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Thermal hazard evaluation 
on spontaneous combustion 
characteristics of nitrocellulose 
solution under different 
atmospheric conditions
Zhi‑Ping Li1, Jun‑Cheng Jiang1*, An‑Chi Huang1*, Yan Tang1*, Chun‑Feng Miao2, Juan Zhai3, 
Chung‑Fu Huang4, Zhi‑Xiang Xing1 & Chi‑Min Shu5*

Nitrocellulose (NC) is widely used in both military and civilian fields. Because of its high chemical 
sensitivity and low decomposition temperature, NC is prone to spontaneous combustion. Due to 
the dangerous properties of NC, it is often dissolved in other organic solvents, then stored and 
transported in the form of a solution. Therefore, this paper took NC solutions (NC-S) with different 
concentrations as research objects. Under different atmospheric conditions, a series of thermal 
analysis experiments and different reaction kinetic methods investigated the influence of solution 
concentration and oxygen concentration on NC-S’s thermal stability. The variation rules of NC-S’s 
thermodynamic parameters with solution and oxygen concentrations were explored. On this 
basis, the spontaneous combustion characteristics of NC-S under actual industrial conditions were 
summarized to put forward the theoretical guidance for the spontaneous combustion treatment 
together with the safety in production, transportation, and storage.

List of symbols
A	� Pre-exponential factor (1/s)
Cs	� Constant (dimensionless)
Ea	� Apparent activation energy (kJ/mol)
f(α)	� Dynamic mechanism function of the differential form (dimensionless)
G(α)	� Integral form of the kinetic mechanism function (dimensionless)
k	� Reaction rate constant (W K/m2)
m	� Mass (mg)
m	� Average mass (mg)
R	� Universal gas constant (8.314 J/mol K)
R2	� Linear fitting’s correlation coefficient (dimensionless)
t	� Reaction time (s)
T	� Reaction temperature (K)
Totg	� Onset temperature obtained from TG experiment (°C)
Tpdsc	� Peak temperature obtained from DSC measurement (°C)
Tptg	� Peak temperature obtained from TG experiment (°C)
∆H	� Heat of reaction (J/g)
α	� Conversion rate (dimensionless)
β	� Heating rate (°C/min)
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With the rapid development of modern industry, many manufactured products have entered thousands of house-
holds and been closely related to our daily lives. However, the raw materials are fraught with danger in daily life, 
e.g., common spray paint, coatings, plastics, artificial fibers, ink, film, and cosmetics. Nitrocellulose (cellulose 
nitrate, NC) is one of the raw materials of these products, which is an exceptionally hazardous nitrate ester. 
NC has widespread adoption in both military and civilian fields. In addition to NC with low nitrogen content 
(< 12.6%) mentioned above for ordinary civilian production, NC with high nitrogen content (≥ 12.6%) is used 
to manufacture military weapons, gunpowder, solid rocket propellants, and explosives1–4.

Owing to the poor thermal stability of NC, commercial NC products are wetted with solvents, or mixed with 
plasticizers to alleviate the risk of fire and explosion of dry NC. Universally, water or alcohols are usually added as 
humectants during storage and transportation to forestall spontaneous combustion. However, chemical accidents 
with NC still occur frequently in recent years. Among them, the most horrific was “Explosion accident in Tianjin 
Binhai New Area on August 12” in 2015, which led to 165 deaths, 8 missing/presumed dead, and 798 injuries5.

The dangerous characteristics of NC and the frequent occurrence of accidents have led numerous experts 
and scholars to exploring its thermal hazard since a long time ago. Some researches on the thermal decomposi-
tion mechanism of NC found that the denitrification process does not necessarily make chain breakage, because 
the basic structure of carbon skeleton does not change dramatically during the thermal decomposition6. NO2 
generated in the thermal decomposition reaction is combined to form nitric acid groups, and then water, CO, 
CO2, carbonyl, and acid intermediates are rapidly produced7. Some studies obtained the critical heating rate 
of NC with high nitrogen content during the first order autocatalytic decomposition to thermal explosion by 
nonisothermal DSC technique8–10. Brill and Gongwer investigated the thermal decomposition characteristics 
of NC at different temperatures11. Some other researchers mainly discussed the thermal stability of NC with 
different particle sizes12,13, forms14, nitrogen content15,16, and aging periods1. The combustion and explosion 
behaviors of NC were also in focus13,17. In addition, a large number of experiments attached great importance 
to the influence of various catalysts18,19, stabilizers20–24, plasticizers25,26, wetting agents2,25,27–30, and inorganic 
salts31,32 on the thermal behaviors of NC.

As known, nitrogen is often used for protection during the transportation and storage of some hazardous 
chemicals. When combustion or explosion occurs, the surrounding atmosphere will also change with the reaction 
process33–36. But to sum up, although the thermal safety of NC has been extensively studied, there is still a lack 
of research on NC in different atmospheric conditions. Most of the existing studies focused on NC-F (F-fibre) 
or NC-C (C-chip), and paid less attention to the solution. However, after the Tianjin accident, the control of NC 
in China has become more rigorous, so it is mostly stored and transported wetted with the solution. Therefore, 
this paper took NC solution (NC-S) commonly used in actual production as the research object. Nonisothermal 
differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) technologies were applied to 
explore the variation rules of reaction characteristic temperature of NC-S with different concentrations in dif-
ferent atmospheric conditions. In order to comprehensively compare the applicability of multiple linear models 
for reaction kinetics calculation of NC-S, the kinetic parameters of the thermal decomposition reaction were 
calculated using different integral and differential kinetic models. The results revealed that several thermal 
stability and thermokinetic parameters of NC-S spontaneous combustion did not externalize a simple propor-
tional relationship with the concentrations of solution and oxygen. However, the oxygen-free environment can 
effectively reduce the thermal risk of NC-S indeed. These findings can provide theoretical guidance for improv-
ing the treatment scheme of NC-S spontaneous combustion in actual production, transportation, and storage.

Experiments and methods
Materials.  The NC-S sample preparation in the experiment was dissolving NC (nitrogen content less than 
12.6%) in ethyl acetate (EAC). The purchased 30 mass% NC-S was diluted with EAC (content ≥ 99.5%) to obtain 
samples of three concentrations, which are 30, 20, and 10 mass%. The EAC sample was also used for comparison 
with the NC-S samples in the measurement. All dispensed samples were stored in the refrigerator at 2.0 to 6.0 °C 
before testing.

Thermogravimetric analysis (TGA).  TGA is a common technique for measuring the relationship 
between mass and temperature37 by setting temperature conditions through the instrument program. The sam-
ple is placed in a specific atmosphere, and the temperature is maintained at a constant value or changed by 
heating scanning. By this method, the change of sample mass in the process can be observed and accurately 
characterized, and then the thermal decomposition characteristics of substances can be analyzed38.

In the experimental design, TGA 2 (produced by Mettler Toledo Co., Zurich, Switzerland) was used to test 
the thermal mass loss of samples. The mass (m) of NC-S sample with each concentration in the measurement 
was 7.40 ± 0.10 mg. The different heating rates (β): 2.0, 4.0, 6.0, 8.0, and 10.0 °C/min) were adopted respectively 
during the experimental temperature from 30.0 to 300.0 °C. To simulate three different atmospheric conditions, 
we adjusted the oxygen concentration through the gas flow meter so that the TG test was carried out at 0 vol.% 
oxygen (N2, oxygen-free environment), 10 vol.% oxygen (oxygen-lean environment), and 21 vol.% oxygen (air 
environment). The gas flow was 50.0 mL/min.

The mass loss, mass loss velocity, onset temperature (Totg), and peak temperature (Tptg) of three samples in 
different atmospheric conditions can be acquired through TG experiment.

Differential scanning calorimetry (DSC) measurement.  DSC is one of the most frequently applied 
thermal analysis instruments, which has extremely high sensitivity and temperature resolution and can test the 
weakest thermal effects. It controls temperature through the built-in program, measures the power difference 
in the form of heat between the input sample and reference, and obtains the relationship between heat flow and 
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temperature. In addition, the endothermic and exothermic reaction characteristics can be analyzed by detecting 
the thermodynamic parameters of materials to be measured in the temperature increase condition39.

In this measurement, the heat-flow DSC 3 (produced by Mettler Toledo Co., Zurich, Switzerland) was applied 
to test the thermal decomposition behaviors of different concentrations of NC-S samples (m = 4.48 ± 0.08 mg) 
in an oxygen-free atmosphere (N2, 50.0 mL/min) from 30.0 to 300.0 °C40. We measured the heat flow change at 
different β (0.5, 1.0, 2.0, 4.0, and 8.0 °C/min) under the abovementioned conditions41. DSC diagram has several 
important thermodynamic parameters, such as peak temperature (Tpdsc) and heat of reaction (ΔH) can be derived. 
Then the thermal stability of NC-S with different concentrations can also be deduced.

Kinetic models.  This study, in evaluating the difficulty of chemical reaction and reaction rate of the ther-
mal hazardous substances, calculated the reaction kinetic apparent activation energy (Ea) to study their reac-
tion kinetics. Therefore, many dynamic models have been developed by predecessors, among which the most 
commonly used are some convenient model-free methods42. Based on previous TG and DSC experiments, the 
nonisothermal differential kinetic models (Kissinger, Friedman, and Starink models) and integral kinetic model 
(FWO model) were adopted to calculate the Ea of the spontaneous combustion reaction of NC-S. Then the effects 
of different atmospheric conditions and solution concentrations on Ea were summarized, and the thermal safety 
of NC-S was also assessed.

Friedman model.  Several kinetic methods were derived from the following Arrhenius equations43 shown in 
Eqs. (1)‒(4):

where T is the reaction temperature (K), and To is the onset temperature (K), α is conversion rate, t is the reaction 
time (s), k is the reaction rate constant, A is the pre-exponential factor, R is the universal gas constant (8.314 J/
mol K). Equation (4) indicates the differential form of the kinetic mechanism function44.

By combining Eqs. (1)‒(4), the differential form of the first kinetic equation of thermodynamics can be 
obtained and shown in Eq. (5):

Taking the natural logarithm of both sides of Eq. (5), Eq. (6) can be acquired, which is the calculation formula 
of the Friedman model45.

Friedman model is suitable for calculation with TG data, where dα/dt represents the rate of mass loss, which 
can be got from the derivative of mass loss to time.

Kissinger model.  Based on the differential form of the first kinetic equation of thermodynamics, differentiate 
both sides of Eq. (6), Eq. (7) can further be obtained:

Kissinger considered that n(1− α)n−1 is independent of β, and assumed that n(1− α)n−1 ≈ 1. When calcu-
lated with peak temperature ( T = Tp ), d/dt(dα/dt) = 0, Eq. (8) can be obtained:

Taking the natural logarithm of both sides of the equation above, Kissinger model can be obtained and pre-
sented in the following Eq. (9)37,46:

By plotting ln(β/Tp
2) and 1/Tp, a straight line can be fitted. Ea can be determined using the slope of the line.
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Starink model.  Starink method was adjusted from Kissinger equation, and the new Eq. (10) is as follows47:

Starink model is one of the differential kinetic methods with high accuracy and has gained widespread 
applications39.

Flynn–Wall–Ozawa (FWO) model.  An integral kinetic model named FWO model was devised, and the for-
mula is presented in Eq. (11)48,49:

where G(α) is the integral form to the kinetic mechanism function46.
Plotting lgβ and 1/T together in a straight line, Ea can be calculated by the slope. When FWO model is applied, 

only β and T are concerned, so this model is exceptionally convenient to calculate and extensively employed.

Results and analysis
Thermodynamic parameters of calorimetric experiments.  Thermal thermogravimetric behaviors 
of NC‑S.  Figure  1 presents the thermogravimetric loss of EAC and NC-S with three concentrations in the 
oxygen-free environment at β of 10.0 °C/min. As seen through the diagram, pure EAC experienced massive mass 
loss at the beginning of the measurement at 30.0 °C, and the thermogravimetric loss ended at 60.0 °C, leaving 
about 30% of the mass. Speculating the reason for this phenomenon is that EAC is highly volatile, and a large 
amount of volatilization occurred in the open-cup environment. Therefore, the thermal decomposition began 
with heating up. It can also be found that the thermal decomposition of NC-S occurred at about 180.0 °C, result-
ing in a sudden mass loss, which is related to the sample concentration. Because of EAC and NC characteristics, 
the initial mass loss and final residual mass of NC-S with various concentrations were different. Generally speak-
ing, the higher content of EAC, correspondingly the lower content of NC, so the more obvious mass loss caused 
by EAC in the initial stage, the more residual decomposition products at the end of the heating journey, and the 
less mass loss caused by NC in the intermediate stage.

TG curves of NC-S in different atmospheric conditions at β of 10.0 °C/min were provided together in Fig. 2. 
The abovementioned rules can also be concluded by comparing the thermal decomposition thermogravimetric 
loss behaviors of three NC-S samples under different environments. In addition, Fig. 2 illustrates that the initial 
mass loss increased gradually with the improvement of oxygen concentration, which was most obvious for 10 
mass% NC-S, containing the largest amount of EAC. Therefore, inferring that the oxygen concentration might 
greatly influence EAC’s thermal decomposition reaction at low temperatures.

TG and DTG curves of NC-S at 10 vol.% oxygen are demonstrated in Fig. 3. The TG curve indicates the mass 
loss process of thermal decomposition of NC-S at β of 2.0 °C/min. The DTG curve is the first derivative of the 
mass loss curve, representing the thermogravimetric loss speed of NC-S, where the peak value of DTG is the 
maximum rate of mass loss, and the corresponding temperature is the maximum mass loss rate temperature 
(Tptg). From three DTG curves, the mass loss rate of NC-S increased with the rise of solution concentration, and 
Tptg slightly moved to the direction of high temperature with the decrease of solution concentration. TG curves 
also further confirmed the rule of thermogravimetric behavior obtained in Fig. 1. By comparing the TG curves 
in Figs. 1, 2 and 3, the mass of NC-S dropped smoothly at β of 2.0 °C/min, and when β was 10.0 °C/min, NC-S 
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Figure 1.   TG curves of EAC and different concentrations of NC-S in an oxygen-free environment.
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experienced a jump-off mass loss. Hence deducing when the temperature rises rapidly, the thermal decomposi-
tion of such a quick reaction substance would occur instantly, and the reaction is violent and hazardous.

Table 1 lists the characteristic temperatures of 30 mass% NC-S in three different environments at five β from 
2.0 to 10.0 °C/min. As shown in Table 1, Totg and Tptg both increased with β in all kinds of atmosphere. Table 2 
summarizes the average value of three NC-S samples’ characteristic temperatures and residual mass under three 
atmospheric conditions in TG measurement. According to the statistics data in Table 2, the oxygen concentration 
had little influence on the characteristic temperatures of NC-S, while as the solution concentration declined, Tptg 
gradually rose. Then, by analyzing the residual mass of 30 mass% NC-S after thermal decomposition reaction, 
given that it was positively correlated with the oxygen concentration, considering that the participation of oxygen 
could make the reaction of NC-S more sufficient.

Figure 2.   Comparison of TG curves of NC-S with different concentrations in different atmosphere conditions.

Figure 3.   TG and DTG curves of different NC-S concentrations in an oxygen-lean environment.
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To conclude, the TG experimental results reveal that the thermal thermogravimetric loss of NC-S can be 
regarded as two stages. The first stage is the mass loss of volatilization and decomposition reaction of solvent 
EAC, and the second stage is the violent thermal decomposition reaction of solute NC. For the solution NC-S 
as a whole, the higher the concentration of the solution, the more thermogravimetric loss, and the earlier the 
reaction can reach the fastest speed, so there is a greater risk when the concentration of NC-S is high. By chang-
ing the experimental atmospheric conditions, the findings revealed that the oxygen concentration had little 
influence on the DTG temperature, but the oxygen present could affect the mass loss of EAC and make NC-S 
react more completely.

Dynamic heating examination.  The heat flow curves of 30 mass% NC-S at five different β from 0.5 to 8.0 °C/
min in the DSC measurement were drawn in Fig. 4. The Y-axis value of the peak of the curve represents the 
maximum heat flow of NC-S in the exothermic reaction process, and the corresponding X-axis value is the 
temperature or time when the maximum heat flow was reached. As seen from the diagram, when β increased, 
the curves shifted to the right in the direction of high temperature, Tpdsc also moved to the direction of high tem-
perature, and the heat flow at the peak accordingly increased. By integrating the heat flow with respect to time, 
ΔH at five different β can be obtained from the area of the exothermic peak. Therefore, according to the picture 
in the bottom part of Fig. 4, ΔH decreased with the β increased. All these findings indicate that β impacted the 
thermal decomposition of NC-S.

Figure 5 depicts the DSC exothermic curves of three concentrations of NC-S at β of 4.0 °C/min. The curves 
illustrate that Tpdsc did not change prominently with the solution concentration of NC-S, but the heat flow values 
varied correspondingly.

The average characteristic temperature and heat release of the three concentration samples in the DSC experi-
ment under an anaerobic environment can be obtained from Table 3. These parameters also indicate that no 
correlation was between solution concentration and Tpdsc. Afterward, according to the experimental data, ΔH of 
30 mass% NC-S was 2555.55 J/g, and that of 20 mass% NC-S was 2584.55 J/g, which were similar in values and 
both were much higher than that of 10 mass% NC-S.

The abundant heat released by the thermal decomposition reaction can not be removed quickly, leading to 
heat accumulation, and the possibility of thermal runaway is enhanced. Thus, it is concluded that the higher 
spontaneous combustion risk is occurring in high concentration NC-S.

Kinetic analysis.  NC‑S’s Ea calculation with TGA data.  Based on the data measured in TG experiments, 
four kinetic models (Starink, FWO, Kissinger, and Friedman models) were used to calculate Ea of three samples 
under the different atmospheric conditions. The Ea calculated by different models were sequentially plotted 
as curves in order of oxygen concentration, which are given in Fig. 6. The linear regression method is usually 
adopted in the kinetic calculation, and the correlation coefficient (R2) is a parameter to measure the goodness of 
fit. Therefore, to explore the applicability of the four methods to samples, the average R2 of each model was also 
calculated accordingly, as shown in Fig. 7.

Table 1.   Characteristic temperatures of 30 mass% NC-S measured by TG experiment at different β.

β (°C/min)

0 vol.% oxygen 10 vol.% oxygen 21 vol.% oxygen

Totg (°C) Tptg (°C) Totg (°C) Tptg (°C) Totg (°C) Tptg (°C)

2.0 177.21 189.27 175.71 186.36 177.51 186.37

4.0 184.31 194.48 183.21 191.98 184.29 192.78

6.0 196.00 197.14 191.74 193.62 193.64 194.54

8.0 195.89 196.95 196.18 197.35 196.07 197.05

10.0 197.70 199.85 198.69 200.58 197.26 198.52

Table 2.   Thermodynamic parameters of NC-S measured by TG experiment in different atmosphere 
conditions.

Sample

Atmosphere

0 vol.% oxygen 10 vol.% oxygen 21 vol.% oxygen

m (mg) Totg (°C) Tptg (°C)

Average 
mass 
remaining 
(%) m (mg) Totg (°C) Tptg (°C)

Average 
mass 
remaining 
(%) m (mg) Totg (°C) Tptg (°C)

Average 
mass 
remaining 
(%)

30 mass% 7.38 190.22 ± 9.02 195.54 ± 3.99 14.04 7.47 189.11 ± 9.53 193.98 ± 5.41 12.09 7.41 189.75 ± 8.53 193.85 ± 4.73 4.81

20 mass% 7.35 189.27 ± 8.83 196.21 ± 4.31 20.47 7.46 189.06 ± 7.29 197.08 ± 4.47 20.93 7.44 190.04 ± 8.54 195.92 ± 4.43 18.64

10 mass% 7.40 189.53 ± 8.40 198.34 ± 4.95 31.64 7.44 190.17 ± 6.81 199.64 ± 5.49 26.46 7.43 190.36 ± 7.65 199.83 ± 6.70 28.51
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From Fig. 6 as a whole, no matter for which sample, Ea calculated by Starink, FWO, and Kissinger models 
were extremely similar in terms of the numerical values and the trends of curves changing with the oxygen con-
centrations. Among them, the curves of Starink and Kissinger models were even almost overlapped. However, 
when using the Friedman model, the calculation results were far from the other three. Analyzing combined with 
Fig. 7, among the four models, R2 of Friedman model was the smallest, indicating that its linear goodness of fit 

Figure 4.   DSC exothermic curves of 30 mass% NC-S at various β in an oxygen-free environment.

Figure 5.   DSC exothermic curves of NC-S with different concentrations at β = 4.0 °C/min in an oxygen-free 
environment.
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was the worst. Based on this analysis result, we considered that the applicability of Friedman model to NC-S is 
not good enough.

Figure 6 displays that Ea of 20 and 30 mass% NC-S varied with oxygen concentration in the same way, while Ea 
of 10 mass% sample was inconsistent with the two. Therefore, inferring that the reaction kinetics characteristics 
of NC-S were the same when the solution concentration was above or equal to the threshold of 20 mass%. In 
contrast, the thermal decomposition kinetic characteristics of the sample might display another trend when the 
concentration was below the threshold.

Due to the above analysis summarized that there was a large deviation in the calculation of the kinetic 
parameters by Friedman model for NC-S, we averaged the values calculated by the other three models (Starink, 
FWO, and Kissinger models) to obtain the average Ea of thermal decomposition reaction of different samples 
under different environments, as provided in Table 4. From the calculation results in Table 4, on the one hand, 
the influence of oxygen concentration can be discussed. The Ea of NC-S with any concentration was the largest 
in the oxygen-free environment, indicating that the thermal decomposition reaction of NC-S was relatively dif-
ficult to occur in the oxygen-free environment, and the speed of decomposition was slow. The Ea of 20 mass% 
and 30 mass% samples were the smallest at 10 vol.% oxygen, while Ea of 10 mass% sample decreased with the 
increase of oxygen involved in the reaction, and the reaction rate increased gradually. On the other hand, the 
influence of solution concentration can be analyzed. In the TGA experiment, 30 and 20 mass% samples obtained 

Table 3.   Thermodynamic parameters of different NC-S concentrations measured by DSC experiment in an 
oxygen-free environment.

Sample

Parameter

m (mg) Tpdsc (°C) Average ΔH (J/g)

30 mass% 4.47 184.03 ± 13.46 2555.55

20 mass% 4.46 183.96 ± 14.58 2584.55

10 mass% 4.51 185.71 ± 12.03 1496.03

Figure 6.   NC-S’s Ea under three different atmosphere conditions calculated by four kinetic models with TG 
data.
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the maximum Ea under anaerobic and aerobic conditions, respectively. In general, Ea of 20 mass% NC-S was not 
saliently affected by the oxygen concentration.

It was inferred from the above findings that the thermal decomposition reaction of 20 mass% NC-S was 
relatively stable in the aerobic environment of daily production and life, and was less affected by the changes 
of the external environment. In addition, 20 mass% was an ambiguous boundary, and the reaction kinetics of 
NC-S with a concentration above and below it presented different characteristics, which was consistent with the 
inferences obtained in Fig. 6.

NC‑S’s Ea calculation with DSC data.  Based on the data obtained from DSC measurements, Ea values of three 
NC-S samples in nitrogen atmosphere were calculated by nonisothermal integral method (FWO model) and 
nonisothermal differential method (Starink model). Figure 8 schematizes the lines obtained by fitting ln(β/T1.8) 
and 1000/T at different α via the differential model to calculate Ea of 20 mass% NC-S at different α. After averag-
ing Ea at all α, the average value of Ea of 20 mass% NC-S in oxygen-free environment can be obtained by Starink 
model as 126.32 kJ/mol, and R2 was 0.9812. Correspondingly, the average Ea of 30 mass% and 10 mass% NC-S 
calculated by Starink model were 128.68 and 111.84 kJ/mol, respectively. The average Ea of 30 mass%, 20 mass%, 
and 10 mass% samples can be calculated by FWO model as 129.30, 127.05, and 113.24 kJ/mol, respectively. By 
comparison, it can be found that Ea acquired by these two typical integral models and differential models were 
extremely close. In addition, Ea of 30 mass% NC-S was the largest in the oxygen-free environment, and that of 
10 mass% NC-S was the smallest.

When α ranged from 0.10 to 0.95, Ea and R2 of the three samples calculated by these two models were plotted 
as curves, as described in Fig. 9. It is evident from the top and bottom diagrams that Ea and R2 of NC-S varied 
with α in almost the same way under these two kinetic models. Moreover, when α was from 0.30 to 0.95, R2 of 
both methods was higher than 0.90. All the above findings suggested that Starink and FWO models were excep-
tionally suitable for calculating the reaction kinetics of NC-S. Figure 9 also depicts that the samples with three 
different concentrations all had the maximum R2 when α was at 0.60, and the goodness of fit was the best at this 
time, which was also around the Tpdsc. Comparing Ea of three samples at this point, 30 mass% NC-S was still 
the highest and 10 mass% the lowest, which confirmed the rule summarized by analyzing the average Ea before.

As a whole, the reaction kinetics analysis in the oxygen-free environment carried out with DSC experimental 
results further supported the previous conclusions summarized with TG data.

Figure 7.   Comparison of four kinetic models’ R2 via TG data.

Table 4.   The average Ea calculation of NC-S in different atmosphere conditions via TG data.

Sample

Atmosphere

Average Ea(kJ/mol)

0 vol.% oxygen 10 vol.% oxygen 21 vol.% oxygen

30 mass% 273.64 200.65 231.02

20 mass% 247.38 239.32 244.85

10 mass% 220.87 194.82 166.07
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Conclusions
The thermal risk and the thermal stability of NC-S with different concentrations in different environments were 
studied using calorimetric technology and thermal analysis. The findings are concluded as follows:

TG experiment mainly revealed the influence of solution concentration and atmospheric environment on the 
thermogravimetric behavior and characteristic temperature of NC-S. The entire thermal decomposition process 
of NC-S can be divided into two stages: thermogravimetric process of EAC and thermogravimetric process of 
NC. Among the three concentrations of NC-S, 30 mass% NC-S had the maximum mass loss and the smallest 
Tptg, which first attained the maximum decomposition speed, so 30 mass% NC-S had a greater potential thermal 
hazard. The thermal decomposition reaction of NC-S completed more in the air and oxygen-lean environments 
than in the oxygen-free environment.

DSC measurement focused on exploring the exothermic situation of the thermal decomposition reaction 
of three different concentrations of NC-S in the oxygen-free environment. The results indicated that β affected 
the thermal behavior of NC-S. Furthermore, once the solution concentration of NC-S was above or equal to 20 
mass% in the oxygen-free environment, spontaneous thermal combustion released a large amount of heat, even 
more than 2500.00 J/g. If the heat were difficult to dissipate, there would be a high risk of thermal runaway after 
heat accumulation.

Figure 8.   Ea fitting curves by non-isothermal differential method for α from 0.10 to 0.95.

Figure 9.   Comparison of NC-S’s Ea calculation by differential and integral kinetic models.
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The differential and integral models were used to calculate and analyze the reaction kinetics of NC-S, respec-
tively. Through comparison, the Friedman model was not recommended for calculating the Ea values of such a 
rapid reaction substance, and the goodness of fit was poor. On the other hand, the applicability of Kissinger, Star-
ink, and FWO kinetic models to NC-S was great and could be used to calculate the reaction kinetics parameters.

According to Ea calculation results using TG and DSC data, oxygen-free environment could effectively 
improve the thermal safety of NC-S, the thermal decomposition reaction was the least likely to occur, and the 
reaction speed was the slowest. Nevertheless, in most of the actual industrial production, oxygen has always 
existed. At this time, 20 mass% NC-S was least impacted by the change of oxygen concentration, and the decom-
position rate varied little with the amount of oxygen involved in the reaction. However, 20 mass% was also a 
demarcation, above or below this boundary, the kinetic parameters’ variation of NC-S with the oxygen concentra-
tion showed different rules. The low concentration of 10 mass% NC-S had the smallest Ea and was most prone 
to thermal decomposition under any atmospheric conditions.

In summary, if NC-S with a low concentration (10 mass%) was used in the practical industry, thermal decom-
position reaction could readily occur in the air environment. However, if NC-S with a higher concentration was 
used, a large amount of heat would be released once the reaction took place, which was extremely dangerous. 
Furthermore, thermal runaway occurred with the heat accumulation, resulting in serious thermal hazards and 
accident consequences. As a result, to effectively reduce the potential risks of NC-S during production, trans-
portation, and storage, the first consideration should be to create an oxygen-free environment. In this way, the 
probability of thermal decomposition of NC can be availably reduced, and the reaction rate can be slowed down 
to reduce the possibility of uncontrolled spontaneous combustion of NC-S.

For prospects, more different calorimetry instruments can be applied to explore the thermal risk of hazardous 
chemicals, and the mechanism function of thermal decomposition reaction can be calculated, so as to conduct 
a further study on its reaction kinetics.
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