The number of calculation points is then 128× 128 . The cylinder radius is A = 4 , and the interface thickness is 
ξ = 2 . The settings for A and ξ are adopted from the previous  study25, where the rheology of colloidal dispersions 
is successfully described. At the velocity inlet boundary (i.e., left wall), a parabolic flow velocity profile (i.e., a 
plane Poiseuille  flow29) is set; that is, the x-component of the velocity at the boundary is given by

where ū is the mean flow velocity and is set as ū = 0.1 in the present study. The y-component of the velocity at 
the boundary is set as v = 0 . The pseudo-time increment is set as �τ = 0.1 . The cylinders are placed so as not 
to overlap other cylinders or the boundary of the analysis domain. Here, the distance between the centers of 
cylinders, which is denoted D in Fig. 1, is kept larger than or equal to the diameter of a cylinder 2A. The distances 
between the walls and the center of each cylinder are kept larger than or equal to the radius of the cylinder A. 
(The center of each cylinder lies within the dashed square.)

The flow obtained in the simulation is considered to be steady for the following reasons. First, in the present 
study, the Reynolds number based on the cylinder diameter is Rec ≡ 2ūA/ν = 0.8 , which is smaller than the 
typical Reynolds number ( Rec � 40 ) where the unsteady flow is  observed1, 30. Second, in the present simulation, 
temporal increases and decreases in the fluid velocity were not observed, and the amount of change in a simula-
tion step (defined in Eq. 13) converged.

Deep-learning model
This section describes the architecture of the deep-learning model used in the present study. With the cylinder 
arrangement given as the input, the present model outputs the fluid velocity field. In the model, the cylinder 
arrangement is described by the smoothed profile function φ and treated as an array of values with the size of 
128× 128 . (The detail is shown later.) The fluid velocity field is treated as an array of values with the size of 
128× 128× 2 , since the velocity defined at each calculation point is a vector quantity and has two components 
(that is, x- and y-components). The present model is based on a model proposed by  Hennigh19, 20. Hennigh’s 
model uses U-net with gated residual  blocks24, 31, which allows for the efficient learning of global information 
of the boundary of structures. Several modifications to Hennigh’s methodology are made so that it is applicable 
to the present problem.

Figure 2 is a schematic representation of the network architecture used to solve the present problem. The 
present model is different from Hennigh’s  model19 in the following three respects. The effectiveness of the modi-
fications is investigated by additional studies. The result is shown in Supplementary Information.

Input data. When using Hennigh’s  model19, the information of the boundary of structures is input in a 
binary fashion; that is, the fluid and structure regions are respectively represented as 0 and 1. When using the 
present model, the information is input as the field of the smoothed profile function φ . In the smoothed profile 
function, the fluid–structure interface is represented as values between 0 and 1, and the position of the interface 
is described in more detail than in the binary representation.

Degrees of freedom. To predict the more complex flow, the present model has more degrees of freedom 
than Hennigh’s model. Compared with Hennigh’s  model19, the number of down-sample and up-sample opera-
tions is increased. The filter size is also increased with reference to a wide residual  network32. Figure 2 presents 
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Figure 2.  Schematic representation of the architecture of the deep-learning model. The input is a smoothed 
profile function φ , and the outputs are the x- and y-components of the flow velocity (i.e., u and v). The filter size 
fi and keep probability ki of ith residual block are shown.
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specific values of the filter size. Meanwhile, to train a model with high complexity, a different keep probability of 
the dropout layer is assigned to each residual block. The probability is set as 0.9 for the first block and decreases 
in steps of 0.05 for deeper blocks.

Normalization technique. To realize stable training, batch normalization is applied before the activation 
function, which is not done in the case of Hennigh’s model. The activation function used in the present model 
is the concatenated exponential linear unit  function33, 34, which is the same function used in Hennigh’s model.

A set of 24,000 samples (8000 samples for each of the systems having N = 32 , 48, and 64 cylinders) was 
generated to train the model. Each sample contains the smoothed function φ and the x- and y-components of 
flow velocity, namely u and v. The data are augmented by adding a vertical flip of each original sample: for φ and 
u, the values at the calculation point (i, j) in the flipped sample are the same as those at the calculation point 
(i,Ny − j) of the original sample; for v, the value at the calculation point (i, j) in the flipped sample is the same 
as the sign-inverted value at the calculation point (i,Ny − j) of the original sample.

The present model is trained so as to minimize the loss function

where upred(i, j) and vpred(i, j) are respectively the x- and y-components of the predicted velocity at the calculation 
point (i, j). Similarly, utrue(i, j) and vtrue(i, j) are respectively the x- and y-components of the true velocity at the 
calculation point (i, j). The mini-batch size and learning rate are respectively set to 8 and 1× 10−5 throughout 
the learning process. The present study utilizes  TensorFlow35 version 1.12.0 to create the deep-learning model 
and runs it on a single node of NVIDIA®  Tesla®  V100 GPU.

Results and discussion
Figure 3 shows the training and validation losses per mini-batch during the learning. The loss decreases with 
an increase in the number of epochs, and it is confirmed that the present model successfully learns the steady 
flow. No overfitting is observed during the learning process. During the learning, the validation loss tends to be 
lower than the training loss. This is due to the disabling of the dropout layers during the validation. When the 
keep probability of the dropout layer is set to 1 (i.e., the dropout layer is disabled throughout the learning and 
validation processes), the two losses take almost the same value. Hereinafter, the prediction made by the model 
at 1000 epochs is investigated.

Next, the true and predicted velocity fields are compared for unknown cylinder systems that are not learned 
in the training and validation datasets (Fig. 4). In the figure, the columns from left to right show input data that 
represent the cylinder arrangement (i.e., the smoothed profile function φ ), the magnitude of the true veloc-
ity 
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Figure 3.  Training and validation losses per mini-batch as functions of the number of epochs (red: training 
loss, blue: validation loss).
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N is varied from 16 to 80 in intervals of 16. It is noted that the systems for which N = 16 and 80 have not been 
seen by the model during the training. For the “difference” field, the range of the color bar is set 10 times nar-
rower than that for the “true” and “prediction” fields. In the results for all N, the predicted velocity fields agree 
well with the true velocity fields. It is, however, qualitatively seen from the results of the “difference” field that 
the prediction with small N has lower accuracy than that with large N. For small N, the deep-learning model 
predicts the velocity at the calculation points far from the cylinder interface. To achieve the prediction accurately, 
the model needs to learn global information during the training process.

The flow velocity is investigated at each calculation point to examine the predicted velocity field in detail. 
Figure 5 shows scatter plots (a,b) and histograms (c,d) of the true and predicted velocity values at all calcula-
tion points ( N = 48 ). The results show that the predicted velocities agree with the true velocities, but there is 
a slight difference in the height of the peaks in the histograms. The peaks are observed at u = 0 and v = 0 , and 
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Figure 4.  Comparison of the true and predicted velocity fields for unknown cylinder systems that are not 
learned in the training and validation datasets. The leftmost column shows the input data (the smoothed 
profile function φ ). The rest, from left to right, show the magnitude of the true velocity, predicted velocity, and 
difference between the true and predicted velocities. The rows from top to bottom respectively show the results 
for the systems with 16, 32, 48, 64, and 80 cylinders. To make the cylinder position easier to see, the velocity 
values defined in the cylinder domain are shown in white.
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they can be attributed to the boundary condition. The result therefore implies that the predicted velocity values 
at the boundary fluctuate.

The predicted flow field is next investigated from a physical perspective. A fluid flowing past many fixed 
cylinders, which is the problem addressed in this study, can be considered as a fluid flowing through a complex 
geometry such as the geometry of a porous medium. It is therefore expected that the averaged fluid flow passing 
randomly placed cylinders can be described by the Darcy–Lapwood–Brinkman (DLB) equation, which treats 
the bulk velocity of a flow passing through a porous medium by introducing a Darcy friction  term36, 37. The DLB 
equation is written as

(16)
∂û
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+ (û · ∇)û = − 1

ρ
∇p− ν

k
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Figure 5.  Scatter plots (a,b) and histograms (c and d) of the true and predicted flow velocities of all calculation 
points. The number of cylinders is set at N = 48 . (a) Scatter plot of true and predicted x-components of the 
flow velocity u. (b) Scatter plot of true and predicted y-components of the flow velocity v. (c) Histograms of 
true (red) and predicted (blue) x-components of the flow velocity u. (d) Histograms of true (red) and predicted 
(blue) y-components of the flow velocity v.
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where û is the ensemble-averaged velocity within the porous medium, k is the permeability, and νeff  is the kin-
ematic effective viscosity of the fluid in the medium. When k is infinite, the equation has the same form as the 
NS equation. Using the DLB equation, the velocity profile between parallel plates is obtained as

where L′y ≡ Ly/2
√
k and y′ ≡ y/2

√
k . In the derivation, ν = νeff  is assumed. By fitting the average velocity 

profile of the predicted flow with Eq. (17), the permeability k is obtained for each number of cylinders N and the 
dependence of k on N is investigated. The results are shown in Fig. 6(a) (blue closed symbols). Here, the velocity 
profiles to be fitted with Eq. (17) are obtained by averaging the 10, 000 different velocity profiles on the outlet 
boundary (i.e., the velocity value at x = Lx ) for each N. In the figure, the permeability k obtained in the same 
manner from the training data is shown with red open symbols. The permeability obtained from the predicted 
velocity profiles agrees well with that obtained from the training data. Meanwhile, the value of k obtained from 
the predicted velocity profiles increases rapidly as N decreases. Theoretically, the permeability k should diverge 
to infinity at N = 0 . In the present study, however, the predicted velocity profile at N = 0 is well described by 
the DLB equation with k ≃ 608 (Fig. 6b). This result indicates that, at N = 0 , the resistance force is acting on the 
fluid in the form of internal friction, although the flow satisfies the incompressibility condition and preserves 
the mean flow velocity. It is considered that the present deep-learning model learns the flow field such that it 
reproduces the physics of the DLB equation, and it has an error determined by the internal friction when N is 
small. Given the range of N in the training dataset, the error found when N is small is probably due to the large 
extrapolation to lower values of N. The issue is not crucial when preparing the training data with appropriate 
cylinder numbers that match the conditions of the prediction.

Lastly, the force acting on a cylinder is compared between the prediction and ground truth. The force acting 
on the ith cylinder FHi  is obtained as follows. First, for the obtained steady-state flow velocity field, the pseudo-
time evolution is performed (see Eqs. 8–10). The body force acting on the fluid φfc (and φifc ) is then obtained 
from the velocity field using Eq. (11). The force FHi  is then obtained from Eq. (7). Hereinafter, the forces obtained 
from the true and predicted flow fields are respectively referred to as the “true force” and “predicted force”. Fig-
ure 7 presents scatter plots (a and b) and histograms (c and d) of the true and predicted forces FHtrue and FHpred 
( N = 48 ). (In the notation of the forces, the subscript letter i is omitted because it is no longer necessary to 
specify the cylinder number.) The figure shows the gathered results of 100 patterns of the cylinder arrangement. 
A comparison of the true and predicted forces acting on each cylinder confirms the accuracy of the predicted 
velocity field.

The average relative error for the forces acting on cylinders �|FHtrue − F
H
pred|/|FHtrue|� (Fig. 8a) is investi-

gated next. The results show that the error increases as the number of cylinders N decreases. To examine this 
result in detail, the average absolute errors for the x- and y-components of the forces �|FHx,true − FHx,pred|� and 
�|FHy,true − FHy,pred|� are also investigated (Fig. 8b, circles). The figure also shows the average values of x- and y-com-
ponents of forces �|FHx,true|� and �|FHy,true|� obtained in the numerical simulation (triangles). Meanwhile, �|FHx,true|� 
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Figure 6.  (a) Permeability k as a function of the number of cylinders. Red open and blue closed symbols 
indicate the permeabilities obtained from the training data and prediction, respectively. (b) Velocity profile 
predicted using the present model when the cylinders are not present (red symbols). The solid line indicates the 
velocity profile obtained using the DLB equation with the permeability k ≃ 608 (see Eq. 17). The dashed line 
indicates the velocity profile obtained using the NS equation (see Eq. 14).
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and �|FHy,true|� strongly depend on N, whereas the absolute errors, �|FHx,true − FHx,pred|� and �|FHy,true − FHy,pred|� , do 
not. This result suggests that the predicted velocity fields may have a certain degree of error that does not depend 
on the magnitude of the flow velocity. Given the dependence of the errors on N, the present deep-learning model 
will have good generalization for high cylinder numbers.

Conclusion
This study constructed a deep-learning model that can predict a steady flow passing objects and addressed the 
prediction of steady fluid flow passing many fixed cylinders. The constructed deep-learning model is based on 
Hennigh’s  model20 and outputs the x- and y-components of the flow-velocity field when the cylinder arrangement 
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is input. The SPM was used to generate the training  dataset23, 25. In the SPM, the shape and arrangement of objects 
(i.e., cylinders in the present study) are described by a smoothed profile function. The present deep-learning 
model uses values of the smoothed profile function as the input data.

Training and validation losses showed that the present model successfully learns the steady flow passing 
fixed cylinders. No overfitting was observed during the training. The present study investigated the accuracy 
of the predicted velocity field focusing on the velocity profiles of the fluid flow and the fluid force acting on the 
cylinders. The results show that the flow is successfully predicted by the present model when the number of 
cylinders is equal to or close to that set in the training dataset. The extrapolation of the prediction to a smaller 
number of cylinders results in error relating to internal friction of the fluid. The results of the fluid force acting 
on the cylinders also suggest that the present deep-learning model has good generalization performance for 
systems with a larger number of cylinders.

Here, the benefit of applying the deep-learning technique to the present problem should be explained in terms 
of computation time. In the present study, the computation time for the learning of the model is Tlearn ∼ 70 h . 
On the other hand, the computation time for the CFD simulation to obtain one example is Tsim ∼ 4min with 
a single node of Intel®  Xeon®  CPU E5-2697A v4 processor. Judging from the computation times, there seems 
to be no benefit of applying the deep-learning technique to address the present problem. However, it is worth 
applying to the present problems considering its “scalability”. The deep-learning model can predict the flow in a 
very short period of inference time Tinf ∼ 1 s once it is trained. To obtain flows around solids of different shapes 
and arrangements using the model, it takes time Tinf  since no re-training is required. On the other hand, typical 
CFD simulations require re-calculation, and it takes time Tsim to obtain the flow in the same situation. Therefore, 
the deep-learning model is useful to reduce the computation cost in the repeated calculation with changing shape 
and arrangement of objects, which is often required in the field of engineering. In this case, the more times the 
calculation is repeated, the more efficiently the calculation is done by the model.

The ultimate aim of the present research is to accelerate the CFD simulation of a fluid with solid objects using 
deep-learning techniques. The present deep-learning model has the potential to be used for the acceleration of 
the simulation of a multiphase flow because the model is able to predict the flow velocity field around many fixed 
cylinders with a very short inference time. The present model, however, takes only the positions and shapes of 
solid objects as the input, which is insufficient for replacing the fluid calculation of multiphase flow simulations. 
If the calculation in the SPM is to be replaced with a deep-learning model, the velocities of solid objects should 
be input into the model in addition to the positions and shapes of the solid objects. Following the present study, 
another deep-learning model that treats the velocities of solid objects by extending the present model was there-
fore constructed. The results will be presented in an adjoining paper.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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H
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