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In situ lymphoma imaging 
in a spontaneous mouse model 
using the Cerenkov Luminescence 
of F‑18 and Ga‑67 isotopes
Zsombor Ritter1, Katalin Zámbó1, Péter Balogh2, Dávid Szöllősi3, Xinkai Jia2, Ákos Balázs4, 
Gabriella Taba5, Dániel Dezső1, Ildikó Horváth3, Hussain Alizadeh6, David Tuch7, Kunal Vyas7, 
Nikolett Hegedűs3,8, Tibor Kovács9, Krisztián Szigeti3, Domokos Máthé3,8,10,11* & 
Erzsébet Schmidt1,11

Cerenkov luminescence imaging (CLI) is a promising approach to image‑guided surgery and 
pathological sampling. It could offer additional advantages when combined to whole‑body isotope 
tomographies. We aimed to obtain evidence of its applicability in lymphoma patho‑diagnostics, 
thus we decided to investigate the radiodiagnostic potential of combined PET or SPECT/CLI in 
an experimental, novel spontaneous high‑grade B‑cell lymphoma mouse model (Bc.DLFL1). We 
monitored the lymphoma dissemination at early stage, and at clinically relevant stages such as 
advanced stage and terminal stage with in vivo 2‑deoxy‑2‑[18F]fluoro‑d‑glucose (FDG) positron 
emission tomography (PET)/magnetic resonance imaging (MRI) and 67Ga‑citrate single photon 
emission computed tomography (SPECT)/MRI. In vivo imaging was combined with ex vivo high 
resolution CLI. The use of CLI with 18F‑Fluorine (F‑18) and 67Ga‑Gallium isotopes in the selection of 
infiltrated lymph nodes for tumor staging and pathology was thus tested. At advanced stage, FDG 
PET/MRI plus ex vivo CLI allowed accurate detection of FDG accumulation in lymphoma‑infiltrated 
tissues. At terminal stage we detected tumorous lymph nodes with SPECT/MRI and we could report 
in vivo detection of the Cerenkov light emission of 67Ga. CLI with 67Ga‑citrate revealed lymphoma 
accumulation in distant lymph node locations, unnoticeable with only MRI. Flow cytometry and 
immunohistochemistry confirmed these imaging results. Our study promotes the combined use of 
PET and CLI in preclinical studies and clinical practice. Heterogeneous FDG distribution in lymph 
nodes, detected at sampling surgery, has implications for tissue pathology processing and it could 
direct therapy. The results with 67Ga also point to the opportunities to further apply suitable SPECT 
radiopharmaceuticals for CLI.

Haematological malignancies can occur at various life stages throughout age groups. The most frequent lym-
phoid malignancy in adulthood is diffuse large B-cell lymphoma (DLBCL). Adult DLBCL occurrences make 
up approximately 30–40% of all lymphoid malignancies. Around half of the morbidities occur in the age group 
of patients older than 60  years1–3. Despite well-established therapy protocols, 30% of patients are resistant to 
standard chemo-immunotherapy mostly due to heterogeneous origins of the disease.

Diffuse large B-cell lymphomas are a particularly heterogeneous group of malignant lymphoprolifera-
tive  neoplasms2,3 and for an effective therapeutic strategy it is important to understand their heterogeneous 
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phenotypes. When only histopathological markers are used, germinal centre (GC) or non-GC phenotypes are 
distinguished. By genetic marker analysis of the cell of origin (COO), the other main DLBCL group besides GC 
is the activated B-cell (ABC) subtype. Patients within the ABC-COO group of DLBCL usually have lower clini-
cal response rate and worse  prognosis4–6. In recent years, new DLBCL subgroups have been created to provide 
more accurate classification and more accurate prognosis prediction with regards to response to therapy, based 
on special molecular genetic  differences5,6 exploiting the possibility of detailed genomic characterization with 
next generation  sequencing7,8.

In connection with these recent advances in lymphoma therapy, imaging-based diagnostic tools have also 
evolved. The application of new in situ in vitro imaging holds the promise of timely access to advanced differ-
entiation of DLBCL patient clusters. The so identified subgroups of patients would then benefit from quick and 
tailored immune- or intensive chemotherapy.

Clinical management of the disease involves the evaluation of enlarged lymph nodes, starting with cyto-
logic aspiration sampling. However, aspiration samples are usually not definitive in diagnostics, much less for 
appropriate selection for any subgroup-specific therapeutic protocol. Before starting definitive therapies, further 
excisional biopsy and detailed histological analysis of at least one accessible, tumorous part of a suspect lymph 
node is a mandatory step in the course of  diagnostics9,10.

At present 2-deoxy-2-[18F]fluoro-d-glucose (FDG) positron emission tomography/X-ray computed tomog-
raphy (PET/CT) (hereinafter referred to as FDG PET/CT) is the most widespread diagnostic modality for patient 
staging and monitoring  therapy9–14 in high-and middle-high income countries.

In routine diagnostics, the Deauville score is used to evaluate interim and restaging patient FDG PET/CT 
 results11–13. In addition to the Deauville score, heterogeneity and a number of other semi-quantitative parameters 
(including maximal standardized uptake value (SUV MAX), total lesion glycolysis (TLG), and metabolic tumor 
volume (MTV) can also be used. Their prognostic significance has been intensively  studied14–18 but no definitive 
clinical metric proposal has been formed yet.

On the other hand -before the widespread availability of FDG- earlier clinical practice in diagnosis and thera-
peutic management of lymphomae extensively relied on gallium  [67Ga]; 2-hydroxypropane-1,2,3-tricarboxylate 
(67Ga-citrate) single photon emission computed tomography (SPECT) and two-dimensional gamma scintigraphy 
with the same isotope. The diagnostic performance of FDG is superior than that of 67Ga-citrate, however the 
relevance of 67Ga imaging is somewhat still present in lymphoma. In addition to lymphoma diagnostics, 67Ga 
is also increasingly viewed as a therapeutic isotope in oncology by virtue of its Auger-electron emission and 
specific lymphoma uptake.

By localising involved lymph nodes, subsequent sampling could benefit from the use of the currently obliga-
tory pre-therapy FDG PET/CT or 67Ga-citrate scan images to establish therapeutic directions. As an example, 
identifying, removing and analysing lymph nodes and inhomogeneous tumor masses using the available Ceren-
kov light emission of Fluorine-18 isotope after the PET/CT exam would lead to more precise molecular biology 
evaluation, hence leading to choosing a better therapeutic  protocol17–19.

In this direction, our group has previously described the Bc.DLFL1 tumor model as a spontaneous high-
grade lymphoma isolated from BALB/c mice. This model shows preferential tissue distribution to mesenteric 
lymph nodes and spleen during peritoneal spreading, and propagates via the lymphatic  vessels20. This well-
characterized lymphoma is a suitable model for preclinical investigations, including assessment of novel imaging 
 techniques21. The model invariably leads to death 21 days after the animals are inoculated, with 90% of animal 
deaths occurring between 11 and 14 days. Thus, animals are considered to be in the end-stage from day 11 post 
intraperitoneal inoculation.

The basic aim of the present study was to assess staging possibilities by imaging and monitoring dissemina-
tion of Bc.DLFL1 lymphoma in vivo with PET and single photon emission computed tomography (SPECT) and 
ex vivo with high resolution Cerenkov luminescence imaging (CLI). CLI as an advanced imaging  technique22,23 
has a considerable potential for clinical translation. Every new CLI application is of high medical interest, 
especially those using clinically authorised and marketed radiopharmaceuticals or isotopes. One such yet not 
reported isotope in practical CLI is 67Ga. However underreported, theoretical calculations show that the high 
energy gamma photons emitted during the decay of this isotope could lead to secondary electrons resulting in 
Cerenkov luminescence in water or in water-containing  tissues24–26. Therefore, we assessed CLI combined with 
the usual FDG positron emission tomography/magnetic resonance imaging (PET/MRI) and gallium  [67Ga]; 
2-hydroxypropane-1,2,3-tricarboxylate (67Ga-citrate) single photon emission computed tomography combined 
with magnetic resonance imaging (SPECT/MRI) imaging, too. We also investigated whether the use of a CLI 
device could help to monitor the spreading of the DLBCL model ex vivo and if this CLI device could detect details 
of metastatic foci. Animals were imaged in three tumor stages for both radiopharmaceuticals: at an early stage of 
4 days post inoculation, in the advanced stage at 8 days and in terminal stage. CLI was aimed to direct the search 
for small or heterogeneous tumorous foci. Using this imaging sequence, the presented methodology of tailored 
ex vivo selection and histopathologic processing of tumor volumes can also progress towards clinical translation.

Materials and methods
Experimental animal model of Bc.DLFL1 lymphoma propagation. All studies reported here have 
been carried out in accordance with the rules on animal welfare and regulations on other respective subjects in 
vigour in Hungary. The study had been designed and performed in compliance with the ARRIVE guidelines. 
The study was approved by the Ethics committee of the University of Pécs. Furthermore, all procedures involving 
live animals were carried under permission of the National Food Chain Safety Office of Hungary, Department 
of Animal Health, under license number BA02/2000-16/2015. BALB/c mice bred at the SPF Animal Breeding 
Unit of the University of Pécs, Department of Immunology and Biotechnology, aged between 8 and 12 weeks, 
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were used as lymphoma recipients. After retrieval, the mice were adapted to conventional animal facility of 
the Department of Immunology and Biotechnology. The Bc.DLFL1 lymphoma cells were maintained as serial 
intraperitoneal passage.

Grouping and number of animals by tumor stage. In both the FDG PET and the 67Ga-citrate SPECT/
MRI experiments animals were grouped into early stage (imaging 4 days post inoculation of lymphoma cells), 
advanced stage (imaging 8 and 9 days post inoculation) and terminal stage (imaging 11 and 12 days post inocu-
lation). (Altogether 36 mice at inoculation were grouped into six groups with six mice per group.) Each stage 
groups contained n = 6 animals per radiopharmaceutical. However, in the end-stage DLBCL group of animals 
at 11 days post inoculation, deaths occurred thus five animals were amenable to the combined in vivo tomo-
graphic—ex vivo CLI imaging from the FDG PET group, and one animal was usable for the 67Ga-citrate SPECT/
MRI imaging from its group of originally six animals.

In vivo imaging using [18F]FDG PET/MRI. Each animal received between 10 and 15  MBq of FDG 
(Pozitron-Scan, Pozitron, Hungary) i.v. in a 0.1 mL lateral tail vein injection 1 h before the PET and 1.5 h before 
the subsequent CLI imaging. Animals were fasted for 8 h before scans. PET and MRI images were acquired in a 
nanoScan 1 Tesla PET/MRI system (Mediso Ltd, Hungary) and in a Micropet P4 (Concorde Microsystems, US) 
small animal PET system. Static scans of 15-min duration were collected 60 min post injection in an energy win-
dow of 350–750 keV. All PET images were reconstructed using the respective device’s three-dimensional Maxi-
mum A Posteriori (MAP, P4 system) or three-dimensional Monte-Carlo modeled Ordered Subsets Expectation 
Maximisation (Tera-Tomo 3D-OSEM, Mediso system) algorithm, with corrections for dead time, scatter, and 
attenuation where available. Reconstructed images of 1 mm voxel size were then visualised using the VivoQuant 
(inviCRO, USA) and Fusion (Mediso, Hungary) softwares.

All MR images were acquired in a Mediso nanoScan 1T MRI with a three-dimensional T1-weighted gradi-
ent echo sequence, with 300 micron voxel size, 6 excitations, 12.1 ms/2.9 ms Transmit/Receive times, and 15 
degrees of flip angle.

In vivo imaging using Ga‑67 citrate SPECT/MRI. For SPECT, 4.1–5.4 MBq of 67Ga-citrate (CIS Bio, 
France) was injected iv. in 0.2  mL 24  h before imaging A 45-min SPECT scan was then performed using a 
NanoSPECT/CT Silver Upgrade small animal SPECT system (Mediso Ltd, Hungary) using both the 93 keV and 
184 keV photopeaks in a 20–20% energy window, with 60 acquisition views and a Monte–Carlo model based 
three-dimensional SPECT reconstruction (Tera-Tomo, Mediso Ltd, Hungary) resulting in an image volume of 
0.6 mm voxels. The same animal in the same animal bed allowing constant position was then immediately sub-
jected to a whole-body three-dimensional MR imaging sequence in the nanoScan 1T MRI subcomponent. After 
these acquisitions, tissues were examined with ex vivo CLI, histology and immunohistochemistry following the 
in vivo imaging. All live animal image acquisitions were performed under 2% isoflurane anesthesia in medical 
oxygen in a special cross-compatible animal holder bed (MultiCell, Mediso, Hungary) which kept the animals 
immobilised during cross-modality and cross-device scans.

Processing of ex vivo tissues for CLI and subsequent histology in situ. The entire gastrointestinal 
tract (between the subphrenic segment of oesophagus and the upper third of rectum together with the adjoining 
mesentery) was removed and placed in a 10 cm Petri dish, with the intestinal folds flattened. Under gentle pres-
sure the dissected gut-mesentery complex was fixed in cold 4% buffered paraformaldehyde for 15 min, followed 
by repeated rinsing with PBS. The entire complex was stained with Mayer’s hematoxylin solution for 10 min, 
followed by blue stain intensification in tap water for 5 min.

CLI imaging. Following the end of PET acquisitions, Cerenkov light imaging of the Cerenkov luminescence 
produced in the tissues containing high concentrations of the injected radionuclidic tracer, was performed using 
a prototype high resolution Cerenkov imaging system with an exceptionally sensitive imaging chain. (LighPath, 
Lightpoint Medical, UK) Tissue specimens were placed in the sample holder of the instrument and image acqui-
sition was performed over them for 10 min of signal integration, with 4 × 4 pixel binning in 512 × 512 pixels, with 
a 0.15 mm pixel size of the imaging chain in a field of view of 8 × 8 cm. White light photographic background 
was also collected by the instrument for anatomical reference. Images of Cerenkov Luminescence and the back-
ground white-light images were exported to DICOM format by the instrument’s dedicated software. Further 
two-dimensional rigid co-registration, post-processing with a median filter of 3 pixels kernel, rotation and color 
look-up table changes were done using Fusion (Mediso, Hungary) and VivoQuant (inviCRO, USA). Images were 
then visualized with a unified common colour Look-Up Table (LUT) across animals, with arbitrary units of light 
intensity based on the emCCD detector pixel counts overlaid on the white-light photographs.

The clinical prototype LightPath system used in the study had, under the same detector pixel binning con-
dintions as mentioned above, a minimum detectable activity of 20 kBq in a scan time of 100 s and a volume of 
0.02 mL for 18F in a 0.315 mm radius microwell. During the evaluation of system performance for setting up 
the 67Ga study, we measured a minimum detectable activity of 300 kBq of 67Ga isotope, in an equivalent scan 
time for a similar well, volume of 0.02 mL with the same pixel binning settings. The performance test results 
obtained from the manufacturer of the prototype system indicated an intrinsic resolution of the imaging chain 
of 0.93 ± 0.06 mm by a proprietary analysis of the line spread function at full width half maximum.
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Histology and immunofluorescence. Those lymph nodes that have been identified as tumorous, and 
all spleens, were processed for haematoxylin–eosin (H&E) histology. They were fixed in 10% buffered formal-
dehyde using standard histological protocols. Immunofluorescence for lymphoma identification was performed 
with cryostat sections from tissue blocks embedded in OCT medium (BioOptica, Italy) using FITC-conjugated 
rat anti-mouse IgM (clone B7.6) and Alexa Fluor 647-conjugated rat anti-mouse B220 (clone RA3-6B2) mono-
clonal antibodies produced at the Department of Immunology and Biotechnology, University of Pécs. The sec-
tions were and analysed using BX61 Olympus microscope using the AnaliSys software.

Flow cytometry. Mesenteric lymph nodes of lymphoma-bearing mice were collected and crushed between 
two frosted ends of histological glass slides. The cells were filtered through 70 µm cell strainers and centrifuged. 
After resuspension in PBS-0.1% BSA-0.1% Na-azide buffer, the cells were incubated with FITC-conjugated anti-
mouse IgM and Alexa Fluor 647-conjugated anti-B220 mAbs. Lymphoma cells and residual lymphocytes were 
distinguished by gating on forward and side scatter (FSC/SSC) parameters related to size and granularity, respec-
tively, using a BD FACSCalibur flow cytometer and CellQuest Pro software (both BD Biosciences, UK).

Results
Early stage DLBCL escapes radioisotopic whole‑body and tissue‑level detection with PET, 
SPECT or CLI. Every animal in each group of the early stage FDG group and also in the early and advanced 
stage 67Ga-citrate group could be tested for signal capture and levels in tomographic in vivo and Cerenkov Light 
imaging. No circumscribed tumor uptake was seen over the background with either FDG or 67Ga-citrate in early 
stage animals (n = 3 for FDG, n = 3 for 67Ga-citrate). Using 67Ga-citrate, no clearly distinguishable SPECT foci 
nor visibly tumor-associated Cerenkov signal was seen in advanced-stage animals either.

67Ga-citrate SPECT and subsequently 67Ga-citrate CLI detected lymphoma only at its terminal, very advanced 
stage. However, a well identifiable 67Ga-Cerenkov light signal was captured in the physiologically Gallium-avid 
regions of the mouse intestines in all imaged animals regardless of tumor stages. In the case of the advanced 
(8 days post inoculation) stage lymphoma SPECT and CLI images with 67Ga-citrate, high background bowel 
activity and consequent CLI signal hampered the distinguishing of tumor signal from background CLI lumines-
cence of 67Ga in mesenteric and abdominal scans, thus interpretation of images to tumorous or non-tumorous 
uptake was not possible (data not shown).

Characterization of [18F]FDG uptake is feasbile both in vivo with PET/MRI and ex vivo with CLI 
in advanced stage lymphoma. Using in vivo PET/MRI we found that in an advanced lymphoma stage (at 
or beyond day 8 post-injection) the infiltrated mesenteric lymph nodes clearly showed a significant accumula-
tion of [18F]FDG following intravenous administration (Fig. 1a). With CLI we observed [18F]FDG accumula-
tion in the infiltrated adipose tissue along the mesenteric vessels, within the enlarged mesenteric lymph nodes, 
in the omentum and also in the splenic hilus. Subsequent histological analysis of the [18F]FDG signal-positive 
regions confirmed large infiltrates of lymphoma cells at these sites (Fig. 1b,c). For the quantitative assessment 
of the degree of lymphoma infiltration, flow cytometric analysis was performed. Lymphoma cells could be dis-
tinguished using forward and side scatter (FSC/SSC) parameters reflecting size/granularity characteristics, with 
the lymphoma cells displaying substantially larger size. However, even at the advanced stage of lymphoma, some 
residual lymphocytes within the affected mesenteric lymph nodes could still be detected, including both CD3-
positive T cells and B220-positive normal B cells, latter population also displaying surface IgM. On the other 
hand, the infiltrating lymphoma cells express only B220, confirming their DLBCL characteristics (Fig. 1d).

Ex vivo CLI discerns tumourous infiltrate within lymph nodes identified as distant metastases 
using Ga‑67 citrate SPECT/MR. At the advanced stage, the enlarged mesenteric lymph nodes (Fig. 2a) 
are well detectable using MRI. The distinction of 67Ga-citrate accumulation signals in the lymph nodes based on 
the SPECT alone without MRI would be difficult due to the high background activity caused by the intense non-
specific intestinal accumulation of the tracer. On the other hand, the mediastinal region lacks this background. 
This allows specific detection of distant manifestations with SPECT, even in tissues without obvious MR altera-
tions. Here the SPECT assessment could clearly reveal lymphoma accumulation in the region of parathymic 
lymph nodes, which were not well noticeable using only MRI analysis in the end-stage lymphoma-bearing 
mouse (Fig. 2b). The presence of lymphoma infiltrate in parathymic lymph nodes was verified following their 
removal by using ex vivo CLI (Fig. 2c) and subsequent histological analysis, including dual immunofluorescence 
labelling for IgM and B220. This approach allows the identification of lymphoma cells by the lack of surface IgM 
and the preserved expression of B220 marker, thus distinguishing the lymphoma cells from the B220+/IgM+ 
normal B cells (Fig. 2d–f).

Discussion
Over the past several decades FDG PET/CT has become the first line tool for the staging and monitoring of 
therapeutic efficiency in patients with high-grade malignant lymphomas. However no definite diagnosis and well 
directed therapy can be made in these patients, without a full biopsy of tumorous tissues, as cytology and fine nee-
dle aspirations are mostly inconclusive. A medical need for a sampling method also arose to identify a tumorous 
lymph node in a pre-planned manner with PET/CT images as basis. Tumour-infiltrated lymph node parts should 
be immediately localised and their targeted biopsy should be performed. In addition, the current sensitivity 
and resolution achievable by clinical FDG PET are not adequate for monitoring fine details of tracer distribu-
tion within foci smaller than approximately 10  mm27–29. Other investigative methods such as autoradiography, 
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fluorescence or bioluminescence imaging do not fit to any practical clinical context or they are simply not feasible 
in humans. Consequently, a sensitive, translatable sampling method applying the gold standard FDG tracer for 
DLBCL staging and therapeutic feedback remains a clinically important need. This development is effectively 
assisted by translational pre-clinical models and validation of improved detection methodologies. An ex vivo 
imaging measurement of metabolic heterogeneity in tumour tissue, in turn, could influence therapy planning, 
too. In our present work, we provide evidence for the potential radio-diagnostic application of the combination 
of PET imaging with ex vivo Cerenkov luminescence in an experimental high-grade B-cell lymphoma model. 
This combination provides a more detailed structural assessment of lymph nodes infiltrated by lymphoma cells 
at a more effective detection sensitivity than any currently available in vivo tool, potentially also offering a much 
faster evaluation than via traditional processing by tissue  histopathology30,31.

In addition, this model potentially allows the monitoring the effect of various experimental therapeutic 
approaches including measurements of metabolic heterogeneity of the tumour cell clusters within lymph nodes 
quickly after sampling. Combination of PET, SPECT, and CLI allows for this targeted sampling and detailed 
ex vivo testing. CLI can be used to examine several radioisotopes that are routinely used in the traditional clini-
cal nuclear medicine  toolkit32–34.

The previously described, well-characterized high-grade mouse B-cell lymphoma model in our work has a 
restricted, stepwise in vivo propagation from the peritoneal cavity towards the environs of mesenteric lymph 
vessels into the mesenteric lymph nodes and then the  spleen21. This allowed us to image different locations of 
tumor spreading by using our proposed methodology.

We performed a multi-modal multi-tracer whole body in vivo imaging in a clinically relevant advanced stage 
of the animals with Bc.DLFL1 lymphoma load. This stage of the tumours was then imaged ex vivo using CLI, 
and the image details were compared to immunohistochemistry and microscopic results in the same animals. 

Figure 1.  Molecular imaging results in advanced stage lymphoma-bearing mice. (a) PET/MR image in 
advanced stage: FDG-avid enlarged mesenteric lymph nodes are visible (horizontal plane, representative 
image). (b) Colour overlay of Cerenkov light emission (CLI) on the white light photograph of the intestinal 
preparation, with the spleen at the top of the image. FDG-avid lymphomatous regions and foci in the 
peritoneum and omentum are coloured orange. The H&E staining (upper right) depicts the diffuse infiltration 
of the omentum (scale bar = 200 µm), in the area marked by an ellipse on the CLI picture (scale bar = 200 µm). 
Lower-right image with high-power magnification shows lymphoblastic dominance corresponding to the area 
marked with rectangle (scale bar = 50 µm). Representative images from a cohort of mice with n = 3. (c) Ex-vivo 
CLI in late stage lymphoma: FDG-avid Bc-DLFL.1 lymphoma foci with H&E staining in mesenteric lymph 
node (top) and mesenterium (bottom) CLI (left) and, Stereomicroscopic picture of the intestinal preparation 
(middle), Histology (right): the red arrow shows that the upper encircled area in the stereomicroscopic 
picture emits Cerenkov light and corresponds to the mesenteric lymph node complex, containing a massive 
lymphoma infiltrate demonstrated on the top right image (connected by dashed red arrow). The bottom green 
arrow connects one branch of the mesentery with lesser Cerenkov signal intensity (marked with ellipse), 
with an extensive lymphoma infiltrate surrounding the mesenteric artery (arrowhead). Scale bar = 200 µm. 
Representative images from a cohort of mice with n = 3. (d) Flow cytometric analysis of enlarged mesenteric 
lymph nodes (mLN) reveals residual small-sized (in R1 gate) CD3-positive T cells and B220-positive B cells (left, 
middle), latter cells mostly co-expressing IgM (left, bottom), and large number of blast-sized cells (in R2 gate) 
displaying B220 B-cell marker and absence of CD3-positive cells (right, middle), but lacking surface IgM and 
CD3 (right, bottom). Lymphocytes from peripheral lymph nodes (pLN) do not contain a distinguishable blast 
population within the R2 gate (right, top). Representative images from a cohort of mice with n = 3.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24002  | https://doi.org/10.1038/s41598-021-03505-3

www.nature.com/scientificreports/

We decided to investigate 67Ga-citrate, too, as (1) this radiotracer is still the most specific and sensitive means 
for SPECT imaging of  lymphoma33, (2) modeling studies have shown an available Cerenkov luminescence from 
tissue 67Ga  distribution24,25,28 (3) there is a current re-emerging interest in 67Ga as an Auger emitter’s therapeutic 
 relevance35.

To monitor the in vivo expansion of high-grade lymphoma, we tested whether the in vivo PET/MR and ex vivo 
CLI modality would allow lymphoma detection. We found that we could detect [18F]FDG accumulation in the 
organs infiltrated with lymphoma after intravenous administration of [18F]FDG and subsequent in vivo PET/
MR and ex vivo CLI. This occurred at and after the advanced stage of lymphoma growth. Our ex vivo results 
suggest a new clinical application field of [18F]FDG detection using CLI for localisation and observation of the 
detailed metabolic heterogeneity of the affected lymph  nodes33,36–41.

The current evaluation of lymphoma expansion and therapy effects in patients relies on the use of Deauville 
scoring, using hepatic FDG uptake and mediastinal blood pool as reference  value11,13,14 and several semiquantita-
tive  parameters15–17. To optimize therapy and plan for clinical monitoring, we propose that—besides Deauville 
scoring and the currently studied PET derived semiquantative parameters—it would be particularly important 
to obtain information about the heterogeneity of individual enlarged, tumorous lymph nodes. Measurement of 
glycolytic heterogeneities could lead to the identification of regions of tumor stem cells within regions of lesser 
proliferative activity known to confer resistance to therapy. Of further importance are those heterogeneous tumor 
regions parts where the distribution of therapeutic drugs remains low, e.g. in peritoneal or retroperitoneal spread.

We report for the first time a successful high-contrast Cerenkov light imaging following the in vivo applica-
tion of 67Ga isotope. Research measurements and modeling of physical basics and quantum details of effective 
Cerenkov luminescence using 67Ga solutions were outside the scope of our study. However, planning the study we 
relied on modeling results of Chin and  Beattie23–25. Building on this modeling work, we assume that the origin of 
this Cerenkov luminescence is secondary electron spread generation in all tissue water compartments. Looking 
closer at the radionuclide’s high energy gamma emissions to initiate secondary electrons, we find gamma photons 
of 17% abundance at 300 keV and 5% abundance near 394 keV and other higher energies of 494, 703, 794, 814 
below 0.1% and 888 keV at 0.1%, respectively, as reported  in42,43. An earlier calculated model of Cerenkov  effects24 

Figure 2.  End-stage lymphoma-bearing mouse images show specific accumulation of 67Ga-citrate in 
parathymic lymph nodes. (a) MRI: enlarged mediastinal lymph node conglomerate with signs of tumor 
infiltration (red arrowhead). (b) 67Ga-citrate SPECT/MRI: SPECT/MRI assessment shows tracer accumulation 
in a part of the left parathymic lymph node (from left to right in this panel, sagittal, horizontal and axial 
plane view, focused on the parathymic region). The red full arrowhead shows the tracer accumulating part 
of the infiltrated lymph node, while the empty arrowhead points to the part of the enlarged lymph node not 
accumulating 67Ga-citrate. (c) Ex-vivo Cerenkov image shows 67Ga-citrate accumulation in the previously 
identified part of the parathymic lymph node and low accumulation in the part identified with the empty 
arrowhead in SPECT/MRI. Scale bar corresponds to 1 cm. (d) Stereomicroscopic image of the same parathymic 
lymph node. Two areas are identified, * in the lower rectangle shows the tumor-infiltrated part, its histology 
analysis image indicated by a purple arrow, ** in the upper rectangle identifies the tumor infiltration border 
area in the lymph node. The corresponding immunohistochemistry image in (f) is pointed at with a red arrow. 
(e) Haematoxylin–eosin staining microscopy image of a section from the infiltrated part of the parathymic 
lymph node, identified with (a) * in (d). The sample is taken from the area in the lower rectangle of the 
stereomicroscopic image shown with *. Small clusters of residual normal lymphocytes (arrow) are visible, 
surrounded by large lymphoma infiltrates composed of irregularly shaped lymphoblasts (arrowhead). (f) 
Immunofluorescence histological image from the transitional area of the lymph node labeled **, delineated 
in the upper rectangle of the stereomicroscopic image in (e) demonstrates the remnant of original follicle 
composed of IgM/B220 double positive B cells adjacent to B220 single positive DLBCL cells (green: IgM, red: 
B220). Scale bar = 100 µm.
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has modeled an availability of 22%: 11 electrons per 50 disintegrations per 67Ga-atom decay for the generation 
of secondary electrons in tissue or water, responsible for Cerenkov photon emission.  Beattie25 recently reported 
a more refined model and performed measurements of similarly high-energy gamma rays. Those data have 
proven the role of secondary electrons in the generation of Cerenkov luminescence photons from isotopes with 
high-energy gamma emission such as 67Ga. A detectable number of photons per disintegration could be present, 
with slightly below 20% availability of Ga-67 Cerenkov Radiation efficiencies.

67Ga-citrate scintigraphy played an important role in lymphoma monitoring earlier and still remains a very 
important diagnostic means in the majority of the world where PET/CTs are not available to this end. In Low-
Income Countries, per million inhabitants, the number of SPECT scanners available is ten-fold compared to 
PET scanners. In Lower Middle Income, Middle Income and even High Income countries, this proportion is 
still in the significant range of two to four times the number of SPECT systems to  PET44. Therefore in countries 
and in regions without adequate access to PET scanners, 67Ga-citrate could still remain an accessible specific 
radiopharmaceutical for lymphoma staging. The simplicity, low capital investment (circa a tenth to a fifth of 
any SPECT/CT system price) and low operational costs of CLI devices would provide clinical benefits to lower 
income countries.

We expected 67Ga-citrate accumulation in Bc.DLFL1 lymphoma cells, supposing that 67Ga-imaging of lym-
phoma can also provide information about the staging or monitoring the therapy response. In the clinics, many 
other studies have already demonstrated that FDG-PET is superior to 67Ga-citrate  imaging14 in agreement with 
our study. In summary FDG PET has proven to be more sensitive among the two radiopharmaceuticals in this 
model, as FDG PET and Cerenkov imaging could visualize tumor foci in the abdomen in the advanced stage 
group of mice, while no such imaging possibility was feasible in the advanced stage group using Ga-67 citrate, 
only in terminal stage animals. The reason for this can be cell cycle heterogeneity of the tumour tissue cell 
population. In earlier studies it has been shown that the tumoral cell over-expression of the molecule respon-
sible for Ga-67 cellular uptake, i.e. the transferrin receptor (also referred to as CD71 glycoprotein) is cell-cycle 
 dependent45,46. On the other hand, overexpression and functions of glucose transport proteins are less dependent 
on the cell cycle phases. Theoretically, this offers a higher signal of increased glucose transporter detection in 
tumors than a Ga-67 uptake based detection relying on CD71 overexpression with fluctuating intensity. Another 
reason could be that the diagnostic performance of 67Ga-citrate imaging is less accurate in case of small foci in 
the abdomen than in other part of the body due to the high intestinal background activity, but its use is justified 
in the supradiaphragmatic  regions47–49. It has been shown in the present mouse lymphoma model study, too, that 
67Ga-citrate imaging would consequently be less sensitive than FDG-PET imaging. However, 67Ga is an efficient 
therapeutic Auger electron emitter that has been applied in in vitro50,51, and also as a radionuclide with thera-
peutic potential in pre-clinical and preliminary clinical  studies35,45,46. Using different targeted delivery methods 
to achieve specific cell nuclear uptake in lymphoma cells and DLBCL patients, 67Ga might have a therapeutic 
potential in lymphoma, too. This could well be applied in conjunction with imaging of biodistribution spaces 
using CLI.

Our results confirmed the Cerenkov imaging suitability of 67Ga-citrate. As 67Ga decay emits both gamma 
radiation and can produce Cerenkov luminescence, it is applicable for both SPECT and CLI. Using this approach, 
we could locate a distant parathymic lymph node metastasis after intraperitoneal lymphoma injection with 
intravenous Ga-67 citrate administration followed by SPECT/MRI and ex vivo CLI. This metastatic location is 
in agreement with earlier demonstration of DLBCL lymphoma spreading following intraperitoneal  injection52. 
However, further optimization strategies are needed to explore the full potential of this novel approach. Dur-
ing clinical translation special care has to be taken for hospital staff radionuclide exposure. Observing as low as 
reasonably achievable (ALARA) radiation protection principles should be paramount regarding staff hazards 
when designing clinical experiments. Staff ALARA might be the most important challenge to large-scale CLI 
applications in the clinic.

Conclusions
These results show that in vivo whole-body imaging with PET or SPECT, followed by ex vivo CLI acquisitions 
might be guiding tumor resection for pathology evaluation and therapy planning not only in preclinical inves-
tigations but for the clinical practice, too. CLI could be applied to outline tumorous tissues and to guide their 
surgical resection. Ex vivo CLI may guide the pathology sampling of any enlarged lymph nodes that have been 
previously localised by PET. Other surgically removed lymph nodes can be further investigated ex vivo. Further 
physics modeling studies and phantom experiments of Ga-67 CLI should be encouraged. In this study context, 
we report Cerenkov imaging of Ga-67 isotope for the first time. The combined use of SPECT, PET and CLI in 
clinical oncological practice is warranted.
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