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High BRCA1 gene expression 
increases the risk of early distant 
metastasis in  ER+ breast cancers
Hui‑Ju Chang1, Ueng‑Cheng Yang1,2*, Mei‑Yu Lai3, Chen‑Hsin Chen3,4 & Yang‑Cheng Fann5

Although the function of the BRCA1 gene has been extensively studied, the relationship between 
BRCA1 gene expression and tumor aggressiveness remains controversial in sporadic breast cancers. 
Because the BRCA1 protein is known to regulate estrogen signaling, we selected microarray data of 
 ER+ breast cancers from the GEO public repository to resolve previous conflicting findings. The BRCA1 
gene expression level in highly proliferative luminal B tumors was shown to be higher than that in 
luminal A tumors. Survival analysis using a cure model indicated that patients of early  ER+ breast 
cancers with high BRCA1 expression developed rapid distant metastasis. In addition, the proliferation 
marker genes MKI67 and PCNA, which are characteristic of aggressive tumors, were also highly 
expressed in patients with high BRCA1 expression. The associations among high BRCA1 expression, 
high proliferation marker expression, and high risk of distant metastasis emerged in independent 
datasets, regardless of tamoxifen treatment. Tamoxifen therapy could improve the metastasis‑free 
fraction of high BRCA1 expression patients. Our findings link BRCA1 expression with proliferation and 
possibly distant metastasis via the ER signaling pathway. We propose a testable hypothesis based on 
these consistent results and offer an interpretation for our reported associations.

Breast cancer is the most common and the leading cause of cancer deaths in women  worldwide1. The driver genes 
in hereditary breast cancers include BRCA1 and BRCA2. The BRCA1 protein is well known for its DNA damage 
repair  function2–4 and plays a role as a tumor suppressor. Women with a harmful BRCA1 mutation, which leads 
to loss of BRCA1 function, commonly develop cancers in hormonal responsive  organs5–7, such as breasts and 
ovaries. In addition to DNA damage repair, the BRCA1 protein has many other functions. There is evidence 
that functional BRCA1 is needed for ESR1 (gene of estrogen receptor α)  transcription8. Therefore, BRCA1-
mutant breast cancers are mostly negative for estrogen  receptors9,10. In contrast, most sporadic breast cancers 
are  ER+ because their BRCA1 genes are usually intact. After tumor formation, BRCA1 regulates mammary cell 
proliferation by interacting with the estrogen-estrogen receptor (E-ER) signaling  pathway11–13 synergistically. 
Therefore, BRCA1 protein is tightly associated with patient survival, not only in hereditary but also in sporadic 
breast  cancers14–16.

Approximately two out of three sporadic breast cancers are positive for estrogen receptors. Estrogen may 
bind to and activate ERs. ERs in turn promote the transcription of downstream genes, such as c-myc17,18 and 
cyclin  D119,20, which are involved in proliferation or cell cycle regulation. Therefore, antiestrogen therapy, such 
as tamoxifen  treatment21, has become the gold standard for treating  ER+ breast cancers in all stages. The BRCA1 
protein, through direct or indirect interaction, inhibits ER proliferative  functions12,22,23. Loss of BRCA1 often 
leads to uncontrolled ER activity and consequently induces breast cancer formation or  progression24–27. In fact, 
decreased BRCA1 protein staining is commonly observed in sporadic breast  cancers24,28 and this phenomenon 
is associated with high histologic  grades29,30 and short disease-free  survival16. Decreased BRCA1 protein has also 
been reported to confer tamoxifen  resistance31. On the other hand,  tumors32,33 were shown to have upregulated 
BRCA1 mRNA levels. Moreover, rapid  metastasis34 was shown to be associated with high BRCA1 gene expression. 
One way to explain the protein function loss and high BRCA1 expression in tumor cells is the autoregulation of 
the BRCA1 gene by its own gene  product35. However, some earlier studies have presented opposite  findings25,36. 
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Resolving these conflicting observations may shed light on the possibility of using BRCA1 gene expression as a 
prognostic predictor.

Results
In this study, we collected microarray gene expression data from the Gene Expression Omnibus (GEO) 
 repository37 (see “Materials and methods” for details). Molecular subtypes and distant metastasis-free survival 
(DMFS) time were used to assess the aggressiveness of the tumors. Among all the different molecular subtypes 
of breast cancers, only luminal A and B subtypes were selected to compare BRCA1 mRNA levels because both 
subtypes are  ER+.

High BRCA1 gene expression is associated with cell proliferation in  ER+ breast tumors. BRCA1 
is known to interact with ERs, which may in turn regulate mammary cell  proliferation38–40. Thus, we focused 
on molecular types, luminal A and B, of  ER+ tumors to ensure the study samples were homogeneous. The GEO 
dataset  GSE4582741 containing primary breast tumors with different molecular types allowed us to compare the 
BRCA1 expression levels in different types of  ER+ tumors. The expression level of BRCA1 was significantly higher 
in luminal B tumors (Fig. 1A, p value < 0.001, Wilcoxon test). By definition, luminal B tumors have a high level 
of the proliferative marker Ki-67 and generally grow faster than luminal A tumors. In addition to MKI6742,43 

Figure 1.  Luminal tumors in dataset GSE45827. (A) Boxplot of BRCA1 expression in luminal A and B tumors 
(p value < 0.001, the Wilcoxon rank sum test), (B) Scatterplot of MKI67 and PCNA expression levels in luminal 
A and B tumors, (C) Bar graph of luminal A and B tumor numbers in low- or high-BRCA1 groups (left panel: 
cutoff = median of BRCA1 expression levels, Fisher’s exact p value = 0.019, right panel: cutoff = 8th decile of 
BRCA1 expression levels, Fisher’s exact p value = 0.021).
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(gene of Ki-67), PCNA43–45 (proliferating cell nuclear antigen) is also a breast cancer proliferation marker. In the 
scatterplot (Fig. 1B) of the expression levels of MKI67 and PCNA in the tumors, luminal B tumors were mostly 
located in the upper right part. Even though the gene expression level was not always proportional to the pro-
tein level, this result appeared consistent with the proliferative behavior of luminal B tumors. To check whether 
high BRCA1 expression was significantly associated with tumor proliferation, we calculated the proportions of 
luminal B tumors in the low- and high-BRCA1 expression groups. Dataset GSE45827 had 29 luminal A and 30 
luminal B tumors. These 59 luminal tumors were divided into low- and high-BRCA1 groups by the median or 
8th decile of their BRCA1 expression levels. On the basis of either cutoff (median or 8th decile), the low-BRCA1 
expression group had a higher proportion of luminal A tumors, and the high-BRCA1 expression group had a 
higher proportion of luminal B tumors (Fig. 1C). The high proportion of luminal B tumors in the high BRCA1 
expression group confirmed the association between high BRCA1 expression and cell proliferation.

If the relatively aggressive luminal B tumor expressed more BRCA1 transcripts, we expected high BRCA1 
expression patients to have not only high proliferation marker expression but also rapid distant metastasis (DM).

Distant metastasis‑free survival analysis using a “cure model” is the correct method to assess 
the aggressiveness of tumors. Since a patient may not have an expectation of long-term survival once 
she develops DM, DMFS is a good endpoint for marking the aggressiveness of tumors. In an attempt to attain 
homogeneity among study subjects in survival analysis, only early-stage  ER+ patients who received standard 
tamoxifen  treatment21 after surgery were included in the DMFS analysis. As described in “Materials and meth-
ods”, only 3 datasets,  GSE1209346,  GSE1770547 and  GSE4525548, were selected from the GEO database. A “cure 
model,” the logistic-AFT location-scale mixture regression  model49, was utilized in this study to tackle the 
nonsusceptibility of DM, which would be ignored by the commonly used Cox proportional hazards regression 
 model50 in survival analysis. Cure models have been a popular topic in the statistical literature for decades but 
are not as widely known in the medical  literature51. Some satisfactory applications of these models involved 
studying cures in cancer clinical  trials51,52 and nonsusceptibilities of  alcoholism53 and metabolic  syndrome49,54. 
Cox’s  model50 assumes that not only hazard ratios among the strata are proportionally maintained as constants 
independent of the follow-up time but also, implicitly, all the subjects are susceptible to, or at risk under the study 
event. However, not every breast cancer patient develops DM after surgery, so the cure model, which considers 
DMFS as cured, provides an adequate statistical approach for this study.

The BRCA1 expression level is a continuous variable, and the histogram, which is composed of the BRCA1 
expression levels of the pooled samples from the GEO datasets, is unimodal (Supplement Fig. S1). To compare the 
differences in the DMFS time of the high- or low-BRCA1 expression groups, a threshold for BRCA1 expression 
is needed. Nine deciles in the histogram representing BRCA1 expression distribution were used to categorize the 
patients into high- or low-expression groups. The difference between the Kaplan–Meier overall DMFS curves 
(step functions) of these two BRCA1 expression groups defined by a specified decile was then assessed with the 
significance test by fitting it to the logistic-AFT mixture regression  model49.

The results from fitting the logistic-AFT mixture  model49 were not significant for each cutoff point ranging 
from the 1st to 4th deciles (results not shown). The results falling into the 5th to 7th and the 9th deciles are 
reported in Fig. 2A–D and Table 1, and those for the cutoff point at the 8th decile (the best-fitting model) are 
displayed in Fig. 3 and Table 1. In each of these figures, the left panel indicates the overall DMFS curves, and the 
right panel indicates the conditional DMFS curves according to a logarithmic time scale. The former displays the 
DMFS probability, including the lifetime DMFS probability in the long run, based on all patients at each follow-
up time after surgery, and the latter estimates the distribution of time to DM, including the median onset time 
after surgery, of the susceptible patients only. Conceptually, the susceptible patients consisted of all the patients 
observed with DM and the other patients who never had an onset weighted by their individual probabilities of 
later onset of DM after the follow-up time elapsed.

High BRCA1 gene expression is associated with rapid distant metastasis in  ER+ early‑stage 
tamoxifen‑treated breast cancers. The corresponding overall DMFS curves of the high-BRCA1 expres-
sion groups (red step functions in the left panels of Figs. 2C,D and 3) categorized by higher deciles (such as 70% 
to 90%) flattened off. As shown in Fig. 3, the model-predicted curves (smooth curve) fit closely to the Kaplan–
Meier DMFS curves, which indicated that the cure model could correctly predict the survival of patients in the 
pooled GEO datasets, with a cured proportion.

Varying from the 5th to 9th deciles, all the corresponding logistic regression submodels did not include the 
high BRCA1 expression variable. They indicated that the DMFS probabilities of the low- and high-BRCA1 expres-
sion groups defined by each decile were similar, as shown by the smooth curves in Figs. 2 and 3. The significant 
p values were a result of the likelihood ratio test (LRT) for the mixture models and confirmed the BRCA1 gene 
expression dependency with increasing BRCA1 expression levels. This trend was revealed by the statistical 
significance of high BRCA1 expression in the “Location Regression Part” in Table 1, together with the well-
separated low- and high-BRCA1 expression (smooth) conditional DMFS curves in Figs. 2 and 3. The separation 
due to a negative estimate of the location parameter resulted in a shorter onset time to DM in the high-BRCA1 
expression group than in the lower expression group. On the other hand, each of the “Scale Regression Parts” 
in Table 1 did not include high BRCA1 expression, so the dispersions of the low- and high-BRCA1 expression 
conditional DMFS curves were similar.

Consequently, in Table 1, the p value of the LRT corresponding to the 8th decile is the smallest (0.004, still 
significant even after adjustment for multiple comparisons) among the LRT p values for all deciles. This suggests 
that the best-fitting model is based on the 8th decile (of expression level 6.76) as the cutoff; in fact, the optimal 
model selection was also confirmed by the minimum Akaike information criterion (AIC, the results are not 



4

Vol:.(1234567890)

Scientific Reports |           (2022) 12:77  | https://doi.org/10.1038/s41598-021-03471-w

www.nature.com/scientificreports/

Figure 2.  Survival curves fitted by the “Logistic-AFT mixture regression model” at the 5th–7th and 9th deciles. 
Kaplan–Meier (step function) and mixture regression (smooth curve) estimators of overall and conditional 
DMFS curves for the DM onset time after surgery stratified by BRCA1 level defined at the cutoff points (A) 
5th, (B) 6th, (C) 7th, and (D) 9th deciles, and the corresponding p values of the likelihood ratio test  (PLRT) were 
0.024, 0.023, 0.020 and 0.005, respectively. The BRCA1 high- and low-expression groups are shown in red and in 
blue, respectively, for each cutoff point.

Table 1.  Analysis of the log-logistic-AFT mixture regression model stratified by BRCA1-level with different 
cutoff points. CI, confidence interval; BRCA1-H, high BRCA1; LRT, likelihood ratio test. p  valuea of Wald’s 
statistic for testing the location parameter corresponding to BRCA1-H. p  valueb of the LRT for testing the 
significance of the fitted mixture model.

Cutoff decile Covariate

Logistic regression 
submodel

AFT submodel (log-logistic event time distribution)
Mixture 
model p 
 valueb

Location regression part Scale regression part

Estimate 95% CI Estimate 95% CI p  valuea Estimate 95% CI

50%
Intercept − 0.562 − 1.558, 0.434 2.506 1.749, 3.263 − 0.468 − 0.805, 

− 0.131 0.024

BRCA1-H − 0.620 − 1.147, 
− 0.093 0.021

60%
Intercept − 0.539 − 1.546, 0.468 2.475 1.718, 3.232 − 0.466 − 0.801, 

− 0.131 0.023

BRCA1-H − 0.632 − 1.163, 
− 0.101 0.020

70%
Intercept − 0.587 − 1.518, 0.344 2.384 1.673, 3.095 − 0.479 − 0.804, 

− 0.154 0.020

BRCA1-H − 0.705 − 1.285, 
− 0.125 0.017

80%
Intercept − 0.715 − 1.319, 

− 0.039 2.249 1.706, 2.792 − 0.545 − 0.843, 
− 0.247 0.004

BRCA1-H − 1.022 − 1.667, 
− 0.377 0.002

90%
Intercept − 0.598 − 1.349, 0.153 2.271 1.683, 2.859 − 0.510 − 0.800, 0.220 0.005

BRCA1-H − 1.304 − 2.131, 0.477 0.002
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shown). The decreasing trend of the AIC values (results not shown) among increasing cutoff deciles implies that 
the possibility of overfitting the model by using this optimal cutoff point rather than other points was low. As 
shown in Fig. 3, this cutoff point sharply contrasts with the difference for the two Kaplan–Meier DMFS curves 
depicting the high and low levels of BRCA 1 expression.

The logistic regression submodel (Table 1, 80%) did not include the high-BRCA1 expression variable, with 
an estimated intercept of − 0.715, indicating that the estimated common lifetime probability at both expression 
levels was 0.672. That is, 67.2% of the early-stage  ER+ tamoxifen-treated breast cancer patients were free of DM 
during the 15 years of follow-up, regardless of their BRCA1 expression level. It also readily explained why the 
Kaplan–Meier overall DMFS curves depicting the BRCA1 high- (red step function) and low- (blue step function) 
expression groups in the left panel of Fig. 3 crossed at similar values of the DMFS proportion right before the 15th 
year of follow-up. The location parameter in the AFT submodel, however, includes a high-BRCA1 expression 
variable with a negative parameter estimate of − 1.022 (p = 0.002 of the Wald test, Table 1, 80%). This indicated 
that BRCA1 had an impact on the time to DM after surgery, such that the median DM time (3.41 years) for 
susceptible patients in the high-BRCA1 expression group was significantly earlier than that (9.75 years) of the 
low expression group. The left panel of Fig. 3 reveals that the Kaplan–Meier curve of the high BRCA1 expression 
group (red step function) dropped sharply and then flattened off afterward. This drop took place because DM in 
this group continually occurred in the first 5.77 years. Therefore, the rest of the patients appeared to be “cured” 
toward the end of the 15-year follow-up period. Nevertheless, this phenomenon was not observed in the low 
BRCA1 expression group because DM occurred at a steady rate during the 15 years of follow-up.

The association between high BRCA1 gene expression and rapid distant metastasis is consist-
ently observed in different datasets. Tamoxifen, through its interactions with the estrogen receptor, 
can inhibit the proliferative function of ER signaling. Nevertheless, some patients have intrinsic resistance to 
tamoxifen, and consequently, they develop recurrence very  early55. If the high-BRCA1 tamoxifen-treated group 
in the previous section was heavily populated with patients who had intrinsic tamoxifen resistance, their aver-
age time to DM would be rather short. This putative mechanism can be tested by comparing the treated group 
to the tamoxifen untreated patients whose DMFS times should be irrelevant to tamoxifen resistance. Untreated 
patients from two breast cancer datasets,  GSE739056 and  GSE203457, were thus added to the survival analysis. 
Dataset GSE7390 had a very similar DMFS pattern to the aforementioned treatment group, but GSE2034 had a 
high proportion of poorly differentiated  tumors58 with a poorer DMFS curve displaying a biphasic pattern (Sup-
plement Fig. S2). Because our study is not from a randomized control trial, to be cautious, these two untreated 
datasets were compared to the treated cohort separately due to their different survival patterns.

BRCA1 cutoffs from the 1st to 5th deciles did not show any significant difference (results not shown) in 
each separate DMFS analysis. The LRT p values for both comparison sets (treated vs. GSE7390 and treated vs. 
GSE2034), by using the BRCA1 cutoff from 60 to 90%, were significant and showed an increasing trend in survival 
difference (results not shown). The DMFS curves in Fig. 4 were defined by the same cutoff at 80% of the BRCA1 
expression level, as in the preceding analysis based only on tamoxifen-treated patients. In each separate DMFS 

Figure 3.  Survival curves fitted by the “Logistic-AFT mixture regression model” at the 8th decile. Kaplan–
Meier (step function) and mixture regression (smooth curve) estimators of overall and conditional DMFS 
curves for the DM onset time after surgery stratified by BRCA1 level defined at the cutoff point 8th decile. The 
BRCA1 high- and low-expression groups are shown in red and in blue, respectively. P value of likelihood ratio 
test  (PLRT) was 0.004.
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analysis, the cutoff point at 80% corresponded to the (almost) best-fitting model. The model-fitting results are 
shown in Supplementary Table S3A,B.

Figures 4A,B demonstrate the quite different survival curves between the two untreated datasets. Most notice-
ably, in patients with high BRCA1 expression, the treated (black solid line in Fig. 4A,B) patients had a better 
overall DMFS curve than the untreated (red solid line in Fig. 4A and blue solid line in Fig. 4B) patients. Qualita-
tively speaking, tamoxifen treatment improved the lifetime DMFS probabilities (i.e., the cured fractions) of the 
high-BRCA1 expression patients by approximately 20% in comparing the flattened probability levels on the black 
versus colored smooth curves. In contrast, among the high-BRCA1 patients susceptible to DM, the conditional 
DMFS curves of untreated patients in both GSE7390 (red solid line in the right panel of Fig. 4A) and GSE2034 

Figure 4.  Logistic AFT mixture regression models for tamoxifen-treated and untreated patients. The chosen 
model was based on BRCA1 cutoff 8th decile. Survival curves for the tamoxifen-treated cohort, untreated 
GSE7390 cohort and untreated GSE2034 cohort are shown in black, red and blue, respectively. High- and 
low-BRCA1 expression subgroups are shown with solid and dashed lines, respectively. (A) Treated group and 
untreated GSE7390. In the overall DMFS plot, the two low-BRCA1 groups (red and black dashed lines) were 
fitted as the same group by the model. In the conditional DMFS plot, the two low-BRCA1 groups were fitted as 
the same group by the model, as were the two high-BRCA1 groups. (B) Treated group and untreated GSE2034. 
In the conditional DMFS plot in the right panel, both BRCA1 expression groups of GSE2034 were fitted to be 
the same as those of the high BRCA1-treated patients.
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(blue solid line in the right panel of Fig. 4B) were close to that of the treated patients (black solid line). Thus, 
the major treatment efficacy of tamoxifen emerged with respect to the probability of achieving lifetime DMFS.

On the other hand, considering the low BRCA1 expression patients, the overall DMFS curves (Fig. 4A, 
left panel) and the conditional DMFS curves (Fig. 4A, right panel) of both the treated (black dashed line) and 
untreated GSE7390 (red dashed line) groups almost overlapped. In contrast, the overall DMFS curves (Fig. 4B, 
left panel) and the conditional DMFS curves (Fig. 4B, right panel) of both the low-BRCA1 expression patients 
in both the treated (black dashed line) and untreated GSE2034 (blue dashed line) groups were well separated 
(Fig. 4B). These differences could be explained by the higher incidence of poorly differentiated tumors in dataset 
GSE2034, but further information for verification is lacking.

Regardless of the tamoxifen treatment, all three high-BRCA1 expression groups showed not only biphasic 
DMFS patterns but also poorer DMFS than their corresponding low-BRCA1 groups. In other words, the associa-
tions between high BRCA1 expression and aggressive tumor behavior (poor DMFS) were consistently revealed 
within the tamoxifen-treated patients and within each of two other datasets of patients who did not receive 
tamoxifen treatment. These consistent results indicated that the association between high BRCA1 expression 
and poor DMFS was not merely due to intrinsic tamoxifen resistance.

Because tamoxifen treatment improved the overall DMFS of high BRCA1 expression patients, the effect of 
BRCA1 expression on the time to DM was likely mediated by ER signaling. Although ER signaling is known to 
trigger proliferation, it is necessary to show that high BRCA1 expression is associated with proliferation.

The potential of proliferation, which was represented by the expression of MKI67 and PCNA genes in a scat-
terplot, successfully distinguished luminal A and B cells (Fig. 1B). A similar strategy can be used to present the 
potential proliferation of those tumors in survival analysis. The other two types of information, namely, BRCA1 
expression level and survival behavior, can be overlaid on this scatterplot by using different colors and types 
of symbols (Fig. 5A). Thus, the relationship between these characteristics of each patient can be tracked. All 
DM in the high BRCA1 expression group occurred before 5.77 years. Those who did not develop DM but were 
followed-up shorter than 5.77 years might offer ambiguous information because they would have later onset or be 
eventually cured. Thus, they were excluded from the subsequent analysis. The high- and low-BRCA1 expression 
groups could be further separated into DM (shown by red solid squares and blue solid circles, respectively) and 
“cured” (shown by red empty diamonds and blue triangles, respectively) subgroups. The definition of “cured” 
here was that during follow-up a patient did not experience any event of DM for longer than 5.77 years.

Tumors with high BRCA1 expression were located in the upper right part and thus showed higher prolifera-
tion activity than tumors with low BRCA1 expression. Furthermore, in the DM subgroups, tumors with high 
BRCA1 expression appeared more aggressive than tumors with low BRCA1 expression not only because they were 
located in the right upper part of the scatterplot but also because they developed DM much earlier. To further 
illustrate the significant difference between the high- and low-BRCA1 groups, the levels of MKI67 (Fig. 5B) and 
PCNA (Fig. 5C) expression and the p values were compared.

The expression levels of both MKI67 (Fig. 5B) and PCNA (Fig. 5C) in the rapid DM high-BRCA1 tumors 
(Group 1 in the Figures) were significantly higher than those in the gradually metastatic low-BRCA1 tumors 
(Group 3, P values = 0.0072 and 0.0026, respectively). These findings indicated that rapid DM in high-BRCA1 
patients was associated with increased proliferation activity. The associations among “high BRCA1 expression”, 
“potential for proliferation” and “early metastasis” implied that rapid DM was likely caused by ER signaling 
proliferation.

Discussion
The logistic-AFT mixture cure model provides a sophisticated statistical approach to explore consistent find-
ings for elucidating the controversial issues of BRCA1 gene expression and aggressive tumor behavior. Despite 
the limitation of a pooled data analysis, there were 3 cohesive observations in this study. First, high BRCA1 
expression was associated with aggressive tumors, such as luminal B in  ER+ tumors. Second, the high BRCA1 
expression group displayed a biphasic overall DMFS curve, which implied that there were susceptible patients 
(metastasized rapidly) and nonsusceptible patients (eventually cured). The association of high BRCA1 expres-
sion and a high risk of DM ended previous conflicting reports on the relationship between BRCA1 expression 
and the aggressiveness of tumors. Third, the aggressive tumor behavior of patients with high BRCA1 expression 
could be improved by approximately 20% with tamoxifen treatment. These findings shed light on the possible 
mechanism of the reported association.

A testable hypothesis was proposed to connect these facts. The development of DM is a complicated process. 
As shown in the bottom of Fig. 6, many processes are necessary, but each of them may not be sufficient to cause 
DM. For example, tumor cells need to detach from the primary site and migrate into the blood or lymphatic 
vessels before these circulating tumor cells land at a distant  site59. After landing, the metastasized tumor cells 
have to proliferate to a size large enough so that they can be detected by imaging instruments. This argument 
is supported by the fact that aggressive  ER+ tumors, such as the luminal B subtype, express higher proliferation 
markers, such as Ki-6760 protein. This proliferation behavior is also reflected at the level of gene expression for 
MKI67 (encodes KI-67 protein) and PCNA genes (Fig. 1B). Because tumors with high BRCA1 expression also 
have high expression of these two proliferation marker genes (Figs. 1B and 5), BRCA1 expression-dependent 
proliferation is likely associated with the early occurrence of DM (Figs. 3 and 4). This association was observed 
by DMFS analyses over different datasets regardless of tamoxifen treatment.

As shown in Fig. 6, many pathways, such as ER and other signaling pathways, may stimulate proliferation. 
However, BRCA1 expression-dependent proliferation is likely triggered by the ER signaling pathway. This is 
because tamoxifen, an inhibitor of the ER signaling pathway, may improve the DMFS fraction by approximately 
20% (Fig. 4A,B). This proposed mechanism was supported by the fact that the BRCA1 protein interacts directly or 
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indirectly with the ER and suppresses ER  signaling12,38. Thus, it was reasonable that the DMFS of our  ER− tumors 
had no obvious association with BRCA1 gene expression status (data not shown) because  ER− tumors lacked 
estrogen receptor to interact with BRCA1 protein.

In Fig. 6A, fully active BRCA1 protein was presumably sufficient to suppress the proliferation induced by ER 
activity. Therefore, the ER signaling pathway had little impact on tumor proliferation. The DM of tumors depends 
mostly on other signaling pathways (thick blue arrow) that stimulate tumor growth. If, however, BRCA1 protein 
function was decreased (Fig. 6B) either qualitatively (e.g., protein activity loss) or quantitatively (e.g., decreasing 
the number of effective proteins in the nucleus), ER signaling proliferation may escape suppression of the BRCA1 
protein. A failure to suppress ER signaling proliferation may make a patient susceptible to fast proliferation (thick 

Figure 5.  MKI67 and PCNA expression in 359 tamoxifen-treated patients. (A) Scatterplot of MKI67 and PCNA 
expression levels for 4 groups of patients. (B) Boxplot of MKI67 expression in 4 groups of patients. (C) Boxplot 
of PCNA expression in 4 groups of patients. 1 = High BRCA1 patients with DM, 2 = High BRCA1 “cured” 
patients (i.e., without DM and follow-up longer than 5.77 years), 3 = Low BRCA1 patients with DM, 4 = Low 
BRCA1 “cured” patients (i.e., without DM and follow-up longer than 5.77 years).
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red arrow) and consequently early DM. Therefore, the effect of tamoxifen treatment (antiestrogen treatment) was 
enhanced in these patients and could improve patient survival by up to 20%, as shown in Fig. 4A,B.

The BRCA1 protein autoregulates its own  gene35 and this bridges the gap between high BRCA1 expression 
and ER signaling proliferation. As described in the introduction, loss of BRCA1 protein staining in the nucleus 
was often observed in sporadic breast cancers, and this phenomenon was associated with high-grade and poor 
survival. As shown in Fig. 6B, sensing a loss of functional BRCA1 protein in the nucleus, a cell might try to amend 
the disorder by increasing BRCA1 gene transcription. If the increased BRCA1 transcripts failed to increase the 
BRCA1 protein level, ER signaling could not be fully suppressed. As a result, tumors with high BRCA1 expres-
sion may lead to rapid DM in early  ER+ patients.

Most germline BRCA1 mutations lead to  ER−  tumors9,10. Similarly, somatic BRCA1-mutated tumors can 
mostly be  ER− because defective BRCA1 protein interferes with ESR1  transcription8. In contrast, approximately 
20% of sporadic  ER+ breast tumors, which had high BRCA1 expression in this study, were significantly associated 
with poor patient survival through reduced BRCA1 activity and uncontrolled ER signaling. Understanding the 
plausible mechanisms of these tumors is useful for the precise treatment of patients. This working hypothesis 
explains not only the short time to DM for high BRCA1 expression patients but also the similar lifetime DMFS 

Figure 6.  A comprehensive interpretation to link our observations and literature reports. This figure was drawn 
by Microsoft PowerPoint version 14.6.2 (https:// www. micro soft. com/ en- us/ micro soft- 365). (A) The pathway 
for the primary tumor to develop DM under the condition of sufficient BRCA1 protein (leading to low BRCA1 
expression via autoregulation). (B) The pathway for the primary tumor to develop DM under the condition of 
low effective BRCA1 protein concentration (leading to high BRCA1 expression via autoregulation).

https://www.microsoft.com/en-us/microsoft-365
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probabilities in both high and low BRCA1 expression patients receiving tamoxifen treatment (Fig. 3). This is 
because only proliferation, not the chance of tumor landing, is affected by the loss of BRCA1 function. The 
proliferation of landed tumor cells might gradually be triggered by other types of signaling pathways in low 
BRCA1 expression patients. Moreover, in addition to mutations in the coding region, other factors changing 
the effective concentration of BRCA1 protein might represent another type of BRCAness. On the basis of this 
working hypothesis, novel therapy for tumors with  BRCAness61, such as PARP inhibitors, might be considered 
in treating patients with high BRCA1 expression.

Materials and methods
Study samples. Microarray data used in this study were all from the GEO  repository37. To examine BRCA1 
gene expression in molecular subtypes of  ER+ breast tumors, we chose dataset  GSE4582741, which is composed 
of 130 primary invasive breast cancers (41 Triple Negative, 30 Her2, 29 Luminal A and 30 Luminal B tumors) 
as well as 11 normal tissues and 14 cell lines, using Affymetrix HG U133 plus 2.0 as the study platform. Because 
this study focused on  ER+ tumors, only the BRCA1 expression levels of normal breast tissue and luminal A and 
luminal B tumors from GSE45827 were compared.

Two criteria were considered in selecting the datasets for survival analysis: (1) datasets that tracked the 
survival time with related clinical data; (2) datasets with an identical technology platform for microarray gene 
expression data. Ten breast cancer datasets with survival records, which used the U133A platform for expres-
sion analysis, were thus selected from the GEO database (see clinical information in Supplementary Table S1). 
However, because DMFS could be more directly associated with tumor behavior, the DMFS time was used as 
the endpoint of the patients’ prognosis so that only those datasets with the DMFS time were selected for our 
study. To make our study samples homogenous, the following inclusion criteria were further developed to select 
 ER+ patients for early detection and treatment: (1) the tumor was localized at its original locus, (2) the lymph 
nodes were free of tumor, and (3) the tumor size was not larger than 5 cm. Study subjects were required to have 
an estrogen receptor status and adjuvant treatment information. After thoroughly examining patients’ clinical 
information, 359 patients in three GEO datasets  (GSE1209346,  GSE1770547 and  GSE4525548) were selected as 
the treated group in our survival analysis (see Supplementary Table S2).

Another two untreated tamoxifen patient datasets,  GSE739056 and  GSE203457 (see Supplementary Table S1), 
were further added to the survival analysis section. They were composed of 286 LN- breast cancer samples (209 
 ER+ and 77  ER−) and 198 LN- breast cancer samples (134  ER+ and 64  ER−). Only  ER+ samples from these two 
datasets were included in the analysis.

Microarray data analysis. The microarray data were normalized by using the Bioconductor R “affy” 
 package62. To minimize the false-negative and false-positive rates, the parameters were set up based on Choe’s63 
study. Namely, bgcorrect.method = “mas”, pmcorrect.method = “pmonly”, normalize.method = “quantiles”, and 
summary.method = “medianpolish” were set up and input into the “affy” package’s “expresso” function. All sam-
ples of GSE45827 data (on the HG-U133 plus 2.0 platform) were normalized. A total of 1057 samples from five 
chosen GEO datasets, GSE12093, GSE17705, GSE45255, GSE2034 and GSE7390 (on the HG-U133A platform), 
were normalized together. After normalization, eligible study samples satisfying the aforementioned inclusion 
criteria were selected for further analysis.

The R package “jetset”64 was used to select the most representative probe set from multiple probe sets of a gene 
in the Affymetrix microarray. This program computes “jetscores” and uses the probe set of the highest score to 
designate a gene for further analysis. In the Affymetrix HG U133 series, the BRCA1 gene has two corresponding 
probe sets, 204531_s_at and 211851_x_at, with jetscores of 0.278 and 0.029, respectively. Therefore, 204531_s_at 
was substituted for BRCA1 gene expression in our analysis.

With the same procedures, 212023_s_at and 201202_at were used to represent the MKI67 and PCNA genes, 
respectively.

Statistical methods. The Kruskal–Wallis test. To compare the differences in the BRCA1 gene expression 
levels among several groups, the nonparametric Kruskal–Wallis test was used to test the null hypothesis that 
these independent samples came from the same population distribution. Upon rejection of the null hypothesis 
using the Kruskal–Wallis test, we conducted multiple pairwise comparisons to test the distributional difference 
between any two groups based on the Wilcoxon rank sum statistic.

Logistic‑accelerated failure time (AFT) mixture regression model. We employed the logistic-AFT mixture 
regression  model49,53 to compare two Kaplan–Meier  curves65 representing the DMFS time between high-level 
and low-level BRCA1 expression, which was defined by a specified cutoff point of BRCA1 expression values, 
with only right censored data. A patient was either an event case with DM or right censored with a follow-up 
DMFS time. Fitting a patient’s indicator covariate representing high BRCA1 expression into the mixture model 
simultaneously estimated her lifetime risk probability of DM and the distribution of her DMFS time if she would 
be susceptible to DM. A brief introduction to the mixture cure model is as follows:

Let T be the duration in years from the surgery to DM in breast cancer, and the survival distribution at t years 
Pr(T > t) indicates the probability that a patient’s cancer will not metastasize for t years. The patient’s eventual 
susceptibility to DM is represented by the binary indicator D, where D = 1 indicates that the patient is susceptible 
and D = 0 indicates that the patient is not susceptible. The probability that a patient with a risk factor Z, such as 
an indicator of high BRCA1 expression, will not metastasize after t years is expressed as:
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where, for a given Z, Pr(D = 0|Z) is the lifetime DMFS probability and Pr(T > t|D = 1, Z) is the conditional survival 
function at t years for a susceptible patient.

The logistic-AFT mixture regression  model49 contains both a logistic regression submodel

and an AFT location-scale regression submodel

Parameters β , γ , and α are in the logistic, location, and scale regression segments, respectively, and can be 
simultaneously estimated using the R package “MixtureRegLTIC”66. The log-transformed time to metastasis in 
the AFT model is supposed to have a linear relationship with the risk factor Z via the parameters γ. The loga-
rithmic time scale with a multiplicative effect of “acceleration” by the factor exp

(

γ
′

Z
)

 can assist in finding initial 
estimates of γ and α from the Kaplan–Meier  curves65. For a specific value of Z, the logistic submodel provides a 
parametric estimator for the lifetime DMFS probability Pr(D = 0|Z), which can also be estimated nonparametri-
cally by the tail of the Kaplan–Meier overall DMFS curve. In contrast, the AFT submodel formulates the para-
metric distribution of the DMFS time on a logarithmic scale for a susceptible patient, while the Kaplan–Meier 
conditional DMFS curve is displayed as its nonparametric counterpart.

Since the log-logistic distribution was much better fitted to our pooled GSE breast cancer datasets for the AFT 
submodel than the other generalized gamma distribution models available in the MixtureRegLTIC, we assumed 
that T of a susceptible patient follows a log-logistic distribution in the AFT location-scale regression submodel; 
that is, ε is a logistic error term with the density f (ε) = eε/(1+ eε)2.

According to the minimum Akaike information criterion (AIC), we determined the best model selection of 
the covariate to be included in the suitable regression parts of the logistic-AFT location-scale mixture regression 
model. To check the adequacy of the fitted model for high and low BRCA1 expression, we plotted the overall 
survival curves Pr(T > t|Z) and the conditional curves Pr(T > t|D = 1, Z) by superimposing on the corresponding 
Kaplan–Meier overall and conditional curves to visualize the goodness-of-fit for the best-fitting mixture model. 
The resultant p value of the likelihood ratio test in the best-fitting mixture model was used to evaluate the sig-
nificance of the difference between the Kaplan–Meier overall DMFS curves.

Data availability
Data used in this study are all from free public resources, NCBI, GEO genomics repository.
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