
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:24403  | https://doi.org/10.1038/s41598-021-03643-8

www.nature.com/scientificreports

Modeling of nitrogen solubility 
in normal alkanes using machine 
learning methods compared 
with cubic and PC‑SAFT equations 
of state
Seyed Ali Madani1, Mohammad‑Reza Mohammadi2, Saeid Atashrouz3*, Ali Abedi4, 
Abdolhossein Hemmati‑Sarapardeh2,5,6* & Ahmad Mohaddespour4*

Accurate prediction of the solubility of gases in hydrocarbons is a crucial factor in designing enhanced 
oil recovery (EOR) operations by gas injection as well as separation, and chemical reaction processes in 
a petroleum refinery. In this work, nitrogen (N2) solubility in normal alkanes as the major constituents 
of crude oil was modeled using five representative machine learning (ML) models namely gradient 
boosting with categorical features support (CatBoost), random forest, light gradient boosting 
machine (LightGBM), k-nearest neighbors (k-NN), and extreme gradient boosting (XGBoost). A large 
solubility databank containing 1982 data points was utilized to establish the models for predicting N2 
solubility in normal alkanes as a function of pressure, temperature, and molecular weight of normal 
alkanes over broad ranges of operating pressure (0.0212–69.12 MPa) and temperature (91–703 K). 
The molecular weight range of normal alkanes was from 16 to 507 g/mol. Also, five equations of 
state (EOSs) including Redlich–Kwong (RK), Soave–Redlich–Kwong (SRK), Zudkevitch–Joffe (ZJ), 
Peng–Robinson (PR), and perturbed-chain statistical associating fluid theory (PC-SAFT) were used 
comparatively with the ML models to estimate N2 solubility in normal alkanes. Results revealed that 
the CatBoost model is the most precise model in this work with a root mean square error of 0.0147 and 
coefficient of determination of 0.9943. ZJ EOS also provided the best estimates for the N2 solubility 
in normal alkanes among the EOSs. Lastly, the results of relevancy factor analysis indicated that 
pressure has the greatest influence on N2 solubility in normal alkanes and the N2 solubility increases 
with increasing the molecular weight of normal alkanes.

Abbreviations
CARTs	� Classification and regression trees
CNN	� Convolutional neural network
EOR	� Enhanced oil recovery
EOS	� Equation of state
exp	� Experimental
k-NN	� K-nearest neighbors
ML	� Machine learning
Mw	� Molecular weight
NS	� Nitrogen solubility
PC-SAFT	� Perturbed-Chain Statistical Associating Fluid Theory
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PR	� Peng-Robinson EOS
pred	� Predicted
RMSE	� Root mean square error
RK	� Redlich-Kwong EOS
SAFT	� Statistical associating fluid theory
SRK	� Soave–Redlich–Kwong EOS
SD	� Standard deviation
SW	� Schmidt-Wenzel EOS
VLE	� Vapor–liquid equilibria
XGBoost	� EXtreme Gradient Boosting

Subscript and superscript
N2	� Nitrogen
R2	� Coefficient of determination
Pc	� Critical pressure
Tc	� Critical temperature

Gas and fluids interactions are an undeniable part of many industrial procedures, which plays some major roles 
in many industries like petrochemical1–3, oil and gas4–9, medicine10, food11,12, environment13,14, polymer15,16, 
etc. Among the common gaseous phases normally present in the mentioned environments, colorless odorless 
nitrogen (N2) is one of the most common gases included as the feed or product in many processes. On the other 
hand, the presence of this gas as the dominant part of atmosphere components makes it an important case to be 
investigated accurately. The oil and gas industry would not be an exception, and N2 applications are observed 
in many subsidiaries of this industry, from the upstream to downstream. As a clear example, N2 and its related 
treatments have been used since few decades ago because of its unique properties for enhanced oil recovery 
(EOR) operations17–19. Usually, carbon dioxide (CO2) or N2 gases are continuously injected into the oil reservoir 
for miscible/immiscible oil displacement. These gases are extracted back out with the recovered oil, recaptured, 
and reinjected along with new gas until as much oil as possible is produced20. Cost efficiency and higher feasibil-
ity make some advantages for this component (N2) in comparison with CO2 and methane (CH4)21,22. However, 
N2 has been commonly utilized in deep reservoirs as it needs a higher injection pressure to gain miscibility with 
the reservoir fluids than does CO2

20. Also, in the midstream, N2 is used in pipeline drying, which is an essential 
part of pipeline commissioning to prevent unwanted aerosols through contaminant displacing23. There are many 
significant instances of N2 usage in downstream, like nitrogen purging which is a technique to avoid unintentional 
reaction of hazardous gas and hydrocarbons through the oxygen reduction in the environments that is susceptible 
to explosion24 that is a similar technique which is used in nitrogen blanketing25 in hydrocarbon storage tanks. 
Crude oil is a complex mixture of hydrocarbons. Achieving reliable predictions for the thermodynamics and 
phase equilibrium data of N2/oil systems is complex and difficult. Alkanes are the major constituents of crude 
oil and most petroleum products. Therefore, in many studies, the behavior of alkanes and the desired gas like 
N2 is studied first, and the obtained information will be later generalized to crude oil.

Solubility is one of the most important thermodynamics values representing the value of a gas dissolution in a 
liquid at a specific pressure and temperature. While many analytical methods are used to calculate the solubilities 
of gases in liquids mainly through the equations of state (EOSs)26–29, the accuracy of their prediction, especially 
in some critical industrial applications, has been a serious challenge yet. Based on previous experiments, the 
solubility of N2 in hydrocarbons is positively affected by increasing pressure and temperature26–28. Furthermore, 
as the molecular weight rises, N2 solubility increases, as evidenced by laboratory experiments29. Properly esti-
mating phase equilibrium data in binary systems containing N2 and a hydrocarbon is difficult. Because, based 
on the classification scheme of Van Konynenburg and Scott30,31, binary systems of a hydrocarbon and N2 are 
recognized as type III phase diagrams, except the binary system of N2 + CH4, which is recognized as a type I 
system30,31. Risk of energy waste and potential hazards exist in operations which use N2. As a result, solubility data 
is critical for predicting an appropriate quantity of N2 to use in this operation, and it can improve plant safety. 
Studies with heavy hydrocarbons are particularly challenging due to their complexity. Furthermore, the dangers 
of high-temperature and/or high-pressure conditions in industrial operations make the extensive experiments 
an undesirable option. As a result, modelling with experimental data would be an alternative.

Mainly, the strategies for the prediction of N2 solubility in hydrocarbon solvents or petroleum blends rely 
on experimental and semi-empirical models like EOSs, and are comparable to those utilized to estimate the 
solubility of other gasses like CH4, CO2, and hydrogen32–37. In compressed N2, the vapor-phase solubilities of 
n-Decane, ferf-butylbenzene, 2,2,5-trimethylhexane, and n-dodecane were determined by Davila et al.38 and 
the second virial cross coefficients ( B12 ) were computed using these data38. A static equilibrium cell was used by 
Tong et al.29 to test the solubilities of N2 in four n-paraffin hydrocarbons (Decane, Eicosane, Octacosane, and 
Hexatriacontane). The Soave–Redlich–Kwong (SRK) and Peng-Robinson (PR) EOS were applied to analyze the 
data. The results show a growing trend in N2 solubility with rising pressure, temperature, and n-paraffin chain 
length29. N2 solubilities in various naphthenic (trans-Decalin and cyclohexane) and aromatic (naphthalene, 
1-methylnaphthalene, benzene, phenanthrene, pyrene) solvents were determined by Gao et al.26 using a static 
cell. When a single interaction parameter ( Cij ) is employed in each binary system, the PR-EOS was demon-
strated to fit the model26. Privat et al.39,40 used the PR EOS combined with the group contribution method, 
called the PPR78 model, for predicting phase equilibrium data of mixtures containing various hydrocarbons and 
N2. This model is able to predict temperature-dependent binary interaction parameters (kij). The mentioned 
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model provided satisfying results with an overall deviation lower than 10%. They also mentioned that for the 
hydrocarbon + N2 systems (except CH4); kij is a decreasing function of temperature39,40. At low temperatures, 
Justo-Garcia et al.41 modeled vapor–liquid-liquid equilibria (VLE) for N2 and alkanes in three distinct ternary 
systems. The findings demonstrate that both SRK and PC-SAFT EOSs estimate the experimentally observed 
values with reasonable accuracy41. In another study, Justo-Garcia et al.42 used the SRK and PC-SAFT EOSs to 
model three-phase vapor–liquid–liquid equilibria for a combination of natural gas having high N2 content. The 
results revealed that the PC-SAFT EOS accurately predicts phase behavior, but the SRK EOS suggests a three-
phase region that is larger than what was observed experimentally42. The Krichevsky–Ilinskaya equation was 
used by Zirrahi et al.27 to estimate the solubility of light solvents (CO2, N2, CH4, C2H6, and CO) in bitumens from 
five Alberta reservoirs. The gas phase is analyzed applying the PR-EOS. The suggested model is then validated 
using experimental data on light solvent solubility. The results demonstrated that the proposed model accurately 
reflects known solubility data in bitumen for light hydrocarbons (CH4 and C2H6) and non-hydrocarbon solvents 
(N2, CO2, and CO)27. Haghbakhsh et al.43 investigated the vapor–liquid equilibria of binary N2–hydrocarbon 
mixtures across an extensive range of temperature and pressure applying PR and ER EOSs. They introduced a 
new correlative mode for the proposed equations to improve accuracy, which was likely to be effective, improving 
accuracy by up to three times43. Thermo-physical characteristics of CO2 and N2/bitumen solutions were studied 
by Haddadnia et al.28. Furthermore, PR-EOS was used to describe the calculated solubility28. PC-SAFT and SRK 
EOSs were employed by Wu et al.44 to estimate gas solubilities in n-alkanes. The PC-SAFT EOS was found to 
be able to accurately predict an empirically observed linear connection between gas solubilities in n-alkanes 
and their carbon number. Despite its satisfactory accuracy for gas solubility in lighter n-alkanes, the SRK EOS 
typically produces significantly poorer results than the PC-SAFT EOS44. Tsuji et al.45 investigated N2 and oxygen 
gas solubilities in benzene, divinylbenzene, and styrene. For a particular isotherm, gas solubility in liquids had 
a linear pressure dependency and declined with rising temperature. Ultimately, PR-EOS was implemented to 
predict gas solubilities45. Aguilar-Cisneros et al.46 determined the solubility of N2, CO2, and CH4 in petroleum 
fluids using the PR-EOS in conjunction with various mixing rules in systems including bitumens, heavy oils, 
refinery cuts, and coal liquids. The universal and van der Waals mixing rules revealed satisfactory outcome 
between experimental data and predicted values, while the modified Huron-Vidal of order one mixing rule 
produced large discrepancies46.

During the last decade, alongside the developments of intelligent methods based on machine learning (ML) 
techniques, many attempts have been made to predict thermodynamic results with a higher accuracy based on 
reliable experimental data. Abdi-Khanghah et al.47 studied alkane solubility in supercritical CO2. Two kinds of 
artificial neural networks were used for their study: Radial basis function (RBF) and multi-layer perceptron 
(MLP) artificial neural network (ANN). The MLP-ANN outperformed the RBF-ANN in predicting n-alkane 
solubility in supercritical CO2

47. Songolzadeh et al.48 demonstrated that the PSO–LSSVM model is an effective 
technique for predicting n-alkane solubility in supercritical CO2 with high accuracy. The least-squares support 
vector machine (LSSVM) was employed, which was tuned using two different optimizing algorithms: particle 
swarm optimization (PSO) and cross-validation-assisted Simplex algorithm (CV-Simplex)48. Chakraborty et al.49 
developed a set of data-driven models capable of predicting VLE for the binary systems of C10-N2 and C12-N2. In 
comparison to the VLE modeled using the PR-EOS, both models significantly improved the estimated value of 
binary mixture equilibrium pressure49. Mohammadi et al.50 implemented different ML models to predict hydro-
gen solubility in various pure hydrocarbons in wide pressure and temperature ranges and compared them with 
some of the common EOSs. Their results showed that using intelligent models shows more precise results than 
the common usage of EOSs in hydrogen solubility estimation50. To predict nitrogen solubility in unsaturated, 
cyclic and aromatic hydrocarbons, Mohammadi et al.51 employed a convolutional neural network (CNN) and 
the results showed that pressure is the most significant factor for nitrogen solubility in unsaturated hydrocar-
bons. In general, prediction based on EOSs semi-analytical methods has been the common way to estimate the 
N2 solubilities in alkanes. On the other hand, the mentioned method is case-specific and it is limited to some 
defined hydrocarbons with specific parameters for each EOS. Hence, using intelligent models like proper ML 
algorithms and reliable experimental data may lead to a model for predicting N2 solubility in normal alkanes 
with high accuracy and this helps to accelerate predictions.

In this study, we use a dataset containing 1982 experimental N2 solubility data points for 19 distinct normal 
alkanes gathered under various operating states. Models for estimating N2 solubility in normal alkanes are con-
structed using well-known ML algorithms namely k-nearest neighbor (k-NN) and random forest (RF), as well as 
innovative ML methods such as extreme gradient boosting (XGBoost), gradient boosting with categorical features 
support (CatBoost), and light gradient boosting machine (LightGBM). Furthermore, statistical parameters and 
graphical error assessments are used to verify the validity of the suggested models. Numerous N2 solubility sys-
tems are predicted by the methods proposed in this research and five EOSs, namely perturbed-chain statistical 
associating fluid theory (PC-SAFT), Redlich-Kwong (RK), Peng-Robinson (PR), Soave–Redlich–Kwong (SRK), 
and Zudkevitch-Joffee (ZJ). Eventually, the relevancy factor is utilized to assess the relative impact of input 
parameters on N2 solubility in normal alkanes.

Data collection
The modeling of N2 solubility in normal alkanes was performed using a large solubility databank containing 
1982 data points collected from the literature29,52–91. The properties of 19 normal alkanes (nC1 to nC36) utilized 
in this survey are presented in Table 1.

The inputs of the models were chosen to be temperature (K), pressure (MPa), and molecular weight (g/mol) 
of normal alkanes, whereas N2 solubility (in terms of mole fraction) was the desired output. The statistical details 
of the N2 solubility databank used for modeling are tabulated in Table 2. The validity, accuracy, and applicability 
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of the model depend on the quantity and variety of N2 solubility data collected in different systems. The broad 
ranges of pressure (0.0212–69.12 MPa), temperature (91.21–703.4 K), and normal alkanes (nC1 to nC36) can lead 
to a reliable general model for estimating the solubilities of N2 in normal alkanes.

Models’ implementation
Algorithms’ selection.  Due to recent advances in computation capacities and also the advent of new 
machine learning algorithms, there are many choices to use as algorithms for the problem under considera-
tion. Because of the size of the dataset and small instance number and also based on the limited number of the 
features, some of the non-parametric ML models which mainly focus on the dataset and do not suffer from the 
small size of the dataset were noticed as the best choices in this case.

K‑nearest neighbors (k‑NN).  The k-NN method is an ML technique that is employed to solve both clas-
sification and regression problems. This supervised algorithm is widely used as a non-parametric technique for 
various applications92. In this algorithm, the k is the number of neighbors which are assigned to a new sample to 
predict the target based on its inheritance from these k samples that are closest to the new sample using a uni-
form weight assigning system or a specific distance function93. Distance function is a tool to allocate a weight to 
each of the k samples features to identify its contribution in final predicted value. Minkowski distance equation 
is the typical choice for the distance function. The general form of this equation is provided in Eq. (1), where 
X and Y are two samples feature sets. This function turns to Manhattan or Euclidean distance function in most 
of the cases by using the p = 1 or p = 2, respectively. Finding and selection of the optimal value of the k hyper-
parameter is the most crucial stage in the training of this algorithm to achieve a satisfactory accuracy. Hence, 
the algorithms are run by a wide range of k value and the optimal case is revealed based on the comparison of 
statistical accuracy measurements among the explored cases.

Table 1.   The normal alkanes utilized in this survey.

Solvent Carbon number Tc (K) Pc (MPa) Mw (g/mol)

Methane 1 190.56 4.599 16.043

Ethane 2 305.32 4.872 30.07

Propane 3 369.83 4.248 44.1

Butane 4 425.12 3.796 58.12

n-Pentane 5 469.7 3.37 72.15

n-Hexane 6 507.6 3.025 86.18

n-Heptane 7 540.2 2.74 100.2

n-Octane 8 568.7 2.49 114.23

n-Nonane 9 594.6 2.29 128.25

n-Decane 10 617.7 2.11 142.28

Undecane 11 639 1.98 156.31

n-Dodecane 12 658 1.82 170.33

Tridecane 13 675 1.68 184.36

Tetradecane 14 693 1.57 198.39

Pentadecane 15 708 1.48 212.41

n-Hexadecane 16 723 1.4 226.44

n-Eicosane 20 768 1.07 282.5

n-Octacosane 28 832 0.727 394.8

n-Hexatriacontane 36 872 0.47 507

Table 2.   The statistical information of the N2 solubility databank used in this paper.

Mw (g/mol) Temperature (K) Pressure (MPa) N2 solubility (mole fraction)

Minimum 16.04 91.21 0.0212 0.0008

Maximum 507 703.4 69.12 0.9515

Mean 99.22 336 12.5 0.2203

Std. Deviation 73.88 132.8 13.29 0.1964

Skewness 1.79 − 0.098 1.45 1.136

Kurtosis 6.294 − 0.8567 1.543 0.8351
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Random forest.  Random forest is a bagging supervised learning technique for classification and regression 
using the ensemble learning approach based on CART (Classification and Regression Trees)94. This algorithm 
avoids high prediction variance, which is a common issue in the decision tree algorithm. Random forests have 
trees, which run parallelly. These trees do not have any interaction with each other during the forest construc-
tion. It works by training a large number of decision trees and then determining the class that is the mean pre-
diction of the individual trees in regression cases. At each node, the number of attributes that may be divided 
is limited to a certain proportion of the total which is known as the hyperparameter. This guarantees that the 
ensemble model does not depend too strongly on any specific attribute and that all potentially predictive vari-
ables are considered equally. In any CART tree training, the random forest technique picks the training dataset 
Ti, randomly from the complete training set T, by replacement (i.e., bootstrapping sampling). The data that was 
not included in the random sampling technique is referred to as "out-of-bag" data. The random forest technique 
picks N features or input variables randomly from a set of M input independent factors (N < M) while building 
each CART tree. According to the randomly picked Ti and M characteristics, the best splitting for each CART 
tree is calculated. The final results of the regression are being determined via majority voting. To increase the 
estimation precision, the averaged prediction reduces the averaged squared error on the individual estimations 
produced from an individual CART tree. The resulting ensemble trees are designated as follows (Eq. 2):

Extreme gradient boosting (XGBoost).  The fundamental concept behind a tree-based ensemble 
method is to use an ensemble of classification and regression trees (CARTs) to fit training data using a regular-
ized objective function minimization. One of those other tree-based models is XGBoost, which is part of the gra-
dient boosting decision tree framework (GBDT). To further explain the construction of the CART, each cart is 
made up of (I) a root node, (II) internal nodes, and (III) leaf nodes, as illustrated in Fig. 1. The root node, which 
represents the entire dataset, is split into internal nodes by the binary decision technique, whilst the leaf nodes 
reflect the final classifications. In gradient boosting, a sequence of basic CATRs are created simultaneously, with 
the weight of each individual CART being adjusted via the training process95.

An ensemble of n trees must be trained to predict the y for a specific dataset, m and n respectively show the 
count of features and instances.

(1)
D(X,Y) =

(

n
∑

i=1

∣

∣xi − yi
∣

∣

p

)
1
p

X = (x1, x2, . . . , xn) and Y =
(

y1, y2, . . . , yn
)

∈ R
n

(2)

{
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Figure 1.   Level-by-level tree development in XGboost.
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where the decision rule q(x) maps the example to the binary leaf index. n shows the regression trees space, fk  
shows the kth independent tree, T represents the count of tree’s leaves, and w shows the leaf ’s weight in Eqs. 3 
and 4.

The minimization of the regularized objective function L is used to determine the ensemble of trees:

where Ω shows the regularization term that helps to reduce overfitting by reducing the model’s complexity; l 
stands for a loss function that is differentiable and convex; γ is the minimal loss reduction required to split a new 
leaf; and λ displays the regulation coefficient. It is worth noting that in these equations λ and γ assist to increase 
model variance and avoid overfitting.

The objective function for each individual leaf is reduced in the gradient boosting technique, and additional 
branches are added sequentially.

The t-th iteration of the above-mentioned training procedure is represented by t. The XGBoost method aggres-
sively adds the space of regression trees to greatly improve the ensemble model, which is sometimes dubbed 
"greedy algorithm". As a result, the model output is updated continuously by minimizing the objective function:

The XGBoost takes use of a shrinkage technique in which newly added weights are scaled by a learning factor 
rate after each stage of boosting. This minimizes the risk of overfitting by reducing the impact of future additional 
trees on each available individual tree96.

Light gradient boosting machine (LightGBM).  LightGBM is a novel gradient learning framework 
based on the decision tree concept. The main advantages of LightGBM over XGBoost are that it uses less mem-
ory, uses a leaf-wise growth method with depth constraints, and uses a histogram-based technique to speed up 
the training process. LightGBM discretizes continuous floating-point eigenvalues to k bins through using the 
aforementioned histogram technique, resulting in a k-width histogram. Furthermore, the histogram technique 
does not require additional storing of pre-sorted results, and values may be stored in an 8-bit integer after feature 
discretization, reducing memory usage to 1/8. Despite this, the model’s accuracy suffers as a result of the harsh 
partitioning method. LightGBM also employs a leaf-by-leaf technique, which is more successful than the usual 
level-by-level strategy. The reason for this inefficiency in level-wise approach is that at each step, only leaves from 
the same layer are examined, resulting in unnecessary memory allocation. Alternatively, at each stage of the leaf-
wise method, the algorithm finds the leaves with the largest branching gain, and then proceeds to the branching 
cycle. In comparison to the horizontal direction, errors can be reduced and greater precision can be attained with 
the same number of segmentations. The leaf-wise tree development technique is illustrated in Fig. 2. The disad-
vantage of leaf orientation is that it forces you to build deeper decision trees, which invariably leads to overfitting. 
On the other hand, LightGBM prevents overfitting while maintaining high efficiency by imposing a maximum 
depth restriction on the leaf top97,98.

For a specific training dataset X =
{

(xi , yi)
}m

i=1
 , LightGBM searches an approximation f̂ (x) to the function 

f*(x) to minimize the expected values of specific loss functions L (y, f (x)):

(4)
L =

n
∑

i
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Figure 2.   Leaf-wise tree development in LightGBM.
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LightGBM ensembles many T regression trees 
T
∑

t=1
ft(x) to approximate the model. The regression trees are 

defined as wq(x), q ∈ {1, 2, . . . ,N} , where q shows the decision rule of trees, N is defined as the count of tree leaves, 
and w denotes a vector shows the sample weights of leaf nodes. The model is trained in the additive form at step 
t:

To estimate the objective function, the newton’s approach is employed.

Gradient boosting with categorical features support (CatBoost).  CatBoost, which employs one 
hot max size (OHMS) that is a permutation technique beside the target-based statistics, employs categorical 
columns for categorical boosting. For a new split of the present tree, a greedy approach is utilized in this meth-
odology, allowing CatBoost to identify the exponential evolution of the feature combination99. In CatBoost, for 
each feature with more categories than OHMS, the following steps are applied:

1.	 Records are divided into subsets at random.
2.	 Integer conversion of labels
3.	 Convert categorical features to numeric values as follows:

where countInClass is the number of targets having a value of one for a category attribute, and totalCount is the 
number of preceding objects (the starting parameters specify prior to count objects)100,101.

Equations of state (EOSs).  EOS is a mathematical expression for the connection among a substance’s 
volume, temperature, and pressure. This equation may be used to explain VLE, volumetric behavior, and 
thermodynamic properties of mixtures and pure substances. EOSs are used to estimate the phase behavior 
of petroleum fluids. As previously stated, EOSs have poor predictors of gas solubility in solvents, particularly 
under complicated working circumstances. Five EOSs were used to assess N2 solubility in hydrocarbons in this 
research, and their reliability in predicting N2 solubility is compared to ML algorithms. Mathematical equations 
of implemented EOSs are shown in Table 3. Table 4 also shows the parameters of the EOSs. Also, some required 
molecular parameters corresponding to each substance which is investigated with PC-SAFT EOS are provided 
in Table 5. Besides, a proper mixing rule is needed to use for estimation of each mixture’s parameters. In this 
study, van der Waals one-fluid mixing rules have been utilized, and its corresponding mathematical expression 
is provided in Table 4.

Evaluation of models
The following statistical parameters, namely root mean square error (RMSE), standard deviation (SD), and coef-
ficient of determination (R2) were used in this survey to evaluate the performance of models:

(7)f̂ (x) = argmin
f

Ey,xL(y, f (x))

(8)Gt
∼=

N
∑

i=1

L(yi , Ft−1(xi)+ ft(xi))

(9)avg Target =
countInClass + prior

totalCount + 1

(10)RMSE =

√

√

√

√

1

Z

Z
∑

i=1

(

NSi,exp − NSi,pred
)2

(11)R2 = 1−

Z
∑

i=1
(NSi,exp − NSi,pred)

2

Z
∑

i=1
(NSi,exp − NSexp)2

Table 3.   EOSs Formulas utilized in this study.

EOS Formula References

ZJ P = RT
ν−b − α

T1/2ν(ν+b)
102

RK P = RT
ν−b − α√

Tν(ν+b)

103

SRK P = RT
ν−b − aα

(ν+c)(ν+b+2c)
103,104

PR P = RT
ν−b − aα

(v+c)(v+2c+b)+(b+c)(v−b)
103,104

PC-SAFT ã = A
kTN = ãhc + ãid + ãdisp + ãassoc 105,106
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Table 4.   Parameters of EOSs and mixing rules.

EOS Parameters References

ZJ Parameter α and b are calculated as functions of temperature and pressure. For complex mixtures,bi = bZJi

[

1+ b0

(

T
TC

− 1
)]

102

RK
a = 0.42748

R2T2.5
C

PC

b = 0.08664
RTC

PC

103

SRK

a = 0.42747
(RTC)

2

PC

b = 0.08664
RTC

PC

m = 0.48508+ 1.5517ω − 0.1561ω2

α =
[

1+m
(

1−
√

Tr

)]2

c =
0.40768RTC(0.29441− ZRA)

PC

ZRA = 0.29506− 0.08775ω

103,104

PR

α =
[

1+m
(

1−
√

Tr

)]2

a = 0.45724
(RTC)

2

PC

m = 0.3796+ 1.485ω − 0.1644ω2 + 0.01667ω3

b = 0.07780
RTC

PC

c =
0.40768RTC(0.29441− ZRA)

PC

For non - hydrocarbons and hydrocarbons lighter than C7 :

c =
0.50033RTC

PC
(0.25969− ZRA)

ZRA = 0.29506− 0.08775ω

103,104

PC-SAFT

ãhc = mãhs + ãchain = mãhs −
∑

i

xi(mi − 1) ln ghsij

m =
∑

i

ximi

ãhs =
1

ζ0

[

3ζ1ζ2

1− ζ3
+

3ζ 32
ζ3(1− ζ3)2

+

(

ζ 32

ζ 23
− ζ0

)

ln(1− ζ3)

]

ζn =
π

6
ρ
∑

i

ximid
n
i n ∈ {0, 1, 2, 3}, η = ζ3

di = σi

[

1− 0.12 exp
(

−3
εi

kT

)]

ghsij =
1

1− ζ3
+

(

didj

di + dj

)

2ζ2

(1− ζ3)2
+

(

didj

di + dj

)2 2ζ 22
(1− ζ3)2

ãdis = −2πρI1(η,m)m2εσ 3 − πρmC1(η,m)I2(η,m)m2ε2σ 3

I1(η,m) =

6
∑

i=0

ai(m)ηi ,I2(η,m) =

6
∑

i=0

bi(m)ηi

where ai and bi depend on the chain length as given in Gross and Sadowski105

C1 =

[

1+m
8η − 2η2

(1− η)4
+ (1−m)

20η − 27η2 + 12η3 − 2η4

[(1− η)(2− η)]2

]

m2εσ 3 =
∑

i

∑

j

xixjmimj

( εij

kT

)

σ 3
ij

m2ε2σ 3 =
∑

i

∑

j

xixjmimj

( εij

kT

)2
σ 3
ij

εij =
√
εiεj

(

1− kij
)

σij =

(

σi + σj
)

2

The expressions for the contributions from the dispersion and ideal gas are identical to those of Gross and Sadowski105

105,106

Van der Waals one-fluid mixing rules

a =

N
∑

i=1

N
∑

j=1

zizj
√
aiaj

[

1− kij(T)
]

b =

N
∑

i=1

zibi

103,107
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where Z, NSi,exp, and NSi,pred are the count of data, experimental N2 solubility, and predicted N2 solubility in 
normal alkanes, respectively.

On the other hand, the following graphical tools were utilized simultaneously to evaluate the performance 
of the ML models:

Cross plot: The most well-known graphical analysis in which the predicted values are plotted against the 
measured values and the accuracy of the models is evaluated by examining the proximity of the data points to 
the unit slop line.

Trend plot: This plot helps to check the validity of the model by sketching both real data and the model’s 
estimation versus the specific property or data index.

Error distribution plot: The error (measured value − predicted value) is plotted against the real data to assess 
the scatter of data around the zero-error line and to explore the possible error trend.

Histogram plot of errors: This graph shows how the errors from the model are distributed. This statistical tool 
indicates the discrepancy between the measured and predicted values, in which a normal distribution centered 
at zero error is expected for a good model.

Results and discussion
Model optimization and tuning.  To find the best model in each aforementioned algorithm, a routine 
procedure has been done to find the hyperparameters and the other functional features of each model. Since 
these models have been implemented in python, different libraries including scikit-learn for k-NN and Random 
forest110, xgboost for XGBoost, lightgbm for LightGBM98, and catboost99 for Catboost have been employed in 
this study. In each of these involves some parameters that should be set by user or they can be work on default 
mode. To find the best model state in each of algorithms, a wide range of selective parameters have been selected 
and the best model based on the training and test data RMSE has been chosen. The search space and the final 
arrangements of model are provided in Table 6.

Statistics and performance metrics of the models.  The model’s precision in predicting N2 solubil-
ity in normal alkanes was assessed statistically based on several statistical criteria including RMSE, R2, and SD. 
Table 7 reports the calculated values of these statistical factors for the training subset, testing subset, and the 
entire dataset of all ML models. The possibility of overtraining is completely rejected given that no meaning-
ful difference was seen between the testing and training subsets for all models. Based on Table 7, the CatBoost 
model has the lowest prediction errors among the developed ML models with RMSE values of 0.0125, 0.0213, 
and 0.0147 for the training subset, testing subset, and the entire dataset, respectively. Also, the overall R2 of 
0.9943 for the CatBoost model is higher than other models and has a lower SD, indicating a better fit for this 

(12)SD =

√

√

√

√

1

Z − 1

Z
∑

i=1

(

NSi,exp − NSi,pred

NSi,exp

)2

Table 5.   Parameters of PC-SAFT EOS105,108,109.

Component Formula
Molecular weight 
(Mw) [g/mol] Tc[K] Pc[MPa]

Segment number 
( m) [–]

Segment diameter 
( σ) [Å]

Energy parameter 
( ε/k) [K]

Nitrogen N2 28.0134 126 3.395 1.26985 3.26557 88.136

Hexatriacontane C36H74 507 872 0.47 13.91529 4.24904 288.462

Octacosane C28H58 394.8 832 0.727 11.30955 4.16680 252.655

Eicosane C20H42 282.5475 768 1.07 8.40357 4.20929 248.984

Hexadecane C16H34 226.41 723 1.4 7.06791 4.07765 245.032

n-Decane C10H22 142.285 618 2.11 4.6627 3.8384 243.87

Table 6.   Models’ tuning search space and selected model based on RMSE.

Model Search space No. of tuning models Selected model

k-NN
k = [1, 20], weights = [Distance, Uniform], algorithm = [Auto, Ball 

tree, KD tree, Brute], leaf size = [10,100, step = 10], distance = [Man-
hattan, Euclidean]

3200 k = 2, weights = Uniform, algorithm = Auto, leaf size = 10, dis-
tance = Euclidean

Random forest Tree numbers = [10,200, step = 10], Criterion = [MSE, MAE], Max 
features = [Auto, Sqrt, log2] 120 Tree numbers = 120, Criterion = mse, Max features = Auto

XGBoost Max depth = [3,10, step = 1], Subsample = [0.8, 0.9, 1], 
Booster = [gbtree, gblinear, dart], Learning rate = [0.01, 0.05, 0.1] 216 Max depth = 6, Subsample = 0.8, Booster = dart, Learning rate = 0.05

LightGBM Number of leaves = [5, 10, 20, 30, 40, 50], Learning rate = [0.01, 0.05, 
0.1, 0.2], Max depth = [6,10, step = 1] 120 Number of leaves = 50, Learning rate = 0.2, Max depth = 10

Catboost Tree depth = [6,10, step = 1], Learning rate = [0.01, 0.05, 0.1], Loss 
function = [RMSE, MAE] 30 Tree depth = 10, Learning rate = 0.1

Loss function = MAE
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model to the experimental data. Moreover, random forest, XGBoost, LightGBM, and k-NN models are catego-
rized after the CatBoost model in terms of good performance, respectively.

As mentioned earlier, several EOSs have been used comparatively with the ML models to estimate N2 solu-
bility in normal alkanes. Hence, the solubilities of N2 in several normal alkanes namely Hexadecane, Eicosane, 
Octacosane, and hexatriacontane, which experimental values have been reported in the literature29,90, are esti-
mated utilizing ML models and EOSs. Tables 8, 9, 10 and 11 represented the N2 solubility data and predictions 
of EOSs and ML models along with RMSE values for each of them. As can be seen, the CatBoost model provides 

Table 7.   ML models’ statistics and performance metrics.

Model RMSE SD R2

k-NN

Total 0.0276 0.4632 0.9802

Train 0.0259 0.4799 0.9825

Test 0.0336 0.3901 0.9716

Random forest

Total 0.0208 0.2361 0.9886

Train 0.0170 0.1820 0.9931

Test 0.0319 0.3826 0.9760

XGBoost

Total 0.0241 0.8669 0.9859

Train 0.0219 0.9005 0.9884

Test 0.0316 0.7181 0.9767

LightGBM

Total 0.0295 0.7002 0.9790

Train 0.0276 0.6415 0.9801

Test 0.0328 0.8981 0.9729

CatBoost

Total 0.0147 0.1739 0.9943

Train 0.0125 0.1219 0.9960

Test 0.0213 0.3032 0.9887

Table 8.   Estimations of different EOSs and ML models for N2 solubility in Hexadecane.

Temperature 
(K)

Pressure 
(MPa)

Experiment 
(mole 
fraction) PR SRK RK ZJ PCSAFT k-NN

Random 
forest CatBoost XGBoost LightGBM

323.15 4.9 0.073 0.073892 0.071625 0.144902 0.063415 0.0768 0.037175 0.071356 0.073036 0.082158 0.070108

323.15 9.8 0.135 0.136743 0.132524 0.261235 0.117323 0.1386 0.104 0.131207 0.134779 0.136789 0.123276

323.15 19.6 0.223 0.237912 0.230084 0.433672 0.203614 0.2308 0.231 0.218454 0.222653 0.214433 0.218651

323.15 29.4 0.282 0.315963 0.304564 0.550651 0.269623 0.2960 0.294 0.291091 0.282016 0.291839 0.280639

323.15 39.2 0.326 0.378184 0.363228 0.640202 0.321973 0.3612 0.345 0.333536 0.325985 0.328946 0.322025

323.15 49 0.36 0.429033 0.410621 0.705706 0.364692 0.4264 0.3865 0.37509 0.360008 0.367519 0.349678

373.15 4.9 0.078 0.074263 0.073492 0.146725 0.069883 0.0892 0.039755 0.075178 0.078577 0.083729 0.072468

373.15 9.8 0.142 0.138759 0.13687 0.266309 0.130523 0.1620 0.11 0.140184 0.141646 0.140065 0.139086

373.15 19.6 0.239 0.245062 0.240172 0.447042 0.230063 0.2726 0.246 0.234459 0.238616 0.224191 0.24045

373.15 29.4 0.306 0.328896 0.320386 0.575301 0.308027 0.3521 0.3185 0.310965 0.304803 0.303363 0.306795

373.15 39.2 0.364 0.396591 0.384215 0.670128 0.370614 0.4118 0.3815 0.366843 0.364023 0.351979 0.352143

373.15 49 0.413 0.452314 0.436068 0.743035 0.421921 0.4715 0.4365 0.420793 0.41301 0.395695 0.387751

423.15 4.9 0.093 0.077963 0.078507 0.152567 0.077978 0.1020 0.07395 0.089375 0.087169 0.093703 0.086517

423.15 9.8 0.158 0.146119 0.146234 0.277521 0.146155 0.1851 0.1556 0.158329 0.150375 0.171655 0.161286

423.15 19.6 0.253 0.259183 0.256632 0.467131 0.25905 0.3116 0.27415 0.261208 0.252872 0.266006 0.26376

423.15 29.4 0.331 0.348808 0.342327 0.6028 0.348188 0.3902 0.3185 0.346806 0.331465 0.349459 0.341662

423.15 39.2 0.399 0.421327 0.410442 0.704483 0.420007 0.4702 0.3815 0.418967 0.398995 0.417612 0.403085

423.15 49 0.46 0.481033 0.465681 0.784954 0.47891 0.5495 0.4365 0.48882 0.459886 0.474527 0.46766

473.15 4.9 0.1015 0.084643 0.086472 0.161361 0.085461 0.1164 0.09635 0.097778 0.100989 0.096573 0.095005

473.15 9.8 0.176 0.158538 0.160499 0.293945 0.160388 0.2107 0.1726 0.176568 0.172191 0.177822 0.163749

473.15 19.6 0.287 0.280484 0.279759 0.494149 0.284606 0.3528 0.29115 0.299906 0.289682 0.315014 0.308673

473.15 29.4 0.377 0.376499 0.371171 0.637714 0.38278 0.4538 0.3599 0.38452 0.377019 0.378863 0.368444

473.15 39.2 0.455 0.453705 0.443122 0.747637 0.461885 0.5282 0.4855 0.483065 0.45509 0.469246 0.47425

473.15 49 0.527 0.516916 0.501016 0.843771 0.526735 0.5848 0.56 0.544546 0.526918 0.518121 0.527232

RMSE 0.024546 0.017951 0.236762 0.012009 0.04857 0.021663 0.011942 0.002204 0.011869 0.010353
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the best estimates among the ML models and EOSs for the N2 solubility in all considered normal alkanes. ZJ EOS 
also had precise estimations for solubility values and outperformed other EOSs. On the other hand, as shown 
in Table 3, the Péneloux-type volume translation (c) has been used in the PR and SRK EOSs for the sake of 
investigation. Based on our studies, Péneloux-type volume translation does not have any effect on the obtained 
solubility values111,112.

Table 9.   Estimations of different EOSs and ML models for N2 solubility in Eicosane.

Temperature 
(K)

Pressure 
(MPa)

Experiment 
(mole 
fraction) PR SRK RK ZJ PCSAFT k-NN

Random 
forest CatBoost XGBoost LightGBM

323.2 4.49 0.061 0.069247 0.072369 0.156472 0.0647 0.0978 0.06965 0.069154 0.05889 0.069354 0.064474

323.2 5.13 0.0689 0.078258 0.081793 0.176046 0.073128 0.1099 0.06965 0.069809 0.068936 0.081651 0.070776

323.2 5.25 0.0704 0.079926 0.083537 0.179648 0.074688 0.1121 0.06965 0.070881 0.070321 0.081651 0.071701

323.2 7.54 0.0967 0.110494 0.115507 0.244533 0.103277 0.1522 0.08355 0.096815 0.096834 0.107496 0.097726

323.2 10.61 0.1292 0.148044 0.154761 0.321219 0.138373 0.1993 0.11295 0.133487 0.129172 0.143991 0.137048

323.2 11.9 0.1413 0.162768 0.170142 0.350366 0.152123 0.2171 0.15405 0.155163 0.139204 0.153521 0.14747

323.2 16.22 0.1789 0.208111 0.217434 0.436792 0.194401 0.2700 0.18275 0.186544 0.177966 0.192096 0.19271

323.2 17.23 0.1866 0.217914 0.227641 0.454814 0.203529 0.2811 0.18275 0.190868 0.18667 0.199734 0.200127

373.2 4.03 0.0629 0.062276 0.065174 0.140174 0.062646 0.0999 0.0697 0.06235 0.058326 0.055584 0.065675

373.2 4.61 0.0715 0.070622 0.073885 0.158237 0.071043 0.1126 0.0702 0.071369 0.071417 0.069449 0.072104

373.2 8.33 0.1199 0.120877 0.126194 0.263387 0.12159 0.1859 0.10395 0.132528 0.127787 0.154828 0.125944

373.2 9.74 0.1364 0.138558 0.144536 0.298913 0.13936 0.2105 0.15015 0.137541 0.137141 0.143446 0.136792

373.2 12.1 0.1639 0.166634 0.173592 0.353769 0.167558 0.2483 0.15015 0.165703 0.16413 0.168247 0.165751

373.2 14.61 0.1905 0.194577 0.202417 0.406485 0.195592 0.2844 0.1772 0.193454 0.18934 0.193176 0.201639

423.2 3.83 0.0679 0.061614 0.064751 0.136393 0.065181 0.1058 0.08045 0.065761 0.067853 0.060686 0.059676

423.2 5.38 0.093 0.084663 0.088807 0.185062 0.089567 0.1428 0.08045 0.094388 0.093002 0.093197 0.09094

423.2 7.76 0.1278 0.118145 0.123589 0.253441 0.124987 0.1942 0.13615 0.125303 0.125503 0.134516 0.126349

423.2 8.89 0.1445 0.133285 0.139252 0.283474 0.140998 0.2167 0.13615 0.151786 0.146367 0.170064 0.148176

423.2 11.09 0.1728 0.161462 0.168293 0.337927 0.170784 0.2570 0.15865 0.181252 0.172828 0.180376 0.190832

423.2 14.24 0.2121 0.199048 0.20681 0.407718 0.210489 0.3083 0.19245 0.216864 0.212101 0.231485 0.215076

RMSE 0.013682 0.017248 0.16285 0.006777 0.06872 0.011408 0.005864 0.002276 0.013652 0.007367

Table 10.   Estimations of different EOSs and ML models for N2 solubility in Octacosane.

Temperature 
(K)

Pressure 
(MPa)

Experiment 
(mole 
fraction) PR SRK RK ZJ PCSAFT k-NN

Random 
forest CatBoost XGBoost LightGBM

348.2 4.3 0.0726 0.066536 0.078483 0.187781 0.075533 0.1051 0.0794 0.070957 0.072598 0.072464 0.079949

348.2 6.93 0.1108 0.102759 0.12115 0.282369 0.116653 0.1576 0.1221 0.103017 0.110783 0.112164 0.109869

348.2 8.04 0.1245 0.117152 0.138085 0.318477 0.132984 0.1776 0.1221 0.128687 0.125423 0.138509 0.119371

348.2 8.7 0.1334 0.125475 0.147873 0.338976 0.142424 0.1890 0.1221 0.130848 0.133295 0.14151 0.135998

348.2 13.7 0.1909 0.183373 0.215831 0.474004 0.208019 0.2641 0.19045 0.187373 0.190084 0.179635 0.193985

348.2 16.47 0.2181 0.211983 0.249312 0.535941 0.240375 0.2987 0.19045 0.204173 0.214211 0.179635 0.215489

373.2 4.87 0.0862 0.074604 0.086625 0.205827 0.086208 0.1248 0.20945 0.082122 0.086196 0.211254 0.094801

373.2 5.63 0.0988 0.085242 0.098939 0.233281 0.098494 0.1413 0.0925 0.096927 0.099156 0.088713 0.102459

373.2 9.08 0.1466 0.130556 0.151272 0.345099 0.150787 0.2081 0.0925 0.141822 0.146078 0.096741 0.150893

373.2 10.89 0.1698 0.152539 0.176585 0.39642 0.176125 0.2388 0.1582 0.172329 0.169884 0.14843 0.181823

373.2 14.18 0.2071 0.189699 0.21925 0.478967 0.2189 0.2881 0.1582 0.202881 0.208983 0.169716 0.213385

373.2 16.1 0.2289 0.209871 0.24234 0.521621 0.242087 0.3136 0.218 0.225081 0.229179 0.206457 0.238142

423.2 4.46 0.0896 0.070605 0.080209 0.188867 0.083902 0.1290 0.218 0.086009 0.089635 0.219019 0.093516

423.2 5.11 0.101 0.080124 0.090957 0.212741 0.095202 0.1451 0.0953 0.0995 0.100356 0.076733 0.107104

423.2 9.31 0.1689 0.137473 0.155382 0.349017 0.163206 0.2360 0.0953 0.166621 0.168771 0.095737 0.172708

423.2 11.07 0.1951 0.159546 0.180026 0.39815 0.189337 0.2685 0.13495 0.186831 0.200133 0.174195 0.210017

423.2 13.94 0.232 0.193334 0.217579 0.469966 0.229281 0.3158 0.16935 0.232566 0.243504 0.188552 0.234811

423.2 16.01 0.2578 0.216144 0.242814 0.516219 0.256208 0.3462 0.188 0.257379 0.261813 0.24326 0.259564

RMSE 0.021252 0.014062 0.211599 0.009122 0.0644 0.055889 0.005081 0.00329 0.051468 0.006583
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Graphical analysis of the models.  In the next step, the evaluation of the ML models is performed by 
graphical analysis. First, cross plots of the experimental N2 solubility data versus predicted values by the ML 
models for the training and testing stages are presented in Fig. 3. All five ML models performed well in both 
training and testing stages and most of the data points are accumulated around the X = Y line, although the scat-
ter of points is much less for the CatBoost model and is more concentrated around the X = Y line, indicating the 
excellent performance of this model in estimating N2 solubility in normal alkanes.

Next, the distributions of the N2 solubility prediction errors (measured—predicted) utilizing the ML models 
versus the experimental data are shown in Fig. 4. High concentrations of near-zero error points for a predictive 
tool indicate a better performance of that predictive tool in predicting N2 solubility in normal alkanes. Again, the 
CatBoost model resulted in near-zero errors, verifying its accuracy and reliability. However, other ML models 
especially random forest shows good predictions with low errors for the N2 solubility in normal alkanes.

The next step of the graphical assessment of introduced ML models for the prediction of N2 solubility in nor-
mal alkanes is related to the frequency of errors. Figure 5 depicts the histograms of errors corresponding to the 
proposed ML models in this work. As it is clear, the symmetric distributions are seen in the histogram graphs of 
all ML models. Also, the bursts of growing at the zero-error value for all developed models confirm the superb 
match between estimated and experimental data of N2 solubility in normal alkanes. However, the percentage 
frequency of errors at the zero-error value is about 85% for the CatBoost model and it is much higher than other 
ML models indicating the high credit of this model in estimating N2 solubility in normal alkanes.

However, all the models used in this study show satisfactory performances. As it is obvious from the statistical 
and graphical analyses, the CatBoost model shows the best performance among the implemented ML models. 
The performance of a model depends on many factors, such as the case of study and the structure of the dataset, 
and this superiority in performance for this model stems from two main reasons. The first one is the structure of 
the dataset used in this work, based on the shape of the dataset, there are many instances that have equal values 
in the n-1 feature and their only difference is in one feature. This feature enables the tree-based models to do 
a better splitting operation and finally brings higher accuracy. Secondly, Catboost models use symmetric trees 
and it helps to have a faster inference. Also, its boosting schemes are the main reason which avoids overfitting 
and increases the model quality after the training process. Finally, it should be noted that these advantages for 
Catboost strongly depend on the dataset and it cannot be generalized to all problems.

Pressure and temperature trend analysis.  As the final assessment step, various visual evaluations were 
executed to appraise the CatBoost model’s capability in various N2 solubility in hydrocarbons systems. Figure 6 
represents the effect of pressure on N2 solubility for n-Decane system at the temperature of 503 K. Figure 6 shows 
N2 solubilities estimated by the CatBoost model for this case, as well as the values determined by the EOSs along 
with the literature experimental results87. The mismatch between standard EOSs estimations and actual experi-
mental data is quite significant at high temperatures. As seen in this figure, the CatBoost model predicts experi-
mental data quite well. Based on expectations, the solubility of N2 in n-Decane rises as the pressure increases. 
Meanwhile, the EOSs overestimate or underestimate the N2 solubility ‘growth when pressure rises, while the 
CatBoost model strictly traces the trend.

The predictions of CatBoost and other proposed ML models for N2 solubility data in a light hydrocarbon 
(methane)61 under various operation conditions at a constant temperature of 180 K are provided in Fig. 7. All 
the intelligent models follow the trend well, and show a positive trend in N2 solubility as pressure increases. The 
CatBoost model, as shown in this figure, accurately recognizes data patterns and provides excellent estimations 
in all pressures.

Table 11.   Estimations of different EOSs and ML models for N2 solubility in Hexatriacontane.

Temperature 
(K)

Pressure 
(MPa)

Experiment 
(mole 
fraction) PR SRK RK ZJ PCSAFT k-NN Random forest CatBoost XGBoost LightGBM

373.2 5.3 0.1054 0.100115 0.119624 0.27005 0.1091 0.1122 0.1191 0.086086 0.107791 0.098838 0.098058

373.2 6.1 0.1197 0.113623 0.135666 0.303165 0.12391 0.1265 0.15655 0.110326 0.119716 0.110251 0.112788

373.2 11.1 0.1934 0.190101 0.226027 0.476773 0.208135 0.2043 0.15655 0.183293 0.192674 0.183441 0.183233

373.2 12.23 0.2089 0.205684 0.244338 0.509363 0.225374 0.2195 0.2281 0.178168 0.220062 0.197588 0.185332

373.2 16.81 0.2628 0.263397 0.311838 0.622316 0.289448 0.2740 0.26885 0.249988 0.262435 0.247149 0.248294

373.2 17.99 0.2749 0.276987 0.327659 0.647204 0.304591 0.2880 0.26885 0.260137 0.275036 0.265712 0.263283

423.2 5.28 0.1185 0.100832 0.117151 0.264578 0.111689 0.1288 0.16125 0.110294 0.11853 0.103108 0.108029

423.2 5.56 0.124 0.105676 0.122727 0.276162 0.117085 0.1347 0.16125 0.111694 0.124989 0.115516 0.116324

423.2 10.22 0.204 0.179957 0.207662 0.442046 0.200167 0.2203 0.16125 0.188917 0.201519 0.18712 0.205322

423.2 11.71 0.2263 0.201423 0.232003 0.48608 0.22429 0.2439 0.23935 0.195252 0.206822 0.198636 0.210017

423.2 15.21 0.2747 0.248073 0.284586 0.576178 0.27689 0.2933 0.28585 0.259206 0.274785 0.261637 0.255037

423.2 17.11 0.297 0.27139 0.310707 0.618474 0.303271 0.3172 0.28585 0.284358 0.296956 0.281106 0.26342

RMSE 0.016584 0.026301 0.268031 0.01375 0.01345 0.02709 0.017559 0.006567 0.014350 0.015957
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Finally, a similar trend analysis performed to investigate the performance of different ML models at vari-
ous temperature states to estimate the N2 solubility in n-hexane at the constant pressure of 27.57 MPa74. Based 
on Fig. 8, similar to the previous case, a satisfactory trend capturing is observed in all the intelligent models. 
However, the Catboost model provides more accurate predictions. Also, the figure indicates an increase in N2 
solubility as temperature rises.

Sensitivity analysis.  Utilizing the CatBoost model as the best-developed model in the current study, a sen-
sitivity analysis was performed. To this end, the relevancy factor (r)113 was calculated for each input parameter 
using the following equation, with the knowledge that the higher the r-value, the greater impact on the model’s 
output. It should also be noted that the positive r-value for a parameter indicates its direct effect on the output 
of the model and vice versa114.
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Figure 3.   Cross plots of experiments vs predictions for the ML models.
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where Ii,j represents the jth value of the ith input variable (i is molecular weight of normal alkanes, pressure, 
and temperature); Im,i shows mean value of the ith input; NSm and NSj denote the mean value and the jth value 
of predicted N2 solubility in normal alkanes, respectively. The outcomes of the relevancy factor analysis are 
depicted in Fig. 9. According to Fig. 9, all input parameters, namely temperature, pressure, and molecular weight 
of normal alkanes have a positive effect on N2 solubility in normal alkanes. The results reveal that the pressure 
has the greatest impact on N2 solubilities in normal alkanes and the N2 solubility increases with increasing the 
molecular weight of normal alkanes. Based on Henry’s law, the amount of dissolved gas in a liquid is proportional 
to its partial pressure in equilibrium with that liquid. When the gas is at a higher pressure, its molecules collide 
more with each other and with the liquid’s surface. As the molecules collide more with the surface of the liquid, 
they can squeeze between the liquid molecules and thus become a part of the solution115,116. On the other hand, 
the sensitivity analysis overall shows that the solubility of N2 in normal alkanes increases when the temperature 
increases. This shows the reverse order solubility phenomenon that is the opposite of what commonly happens for 
a binary mixture of a supercritical component and a subcritical component73,81. The reason for this may be due to 
the repulsive nature of N2–N2 interaction. The N2–N2 repulsive force decreases with an increase in temperature, 
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Figure 4.   Prediction error distributions of ML models.
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which results in increased solubility of N2 at higher temperatures. However, increasing the solubility of N2 with an 
increase in temperature may not be true for all normal alkanes and literature survey shows that the N2 solubility 
in methane and ethane decreases with increasing temperature117. Normal alkanes are nonpolar, as they contain 
nothing but C–C and C–H bonds. N2 is also a nonpolar molecule and nonpolar substances tend to dissolve in 
nonpolar solvents such as normal alkanes. The molecular weight of the normal alkanes is mainly increased by 
adding C–C and C–H bonds. The obvious consequence of this is that the N2 solubility increases as the number 
or length of the nonpolar chains increases.

Conclusions
In the present work, N2 solubility in normal alkanes (nC1 to nC36) was modeled using five representative ML 
models namely CatBoost, k-NN, LightGBM, random forest, and XGBoost by utilizing a large N2 solubility 
databank in a wide range of operating temperature (91.21–703.4 K) and pressure (0.0212–69.12 MPa). Also, 
five EOSs namely RK, SRK, ZJ, PR, and PC-SAFT were used comparatively with the ML models to estimate N2 
solubility in normal alkanes. The developed CatBoost model was superior to all of ML models and EOSs with 
an overall RMSE of 0.0147 and R2 of 0.9943. Moreover, Random Forest, XGBoost, LightGBM, and k-NN models 
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Figure 5.   Histograms of errors for the ML models.
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were ranked after the CatBoost model in terms of good performance, respectively. Furthermore, ZJ EOS showed 
the best performance among the EOSs. Finally, the results of relevancy factor analysis indicated that all input 
variables to the models, namely temperature, pressure, and molecular weight of normal alkanes have a positive 
effect on N2 solubilities in normal alkanes and pressure has the greatest effect among these input variables. The 
solubility of N2 increases with increasing the molecular weight of normal alkanes.
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Figure 6.   Pressure trend analysis of N2 solubility based on the results of various EOSs and Catboost ML model 
for n-Decane at T = 503 K.
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Figure 7.   Pressure trend analysis of N2 solubility based on the results of implemented ML models for Methane 
at T = 180 K.
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