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Sitafloxacin reduces tumor necrosis 
factor alpha (TNFα) converting 
enzyme (TACE) phosphorylation 
and activity to inhibit TNFα release 
from lipopolysaccharide‑stimulated 
THP‑1 cells
Ippei Sakamaki1*, Michika Fukushi2, Wakana Ohashi3,4, Yukie Tanaka5, Kazuhiro Itoh1, 
Kei Tomihara6, Yoshihiro Yamamoto2 & Hiromichi Iwasaki7

Sepsis is a systemic reaction to an infection and resulting in excessive production of inflammatory 
cytokines and chemokines. It sometimes results in septic shock. The present study aimed to identify 
quinolone antibiotics that can reduce tumor necrosis factor alpha (TNFα) production and to elucidate 
mechanisms underlying inhibition of TNFα production. We identified quinolone antibiotics reduced 
TNFα production in lipopolysaccharide (LPS)-stimulated THP-1 cells. Sitafloxacin (STFX) is a broad-
spectrum antibiotic of the quinolone class. STFX effectively suppressed TNFα production in LPS-
stimulated THP-1 cells in a dose-dependent manner and increased extracellular signal-regulated 
kinase (ERK) phosphorylation. The percentage of intracellular TNFα increased in LPS-stimulated cells 
with STFX compared with that in LPS-stimulated cells. TNFα converting enzyme (TACE) released 
TNFα from the cells, and STFX suppressed TACE phosphorylation and activity. To conclude, one of 
the mechanisms underlying inhibition of TNFα production in LPS-stimulated THP-1 cells treated with 
STFX is the inhibition of TNFα release from cells via the suppression of TACE phosphorylation and 
activity. STFX may kill bacteria and suppress inflammation. Therefore, it can be effective for sepsis 
treatment.
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MFLX	� Moxifloxacin
NF-κB	� Nuclear factor-kappa B
RIPA	� Radioimmunoprecipitation assay
SIRS	� Systemic inflammatory response syndrome
STFX	� Sitafloxacin
TACE	� Tumor necrosis factor α converting enzyme
TNFα	� Tumor necrosis factor alfa

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection1. 
Sepsis was first defined as sepsis-1 in 1991 and was redefined as sepsis-3 in 2016. Sepsis was further defined as 
a systemic inflammatory response syndrome caused by infection2. Particularly during gram-negative bacterial 
infection, lipopolysaccharide (LPS) stimulates cells to produce inflammatory cytokines and chemokines, which 
can sometimes result in septic shock. Inflammatory cytokines lower the blood pressure via blood vessels dilation 
and blood clotting within the capillaries of organs. These effects can aid the immune system in fighting infec-
tion, but can also be harmful. Thus, drugs that are not only effective against bacterial infections but also reduce 
inflammatory cytokines are required to avoid such harmful effects.

Treatment with such drugs may help prevent septic shock and reduce mortality. Some antibiotics such 
as tetracycline3,4, macrolide5–7 and oxazolidinone8,9 have effectively reduced the production of inflammatory 
cytokines.

Quinolones such as garenoxacin or moxifloxacin have also been reported to reduce inflammatory 
cytokines10,11.

Sitafloxacin (STFX) is a broad-spectrum antimicrobial agent12. STFX is effective against pneumococcal infec-
tions, and incidence of drug-resistant mutants is low in vitro conditions13. STFX was effective against Haemo-
philus influenzae pneumonia in a murine model14.

In a clinical study, STFX was also proven effective and safe in elderly patients with pneumonia including 
aspiration pneumonia in nursing homes15. STFX treatment was effective in patients with both acute compli-
cated urinary tract infection and pyelonephritis caused by Escherichia coli producing extended-spectrum beta-
lactamase (ESBL)16. Another study also reported that STFX was effective against the E. coli producing ESBL 
following 3 days of carbapenem therapy17.

STFX, a broad-spectrum oral fluoroquinolone, has been approved in Japan for the treatment of respiratory 
and urinary tract infections. However, whether STFX can be used for treating patients with sepsis or whether it 
suppresses the production of inflammatory cytokines and chemokines is unknown, which we aimed to determine 
in the present study.

Results
Tumor necrosis factor alpha (TNFα concentration was high in supernatants of 4 h LPS‑stimu‑
lated THP‑1 cells.  TNFα concentration in the supernatants of THP-1 cells stimulated by LPS for 4 h, 12 h, 
24 h or 48 h was 1135.21 ± 116.24 pg/mL, 1180.39 ± 148.17 pg/mL, 1078.65 ± 143.12 pg/mL, or 1116.81 ± 89.16 pg/
mL, respectively (Fig. 1). TNFα concentration at 4 h was not significantly lower than that at 12 h, 24 h, or 48 h.

STFX inhibited TNFα production significantly compared with other quinolones.  We examined 
which quinolones can inhibit TNFα production by determining of TNFα concentration in the supernatant of 
LPS-stimulated THP-1 cells treated with 50 µg/mL quinolone antibiotics. TNFα concentrations in these super-
natants after moxifloxacin (MFLX), levofloxacin (LVFX), garenoxacin (GRNX), ciprofloxacin (CPFX) and STFX 
treatment were 1007.81 ± 79.92 pg/mL, 932.73 ± 99.14 pg/mL, 747.19 ± 27.76 pg/mL, 613.90 ± 67.56 pg/mL, or 
316.90 ± 57.69 pg/mL, respectively. MFLX and LVFX treatments significantly reduced TNFα concentration than 
LPS treatment alone did (1173.49 ± 162.51 pg/mL) (p < 0.05). GRNX, CPFX, and STFX treatments significantly 
reduced TNFα concentrations than LPS alone treatment did (control) (p < 0.01). TNFα concentrations following 
LPS and STFX treatments were significantly lower than those following LPS and MFLX, LVFX, GRNX, or CPFX 
(p < 0.01), and STFX reduced TNFα concentration the most (Fig. 2).

STFX inhibited TNFα production in a dose‑dependent manner.  Concentrations of TNFα in 
the supernatants of only LPS-stimulated THP-1 cells was 1057.80 ± 125.80  pg/mL Concentrations of TNFα 
in the supernatants of LPS-stimulated THP-1 cells in the presence of 1, 10, 30, and 50  µg/mL STFX were 
903.26 ± 61.56 pg/mL (p < 0.05 vs. LPS alone), 803.20 ± 64.52 pg/mL (p < 0.01 vs. LPS alone), 622.61 ± 56.64 pg/
mL (p < 0.01 vs. LPS alone), and 303.92 ± 63.42 pg/mL (p < 0.01 vs. LPS alone), respectively (Fig. 3).

STFX inhibited the production of chemokines.  STFX inhibited not only TNFα production but also 
chemokines production, as indicated by additional experiments with LPS-stimulated THP-1 cells. The concen-
tration of interleukin-8 (IL-8) in the supernatants of cells treated with 50 µg/mL STFX was significantly decreased 
to 10,472.00 ± 474.67 pg/mL compared with that of LPS alone (17,802.33 ± 190.07 pg/mL) (p < 0.01) (Fig. 4a). 
The concentrations of interferon inducible protein (IP-10) in the supernatants of cells treated with 50 µg/mL 
STFX was significantly decreased to 77.83 ± 9.70 pg/mL compared with that of the cells treated with LPS alone 
(3649.00 ± 377.59 pg/mL) (p < 0.01) (Fig. 4b). The concentration of monocyte chemoattractant protein-1 (MCP-
1) in cell supernatants in the presence of 50 µg/mL STFX was also significantly decreased to 161.67 ± 11.59 pg/
mL compared with that of LPS alone (3453.00 ± 148.55 pg/mL) (p < 0.01) (Fig. 4c). Furthermore, macrophage 
inflammatory protein-1α (MIP-1α concentrations in the supernatants of cells followed by treatment with 
50 µg/mL STFX were significantly decreased to 9336.67 ± 206.50 pg/mL compared with that of the cells treated 
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with LPS alone (20,859.33 ± 196.41 p/mL) (p < 0.01) (Fig. 4d). The supernatant concentration of macrophage 
inflammatory protein-1β (MIP-1β from the cells treated with 50 µg/mL STFX was also significantly decreased 
to 2844.67 ± 135.43 pg/mL compared with that of the cells treated with LPS alone (12,950.67 ± 409.62 pg/mL) 
(p < 0.01) (Fig. 4e).

The phosphorylated form of extracellular signal‑regulated kinase (ERK) increased treated 
with STFX.  THP-1 cells (2 × 105/mL) were stimulated with LPS (0.1 µg/mL) with or without the presence of 
STFX (50 µg/mL) for 30 min and 60 min. The phosphorylated form of ERK increased after treatment with STFX 
and LPS compared with treatment with LPS alone. The phosphorylated forms of nuclear factor kappa B (NF-κB) 
and p38 did not decrease in the cells treated with STFX and LPS compared with those treated with LPS alone 
(Fig. 5). Supplementary Fig. S1 presents the full-length blot and image (online).

STFX inhibited TNFα release from cells.  THP-1 cells (2 × 105/mL) were stimulated by LPS (0.1 µg/mL) 
with or without STFX (50  µg/mL). After 4  h of incubation, intracellular TNFα was stained with anti-TNFα 
antibody PE. The percentage of intracellular TNFα in the cells treated with STFX and LPS increased from 4.4 to 
16.2% compared with that of the cells treated with LPS alone (Fig. 6).

STFX reduced phosphorylation of TNFα converting enzyme (TACE) and TACE activity.  THP-1 
cells (2 × 105/mL) were stimulated by LPS (0.1 µg/mL) with or without STFX (50 µg/mL) for 30 and 60 min. 
The phosphorylated form of TACE decreased after STFX and LPS treatment compared with LPS treatment 
alone. (Fig. 7a). Supplementary Fig. S2 presents the full-length blot and image (online). TACE activity of the 
cells treated for 60 min with STFX and LPS (244,805.70 ± 27,083.11 RFU/mg Protein) significantly decreased 
(p < 0.05) compared to TACE activity for 0 min (430,018.30 ± 149,978.40 RFU/mg protein) (Fig. 7b).

Discussion
TNFα plays an important role in sepsis. TNFα blocking protected mice from sepsis symptoms18. Some clinical 
studies investigating the monoclonal antibodies produced against TNFα in patients with sepsis or septic shock 
have been reported19–21. The modulation of TNFα and other inflammatory cytokines and chemokines is consid-
ered important in the treatment of severe infectious diseases, especially sepsis or septic shock.

Figure 1.   TNFα concentration did not change after 4 h. THP-1 cells (2 × 105/mL) were stimulated by LPS 
(0.1 µg/mL) for 4 h, 12 h, 24 h or 48 h. Data are presented as the mean ± SD of 6 independent experiments.
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In the present study, TNFα concentration in the supernatant of LPS-stimulated THP-1 cells for 4 h was not sig-
nificantly different from that of the cells treated for 12 h, 24 h, or 48 h. Some researchers have cultured THP-1 cells 
with LPS for 4 h and assessed TNFα concentration in the supernatant4,22. The authors of these papers revealed 
that TNFα level reached a maximum for 4 h incubation4,22. Therefore, we performed concentration experiments 
after 4 h of incubation. The concentration of TNFα in the supernatant at 4 h was a result of what happened in the 
cells earlier. Hence, we evaluated signaling pathway and TACE activity in the cells at 30 and 60 min.

STFX significantly reduced the concentration of TNFα in the supernatants of LPS-stimulated THP-1 cells 
than other quinolone antibiotics did; STFX also reduced the levels of IL-8, IP-10, MCP-1, MIP-1α and MIP-1β.

Some types of antibiotics can modulate inflammatory cytokines, but the mechanisms of cytokine inhibition 
may vary. A study has reported that minocycline inhibits IκB kinase α/β phosphorylation of NF-κB pathway in 
THP-1 cells4. Another study has reported that clarithromycin attenuates STAT6 phosphorylation5. Other stud-
ies have reported that macrolide antibiotics inhibited ERK and NF-κB signaling pathways6,7. GRNX and MFLX 
inhibited these signaling pathways to suppress the production of inflammatory cytokines. GRNX significantly 
inhibited the transcription and secretion of IL-8 induced by LPS-stimulated THP-1 cells by inhibiting ERK1/2 
phosphorylation10. Furthermore, MFLX inhibited ERK1/2, JNK, and NF-κB activation in the cystic fibrosis 
epithelial cell line11.

Even when using similar quinolone antibacterial drugs, the mechanism of cytokine suppression differs 
depending on the characteristics of each drug. Previous studies have reported that quinolones with a cyclopropyl 
group at the N1 position and/or a piperazinyl group at the C7 position, can regulate inflammatory responses23–25. 
STFX consists of a fluorocyclopropene at the 1-position of the quinolone skeleton, a chlorine group at the 8-posi-
tion, a spiroheptane group at the 7-position, and a quinolone with a chlorine group introduced at the 8-position. 
Such characteristics may cause differences in the spectrum of antibacterial activity and may also cause differences 
in anti-inflammatory effects.

In the present study, STFX suppressed TNFα production more strongly than the other quinolone antibiot-
ics. It did not suppress the signaling pathways that produced TNFα but increased phosphorylated ERK. Flow 
cytometry analysis suggested that STFX inhibited the extracellular release of TNFα. TACE specifically cleaves 
pro-TNFα to release TNFα from cells26,27. Our study revealed that STFX reduced the phosphorylation and activity 
of TACE. One of the mechanisms inhibiting TNFα production by STFX might be interference with TNFα release 
from cells via the inhibition of TACE activity and phosphorylation but not the inhibition of signaling pathways.

Figure 2.   Sitafloxacin significantly reduced TNFα production. THP-1 cells (2 × 105/mL) were stimulated by LPS 
(0.1 µg/mL) with several different quinolone antibiotics (50 µg/mL) for 4 h. Data are presented as mean ± SD 
of 6 independent experiments. *p < 0.05 vs. LPS alone. **p < 0.01 vs. LPS alone. ***p < 0.01 vs. MFLX, LVFX, 
GRNX, or CPFX. LPS lipopolysaccharide, MFLX moxifloxacin, LVFX levofloxacin, GRNX garenoxacin, CPFX 
ciprofloxacin, STFX sitafloxacin.
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STFX may be an effective drug for patients with bacterial infections because of its antimicrobial action and 
the simultaneous reduction of TNFα. STFX has been approved as an oral antibacterial drug and can be used to 
treat patients with sepsis or septic shock.

Methods
Reagents.  Roswell Park Memorial Institute (RPMI) 1640 medium and fetal bovine serum (FBS) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). MFLX, GRNX and CPFX were purchased from FUJIFILM 
Wako Pure Chemical Corporation (Osaka, Japan). LVFX and STFX were provided by Daiichi Sankyo Com-
pany Limited. These antibiotics were diluted with RPMI 1640 at a concentration of 1.0 mg/mL to use as stock 
solutions. LPS from Pseudomonas aeruginosa serotype 10 (Sigma-Aldrich) was used to induce inflammatory 
responses. LPS was dissolved in RPMI 1640 medium at a concentration of 1.0 mg/mL and stored at – 80 °C until 
use.

Cell culture and exposures.  The human monocyte THP-1 cell line was purchased from the RIKEN Cell 
Bank (Ibaragi, Japan). The cells were cultured in RPMI 1640 medium supplemented with 10% FBS at 37  °C 
in humidified air with 5% CO2 and only exponentially growing cells were used for experiments. THP-1 cells 
(2 × 105 cells/mL) were cultured with 0.1 µg/mL of LPS for 4 h, 12 h, 24 h, or 48 h. Data are presented as the 
mean ± standard deviation (SD) of 6 independent experiments.

THP-1 cells (2 × 105 cells/mL) were cultured with LPS (0.1 µg/mL) in the presence or absence of antibiotics 
(MFLX, LVFX, GRNX, CPFX, and STFX) for 4 h. Following the incubation, supernatants were collected via 
centrifugation at 1500 rpm for 2 min at room temperature and stored at − 80 °C until further analysis. Data are 
presented as the mean ± SD of 6 independent experiments.

ELISA.  ELISA was performed using TNFα Human ELISA Kit (Invitrogen, Carlsbad, CA, USA) to deter-
mine TNFα concentration. The samples were read using an automated plate reader (Multiskan Spectrum; 
Thermo Scientific, Waltham MA, USA). Data are expressed as the mean ± SD of 6 independent experi-
ments.

Figure 3.   Sitafloxacin reduced TNFα in a dose-dependent manner. THP-1 cells (2 × 105/mL) were stimulated 
by LPS (0.1 µg/mL) in the presence of various concentrations of STFX (1, 10, 30, and 50 µg/mL) for 4 h. Data are 
presented as the mean ± SD of 6 independent experiments. *p < 0.05, **p < 0.01 vs. LPS alone. STFX sitafloxacin.
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Figure 4.   STFX reduced the levels of inflammatory chemokines. THP-1 cells (2 × 105/mL) were stimulated by 
LPS (0.1 µg/mL) with STFX (50 µg/mL) for 4 h. Concentrations of IL-8 (a), IP-10 (b), MCP-1 (c), MIP-1α (d) 
and MIP-1β (e) were measured via multiplex bead immunoassays. Data are presented as the mean ± SD of 3 
independent experiments. *p < 0.01 vs. LPS alone. IL-8 interleukin-8, IP-10 interferon inducible protein, MCP-1 
monocyte chemoattractant protein-1, MIP-1α macrophage inflammatory protein-1α, MIP-1β macrophage 
inflammatory protein-1β.
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Multiplex bead immunoassays.  Multiplex bead immunoassays (Bio-Plex Suspension Array System, 
BIO-RAD Laboratories, Inc., CA, USA), which incorporate novel technology with color-coded beads and per-
mits the simultaneous detection of up to 100 cytokines and chemokines in a single well of a 96-well microplate, 
was used for the simultaneous quantification of the following chemokines: IL-8, IP-10, MCP-1, MIP-1α and 
MIP-1β. Data expressed the mean ± SD of 3 independent experiments.

Western blot analysis.  Total protein was extracted from LPS-stimulated cells treated with antibiotics by 
using 200 µL of radioimmunoprecipitation assay buffer (FUJIFILM Wako, Osaka, Japan) containing a protease 
inhibitor cocktail (Nakalai Tesque, Kyoto, Japan) and the lysates were clarified by centrifugation (15,000 rpm, 

Figure 5.   STFX did not inhibit signaling of TNFα production. THP-1 cells (2 × 105/mL) were stimulated 
by LPS (0.1 µg/mL) with or without STFX (50 µg/mL) for 30 min or 60 min. NF-κB, ERK and p38, and the 
phosphorylation of NF-κB, ERK and p38 were evaluated by western blotting. The data are representative of 3 
independent experiments. NF-κB Nuclear factor-kappa B, ERK extracellular signal-regulated kinase.
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10 min, 4 °C). Protein concentration was determined using Pierce 660 nm Protein Assay Kit (Thermo Scien-
tific, Rockford, USA). Samples containing 10 µg of protein were run on a 10% polyacrylamide gel and electro-
transferred onto a membrane filter (Immobilon-P; Millipore, Bedford, MA, USA). The membrane was blocked 
Blocking One (Nacalai Tesque) for 30 min, followed by incubation at room temperature for 1 h with a rabbit 
polyclonal antibody (Cell Signaling, Danvers, MA, USA) phospho-NF-κB p65, NF-κB p65, phospho-ERK, ERK, 
phospho-p38, p38, TACE and phospho-TACE (Abcam, Cambridge, UK). The membrane was then incubated at 
room temperature for 30 min with horseradish peroxidase-conjugated anti-mouse or anti-rabbit immunoglobu-
lin G antibodies (GE Healthcare Bio-Science, Little Chalfont, England). Immunoreactive bands were visual-
ized using enhanced chemiluminescence ImmunoStar LD (FUJIFILM Wako) and a FUSION-SOLO.7S.EDGE 
Chemilluminescence Imaging System (Vilber-Lourmat, 24 rue de Lamirault, 77090 Collégien, France). The data 
shown are representative of 3 independent experiments.

Flow cytometry analysis of intracellular TNFα staining
THP-1 cells (2 × 105/mL) were stimulated by LPS (0.1 µg/mL) with or without STFX (50 µg/mL) for 4 h. After 
incubation, the cells were fixed and permeabilized using a Fixation/Permeabilization Solution Kit (BD Bio-
sciences, San Jose, CA, USA) according to the manufacturer’s protocol. Intracellular TNFα was stained using 
anti-TNFα antibody PE (BD Biosciences) for 1 h. The cells were washed and resuspended in phosphate-buffered 
saline (PBS) supplemented with 2% FBS and 0.05% NaN3. Intracellular TNFα was evaluated using FACS Canto 
II (BD Biosciences). Data shown are representative of 3 independent experiments.

TACE activity.  TACE activity was measured using SensoLyte 520 TACE (α-Secretase) Activity Assay Kit 
(Anaspec, Inc. CA, USA) according to manufacturer’s protocol. THP-1 cells (2 × 105/mL) stimulated using LPS 
with or without STFX were washed with PBS. Assay buffer containing 0.1% Triton-X 100 was added to the cells 
or cell pellets. The cell suspension was collected in a microcentrifuge tube. The cell suspension was incubated at 
4 °C for 10 min and then centrifuged for 10 min at 2500×g, at 4 °C. The supernatant was collected and stored at 
− 80 °C until use. Data are presented as the mean ± SD of 6 independent experiments.

Statistical analysis.  The values are expressed as the mean ± SD. Data were analyzed by Student’s t-test 
using a statistical software (Microsoft Excel 2008; Microsoft Corporation, Redmond, WA, USA), in which a 
p-value < 0.05 was considered statistically significant.

Figure 6.   Intracellular TNFα levels increased with STFX. THP-1 cells (2 × 105/mL) were stimulated by LPS 
(0.1 µg/mL) with or without STFX (50 µg/mL). After 4 h incubation, intracellular TNFα was stained with anti-
TNFα antibody PE. The percentage of intracellular TNFα in LPS-stimulated cells in the presence or absence of 
STFX was evaluated by flow cytometry. The data are representative of 3 independent experiments.
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Data availability
All data generated or analyzed during this study are included in this article.
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