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Selection of effective 
manufacturing conditions 
for directed energy deposition 
process using machine learning 
methods
Jong‑Sup Lim1, Won‑Jung Oh2, Choon‑Man Lee2* & Dong‑Hyeon Kim3*

In the directed energy deposition (DED) process, significant empirical testing is required to select the 
optimal process parameters. In this study, single‑track experiments were conducted using laser power 
and scan speed as parameters in the DED process for titanium alloys. The results of the experiment 
confirmed that the deposited surface color appeared differently depending on the process parameters. 
Cross‑sectional view, hardness, microstructure, and component analyses were performed according 
to the color data, and a color suitable for additive manufacturing was selected. Random forest (RF) 
and support vector machine multi‑classification models were constructed by collecting surface color 
data from a titanium alloy deposited on a single track; the accuracies of the multi‑classification models 
were compared. Validation experiments were performed under conditions that each model predicted 
differently. According to the results of the validation experiments, the RF multi‑classification model 
was the most accurate.

Metal additive manufacturing (AM) technology has emerged in the aircraft, automobile, and shipbuilding indus-
tries, and can realize designs that are not possible using conventional manufacturing  methods1. Metal AM tech-
nologies can be classified into powder bed fusion (PBF) and direct energy deposition (DED) processes. The PBF 
process uses thermal energy (laser or electron beam) to selectively fuse regions of a powder bed, layer by layer, 
allowing the manufacture of complex shapes. The DED process uses a metal wire or powder combined with a 
thermal energy source to directly deposit material onto a substrate, resulting in excellent mechanical properties 
such as strength and  elongation2,3. The PBF process fills the bed with powder, whereas the DED process feeds 
powder or wire only to where it is deposited. The DED process has been widely applied in the repair, remanufac-
ture, and functional coating of metallic  components4–6. In this study, the laser powder DED process was used. A 
diagram of the laser powder DED process is shown in Fig. 1. Laser power, scan speed, and powder feeding rate 
are process parameters applicable to the DED process. Depending on these parameters, the product quality such 
as the deposit height and width of the single-track, adhesion to the substrate, and porosity. In the DED process, 
product quality is affected by process parameters and researchers have studied their  effects7,8.

Machine learning (ML), a branch of artificial intelligence (AI), is widely used to improve process quality, opti-
mize manufacturing processes, and reduce costs in AM  research9–12. Supervised learning is the most widely used 
method in AM research, classification and regression have been actively applied. The main difference between 
classification and regression is whether the outcome to predict is continuous or not. For example, regression 
should be used to predict dimensional values with continuity and classification should be used to predict defects 
through images. To make good use of machine learning, it is important for users to accurately recognize the 
problem they need to solve and to choose the algorithm to use. Khanzadeh et al. compared the performance of 
supervised learning methods for porosity  prediction13. Sreeraj and Kannan et al. used an artificial neural net-
work (ANN) to predict the track dimensions for wire feed gas metal arc welding using a range of input process 
 parameters14. Li et al. studied a deep learning-based process monitoring method and a quality identification 
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method for the metal AM  process15,16. Gaikwad et al. studied heterogeneous sensing and machine learning for 
single-track quality in laser powder bed  fusion17. Feenstra et al. demonstrated the complex interactions and 
relationships between the parameters using artificial neural networks in DED processes for Inconel 625, Hastel-
loy X, and stainless steel 316  L18. Random forest (RF) and SVM are ML algorithm methods for classification. 
Zhan et al. studied the prediction of the fatigue life of deposited SS 316 L using an ANN, RF, and  SVM19. Zhang 
et al. studied the PBF process using SVM and a convolutional neural network (CNN) to identify and classify the 
deposition quality level, and compared the classification  accuracy20. Gobert et al. described the development and 
implementation of an in situ defect detection strategy for PBF using an  SVM21. Aoyagi et al. proposed a simple 
method for constructing a process map for additive manufacturing using an  SVM22. Many researchers have used 
machine learning for complex processes.

Titanium alloy is widely used in the aerospace and medical industries due to its excellent mechanical proper-
ties and corrosion resistance. Titanium alloy microstructure fabricated by DED is observed to have a range of 
as-deposited microstructures primarily classified as being basket-weave widmanstatten, or acicular or martensitic 
and consist of large prior-β grains that grow epitaxially across subsequent build layers in  DED23. The laser power 
and scan speed, the process parameters of this study, affect the amount of the cooling rate. The effects of cooling 
rate during additive manufacturing can change the resulting microstructure which affects mechanical properties.

The aim of this study is to obtain effective manufacturing conditions for a single-track DED process for tita-
nium alloy powder. The laser power and scan speed were set as the process parameters. The deposited microstruc-
ture of titanium alloy made by AM is anisotropic due to the rapid solidification where the material is added in a 
layer-by-layer fashion. The deposited samples were labeled by surface color and used as training data for machine 
learning. Labeled samples were analyzed using cross-sectional view, hardness, microstructure, and component 
analyses, and the best deposition surface color was selected. Three prediction models were proposed using RF 
and SVM in machine learning methods. The results of the validation experiments confirmed the RF model as 
the best model. The proposed model can be used as an index to select effective manufacturing conditions for 
the DED process for titanium alloy powder.

Methods and materials
Classifiers. Random forest (RF). Decision tree A decision tree is a predictive model used to effectively clas-
sify a dataset. The predictive model divides the dataset into smaller subsets to determine the best decision in 
the analysis process. However, as only one variable is considered at a time, there is a limitation in assessing the 
interaction between variables. An RF model appears to solve this problem.

Bagging (bootstrap aggregating) Bagging refers to an algorithm that creates multiple classifiers; the final clas-
sifier is decided by voting. Bootstrap sampling is a method that allows overlapping of some data in the dataset.

Random forest classifier An RF is a machine learning technique used to classify data. An RF is an ensemble 
method, a machine learning technology expressed as a forest composed of numerous decision trees. An RF is 
divided using the bootstrapping method. Decision tree classifiers sample data based on bagging, perform train-
ing, and make prediction decisions through voting. In this study, using the random forest classifier using the 
deposited surface color as training data, The surface color of the unexperimented area was predicted.

In an RF, the overfitting of the decision tree algorithm is reduced by combining multiple decision trees to 
obtain an accurate final  decision24. A functional diagram of an RF classifier is shown in Fig. 2.

Support vector machine (SVM). An SVM is a machine learning technique used to classify data. The concept of 
applying an SVM to pattern classification can be described as follows. First, the input vector is mapped linearly 

Figure 1.  Diagram of laser powder direct energy deposition.
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or nonlinearly into one feature space (possible at higher dimensions). The optimized linear segmentation is 
determined within the functional space from the first step. In some cases, data points that are not linearly sepa-
rable are transformed using kernel functions to become linearly separable. The kernel methods map the input 
space data, which is a low dimension space, into a much higher dimensional feature space using a nonlinear 
mapping ∅ . There is a highly effective trick for calculating inner products in the feature space using a kernel 
function.

By using kernel functions, various types of nonlinear models in the original space could be constructed. The 
kernel functions used in this study are listed as follows.

(1) Polynomial kernel function

(2) Radial-basis kernel function (RBF)

where γ , c, and d are kernel parameters.

The input data are classified by selecting the appropriate hyperplane. The nearest point from the hyperplane 
is the support vector. As a classifier, the SVM finds a hyperplane in a high-dimensional space, which creates a 
maximum margin between the classes representing the longest distance between the closest data points. The 
input data are classified by selecting the appropriate hyperplane. The width of the margin is 2

‖w‖ , and when w is 
minimum, the margin is maximum. When ‖w‖2 becomes minimum, w becomes minimum, which is called SVM 
optimization. A functional diagram of the SVM is shown in Fig. 3.

Procedure. This section describes the experimental procedure flowchart. The objective function of the 
experiment was the deposition surface color and quality in the single-track titanium alloy DED process. The 
process parameters in the experiment were the laser power and scan speed. The experiment confirmed six sur-
face colors including silver, gold, brown, blue, blue-white, and deep blue. The color was defined with the naked 
eye. Cross-sectional view, hardness, and EDS component analysis were conducted to determine the structural 
and mechanical properties of the deposition surface, and the best surface color was selected. Three multi-clas-
sification models were proposed using RF and SVM, and their accuracies were compared. The best model was 
selected through validation experiments. A flowchart of the experimental procedure is shown in Fig. 4.

Experimental set‑up. In this experiment, a machine tool equipped with a high-power diode laser deposi-
tion head was used (Laytools, AK390). The maximum laser power was 2 kW at a wavelength of 980 nm. The laser 
focus was calibrated with a lens to a focal length of 198 mm and a laser beam diameter of 3 mm. Argon was used 
as the shield gas, and nitrogen was used as the powder-feeding gas. The powder-feeding gas supplied the metal 
powder to the melt pool using the 3-way powder carrying pipe of the additive head. A powder feeder (Oerlikon 
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Figure 2.  Functional diagram of random forest  classifier24.
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Metco, Twin 150) was used with a twin-feeder head system. The system quickly and stably controlled the powder 
feed rate. A cooling system with 780 W of power (Yescool, YRC-1A) was used to cool the equipment. The 3-axis 
stage (X, Y, Z) had a travel distance of 500 mm × 500 mm × 300 mm, a UMAC controller was used to control the 
3-axis stage, the feeder, and the laser head. The DED experimental setup is shown in Fig. 5.

Titanium alloy powder by the commercial product of KOS Ltd. was used. The metal powder is produced by 
the gas atomization method. The chemical composition of the powder is presented in Table 1. The particle size 
was 45–150 μm25.

Figure 3.  Functional diagram of support vector machine.

Figure 4.  Flowchart of experimental procedure.
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Results and discussion
Single‑track experiments and evaluation. The selection of process parameters is important in the 
DED process. The process parameters are the input values, and must be set prior to machine operation. The 
important parameters in the DED process are the laser power, scan speed, and powder feed rate. The accuracy 
and quality can be changed according to the values of each parameter. The process parameters are influenced by 
the material properties and the machine. Thus, studies have been conducted on the correlation between process 
parameters and output quality. Sampson et al. studied the effects of the powder mass flow rate and path velocity 
changes on the molten  pool26 The increase in the height and width of the single track with an increase in the 
powder feed rate is affected by the laser power; it cannot be simply assumed that the melt pool width increases 
as the powder feed rate increases. In this experiment, the powder feed rate was set to 14 g/min, considering the 
laser power and conservation of powder. The scan speed was set to 6–20 mm/s, considering the working time of 
the DED process. The laser power was set to 600–2000 W, considering the laser specifications and the melting 
of the powder. The process parameters and ranges used in the experiments are presented in Table 2. Single-track 
experiments were conducted. The surface color appeared differently according to changes in the laser power and 
scan speed.

Titanium alloys are easily oxidized and nitrified. Reaction with oxygen is the most problematic, whereas 
nitrogen is generally considered negligible Due to the rate at which titanium alloy reacts with oxygen, there is a 
very small but constant oxide layer on the  surface27. The formation of the oxide layer causes a color change on 
the surface of the titanium alloy. The color change in titanium alloy is a product of the oxidation  layer28. In the 
titanium alloy DED process, a multi-colored deposition surface may be the result of oxidation and nitrification. 
A total of 135 process parameter sets were tested. The observed surface colors are shown in Fig. 6. The color 
threshold can be checked in Appendix A.

A single track of 20 mm was deposited onto a 15 mm thick titanium alloy substrate. The single-tracks were 
sectioned through wire cutting such that cross-sections perpendicular to the scan tracks were exposed. The 
cross-sections were located 10 mm from the beginning of the scan track. The cross-sections were imaged using 
an Olympus LEXT laser confocal microscope. A diagram of a single-track cross-section is shown in Fig. 7.

Figure 5.  Experimental DED set-up.

Table 1.  Chemical composition of titanium alloy powder.

Element Ti Al C Fe V N O H

wt% Bal. 6.5 0.026 0.15 4.3 0.003 0.18 0.001

Table 2.  Process parameter ranges used in experiments.

Process parameter Test range

Laser power (W) 600–2000

Scan speed (mm/s) 6–20

Powder feed rate (g/min) 14

Argon gas flow (L/min) 25

Nitrogen gas flow (L/min) 5
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Cross-sectional view, hardness, and component analyses were performed to determine the structural and 
mechanical properties of the deposition surface. The cross-section was observed to assess the deposition quality 
according to the color. Figure 8 shows a cross-section while increasing the laser power after fixing the scan speed 
at 14 mm/s. From the analysis, the laser power increased the melt pool height, and the width increased. The colors 
of the deposition surface appeared in the order of silver, gold, brown, blue, and blue-white.

Figure 9 shows a cross-section while increasing the scan speed after fixing the laser power at 1000 W. From 
the analysis, the scan speed had a decreasing effect on the melt pool dimensions. The colors of the deposition 
surface appeared in the order of deep blue, white-blue, blue, brown, and gold.

Melt pool instability was confirmed in the deposition cross-sections. A scan speed too fast for the laser power 
resulted in insufficient heat input. With insufficient heat input, the surface color was silver. A high laser power 
and a slow scan speed result in excessive heat input. With excessive heat input, the surface color was deep blue. 
The instability of the melt pool is shown in Fig. 10. As explained in the experimental set-up, the laser spot is 
3 mm. When the surface color was silver, a cross-section that did not reach 3 mm was observed. Also, as shown 
in Fig. 10a, parts that were not completely melted or did not adhere to the substrate were observed. When the sur-
face color was deep blue (Fig. 10b), cross-sections of more than 3 mm were observed. In this case, it is excluded 
from the analysis because it is a disadvantage condition when multi-layer deposits and other shapes are made.

4 specimens with differnt surface colors were used for measurements. The specimens were hot-mounted using 
monting powder on the mounting press machine (NA-MA2031, Nanotech, Korea). And then, the specimens were 

Figure 6.  Deposition surface color results.

Figure 7.  Diagram of single-track cross-section.

Figure 8.  Titanium alloy deposited on substrate at constant scan speed of 14 mm/s with increasing laser power 
from 600 to 2000 W.
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polished on polisher with auto-head type (NA-P2000A, Nanotech, Korea). The final specimens for measurement 
were prepared by chemical etching after polishing.

An example of the prior-b grain morphology in DED is shown in Fig. 11. The microstructure characteristics 
of the deposition according to the surface color were confirmed using an electron scanning microscope. There 
are four deposition surface colors in the analysis: gold, brown, blue, and blue-white. The boundary region micro-
structure according to the color of the deposition surface is shown in Fig. 12. The growth of the microstructure 

Figure 9.  Titanium alloy deposited on substrate at constant laser power of 1000 W with increasing scan speed 
from 6 to 20 mm/s.

Figure 10.  Instability of melt pool: (a) insufficient heat input; (b) excessive heat input.

Figure 11.  An example of the prior-β grain morphology in DED.

Figure 12.  Boundary region microstructure according to deposition surface.
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is affected by the cooling rate. The microstructure could not be grown due to the fast cooling rate by the process 
parameters of the fast scan speed and low laser power. As a result of observing the boundary region when the 
surface color was gold or brown, it was confirmed that the microstructure did not grow into large prior-β grains 
due to the fast cooling rate (low laser power, fast scan speed). When the surface color was blue, large prior-β 
grains and non-grown microstructures were observed together as the microstructure grew with a slower cooling 
rate than before. When the surface color was blue-white, most of the microstructures grew and were observed 
as large prior-β grains. We wanted to obtain a microstructure most similar to that of the substrate. Therefore the 
optimal microstructure condition was selected by blue-white.

Hardness was measured using a rebound-type portable hardness tester manufactured from Mitutoyo. The 
hardness were measured at intervals of 5 mm in the deposit direction from a point 20 mm away from the deposi-
tion starting point. The hardness measurement diagram was shown in Fig. 13. Ten samples Hardness measure-
ment results by the color of the deposition surface are shown in Appendix B. It was confirmed that the tendency 
of hardness was the same for each surface color. The hardness measurement results by deposition surface color 
are shown in Fig. 14. The Vickers hardness of the substrate was 350–400 HV. When the deposition surface color 
was gold or brown, the Vickers hardness was 200–300 HV. When the deposition surface color was blue, the 
Vickers hardness was 260–400 HV. When the deposition surface color was blue-white, the Vickers hardness 
was 360–410 HV. The hardness values tended to increase in the order of gold, brown, blue, and blue-white. A 
deposition surface color of gold, brown, or blue can be considered as a deposition defect, as the surface did not 
reach the hardness of the substrate. The best microstructure surface color indicates the best hardness.

When the titanium alloy was deposited, it was confirmed that the microstructures were different depending 
on the surface color; a detailed EDS component analysis was performed. EDS component analysis was meas-
ured using a field emission scanning electron microscope (FE-SEM) MIRA II LMH model from TESCAN. The 
specifications of the microscope are shown in Table 3. Ten samples of EDS component analysis results by the 
surface color are shown in Appendix C. The results of the EDS component analysis by deposition surface color 
are shown in Fig. 15. For spot analysis, ten points were measured, and the average value was calculated. The 
elements used in the analysis were titanium, nitrogen, and oxygen; the average and maximum/minimum values 
of each element according to the deposition surface color are shown in the graph. When the deposition surface 
color was gold or brown, the oxygen content was greater. When the deposition surface color was blue or blue-
white, the titanium and nitrogen contents were greater, and the oxygen content was smaller. From analysis of the 
structural and mechanical properties of the deposited surface colors, the blue-white surface color was the best.

Multi‑classification model. Latin Hypercube Sampling (LHS) is one of the random sampling methods 
for selecting processes evenly over the entire sampling space, which is a method of randomly selecting and 
evenly distributing values from a defined distribution of each assumption. LHS is sampled more uniformly and 
consistently over the entire range. The experimental conditions were set using LHS. A total of 135 single-track 
experiments were performed; Python was used as a programming language. The scikit-learn library was used to 
perform ML calculations such as random forest and support vector machine. 108 were used as training data. The 
remaining 27 cases were used as test data to verify the classification model.

When using ML algorithms, it is necessary to adjust some variables, called hyperparameters, to find an accu-
rate model. Hyperparameters must be set before the models are trained, and are critical for building accurate 
models. Both Random Forest and SVM are algorithms used for classification. SVM uses a kernel trick and has a 
fast computation seed and has various computation options depending on the kernel. RF can make very accurate 
predictions based on multiple decision trees. SVM doesn’t work well when you have a lot of samples. Also, you 

Figure 13.  Hardness measurement diagram.
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need to pay a lot of attention to setting hyperparameters. RF produces good results even with default settings 
without hyperparameter tuning. The hyperparameter values affect the performance of the model. The n_estima-
tor is an important hyperparameter in an RF that determines the number of decision trees. When the number of 
decision trees increases, the performance of the model increases. An RF has many hyperparameters and requires 
significant time for tuning. The hyperparameter values affect the performance of the model. The n_estimator is an 
important hyperparameter in an RF that determines the number of decision trees. When the number of decision 
trees increases, the performance of the model increases. However, a greater n_estimator increases calculation 
time, eventually without improving performance. The n_estimator was set to 1000.

The performance of SVM could be improved by adjusting hyperparemeters under differnt noise levels, types 
of noise, target functions, and sample  size29. The training data were mapped using kernel tricks such as a poly-
nomial function (Poly) and a radial basis function (RBF) to classify the nonlinear data. The C parameter is an 
important hyperparameter in the SVM. When the model was under fitted, C was used to improve learning 
performance; when the model was over fitted, C was used to improve generalization performance. C was set to 
10,000. The three multi-classification models are presented in Table 4. The RF model had the highest accuracy. A 
total of 1015 multi-classification cases were predicted; the three multi-classification models are shown in Fig. 16.

The results of the validation experiments for the three models are shown in Table 5. Validation experiments 
were conducted for ten conditions that each model predicted differently. In Table 5, predictive and validation 
experimental accords are shown in bold. The conditions of the verification experiment are indicated by red points 
in Fig. 15. In ten validation experiments, the RF model yielded the most accurate predictions. The SVM model 
using the poly kernel yielded the lowest prediction accuracy.

Figure 14.  Hardness measurement results by color of deposition surface: (a) gold; (b) brown; (c) blue; (d) blue-
white.

Table 3.  The specifications of the microscope.

Parameters Specification

Magnification × 4–1,000,000

H.V. 0.2–30 kV (0.1 kV step)

Resolution SEI: 1.0 nm (30 kV), BEI: 2.0 nm (30 kV)

Internal size 230 mm Dia

Electron gun High brightness Schottky emitter with EDS & EBSD
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Conclusions
The purpose of this study was to select manufacturing conditions for a titanium alloy powder DED process using 
machine learning methods. Through analysis, it was confirmed that the blue-white surface was an effective manu-
facturing condition. Then, in order to select efficient manufacturing conditions RF and SVM multi-classification 
models were proposed. Three models were compared, and validation experiments were performed. The RF 
model was the best model that indicated the efficient selection of the blue-white manufacturing condition. The 
following conclusions were drawn from this study.

1. A total of 135 single-track experiments were performed with laser power and scan speed as the process 
parameters. Six surface colors were observed: silver, gold, brown, blue, blue-white, and deep blue. When the 
surface color was silver or deep blue, melt pool instability was observed.

2. The best deposition surface color was selected by analyzing the structural and mechanical properties; the 
blue-white surface color was the best.

3. Three multi-classification models using RF and SVM were proposed. Validation experiments were performed 
to compare the accuracies of the models; the RF model was the most accurate model. The RF model was the 
best model that indicated the efficient selection of the blue-white manufacturing condition.

Since there is a difference in the stacking quality depending on the process parameters, many experiments are 
required to find the optimal process parameters. When performing this, we propose a classifier using machine 
learning so that workers can select the blue-white condition, which is the best color presented in this paper. 
workers can select process parameters just by looking at the surface color. It allows researchers to efficiently select 
manufacturing conditions. The proposed model will be used for a multi-layer DED process in future research.

Figure 15.  EDS component analysis results by color of deposition surface.

Table 4.  Three multi-classification models.

Algorithm Random forest SVM–RBF SVM–Poly

Hyperparameter n_estimator = 1000 C = 10,000 C = 10,000

Accuracy 0.9643 0.8571 0.8214
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Figure 16.  Proposed multi-classification models.
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