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Three‑state majority‑vote model 
on small‑world networks
Bernardo J. Zubillaga1*, André L. M. Vilela1,2, Minggang Wang3,4, Ruijin Du5, 
Gaogao Dong5 & H. Eugene Stanley1

In this work, we study the opinion dynamics of the three‑state majority‑vote model on small‑world 
networks of social interactions. In the majority‑vote dynamics, an individual adopts the opinion of 
the majority of its neighbors with probability 1‑q, and a different opinion with chance q, where q 
stands for the noise parameter. The noise q acts as a social temperature, inducing dissent among 
individual opinions. With probability p, we rewire the connections of the two‑dimensional square 
lattice network, allowing long‑range interactions in the society, thus yielding the small‑world property 
present in many different real‑world systems. We investigate the degree distribution, average 
clustering coefficient and average shortest path length to characterize the topology of the rewired 
networks of social interactions. By employing Monte Carlo simulations, we investigate the second‑
order phase transition of the three‑state majority‑vote dynamics, and obtain the critical noise qc , as 
well as the standard critical exponents β/ν , γ/ν , and 1/ν for several values of the rewiring probability 
p. We conclude that the rewiring of the lattice enhances the social order in the system and drives 
the model to different universality classes from that of the three‑state majority‑vote model in two‑
dimensional square lattices.

Over the past few decades, there has been widespread interest in the implementation of tools and methods of 
statistical mechanics for the study of the behavior and dynamics of social systems; in particular, dynamics of 
opinion  formation1–21. Statistical physics studies the complex behavior of macroscopic systems in terms of the 
basic interaction laws between their many fundamental components. Such complexity shows the emergence of 
collective effects in the system which are not reducible to the behavior of any individual component or agent. 
Microscopic models of opinion formation do not intend to mimic human opinion formation dynamics in a 
completely rigorous way. Instead, they reduce such processes to rather simple interaction laws between the 
components with very few parameters aiming to understand the possible fundamental mechanisms at play that 
give rise to macroscopic  complexity17,18,22.

The dynamics of opinion formation in societies ensue not only from rational thought of individuals, but also 
from emotional behaviors which are a reflection of the rich social psychology of the influences and interactions 
between individuals. An example of such a phenomenon is herding, whereby individuals tend to follow the 
opinion or behavior of their  neighbors16,23–25. Herding is understood to play a key role in human behavior and 
in the animal kingdom, from collective behaviors of flocks of birds and schools of fish to riots, strikes, sport-
ing events and opinion formation in social contexts, such as the collective irrational behavior of investors in a 
financial market who follow the trends of their neighbors and have a propensity to overreact to the arrival of 
news when buying or  selling26.

The majority-vote model is a widely studied agent-based model of opinion formation in statistical 
 mechanics12,13,27–32. The three-state version of the model assumes that individuals are nodes placed in a social 
network in any one of three possible states or opinions, interacting with their nearest neighbors, exerting influ-
ence on them and being influenced by them in return. In this model, the agent will agree with the majority state 
of its neighbors with probability 1− q , or dissent from it with probability q, also known as the noise parameter. 
The noise parameter is a measure of the social temperature of the system, thus inducing the different opinion 
clusters. The three-state majority-vote model (MVM3) exhibits a second-order phase transition in a square lat-
tice network with critical noise parameter qc ≈ 0.118 and with standard critical exponents β/ν , γ /ν and 1/ν12–14.
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With the ever-increasing computational power, different variations of the majority-vote model have been 
considered, including agent differentiation and diffusion, three-state model generalizations and complex noise 
 distributions15,33,34. Also, the recent development of complex network science as a statistical-mechanical frame-
work for the study of real networks has also been a contributing factor in the study of complex systems and their 
 dynamics35–38.

The original three-state majority-vote model was studied by Tomé on square lattices with periodic boundary 
 conditions12,13. Since then, three-state majority-vote dynamics have been studied on non-trivial topologies. For 
example, the contributions of Melo, Pereira and Moreira extended the study of the dynamics to the topology of 
random  graphs14. Vilela et al. delved into the study of the model on scale-free networks, namely Barabási-Albert 
networks, and three dimensional regular  lattices39. Both investigations on the three-state majority-vote model 
conclude that the critical noise required to extinguish consensus increases with the average degree of the network.

In this context, we investigate the dynamics of the three-state majority-vote model on small-world networks. 
This network enables us to highlight the effects of link disorder, while it keeps the total numbers of nodes and 
links fixed. Under the small-world link structure, the average degree of the network is a conserved quantity, in 
contrast with average degree dependence of the majority-vote dynamics investigated on previous works. We focus 
on exposing the effects of a random link-rewiring scheme on the second-order phase transitions in the system. 
Additionally, this work also provides a sense of closure to the study of the three-state majority-vote dynamics 
on complex networks mainly investigated.

The small-world effect is the empirical observation that the majority of the pairs of nodes in a great number 
of real networks appear to be connected by paths of short lengths, even though the sizes of the complex net-
works are typically very large. More concretely, in a small-world network with N nodes, the average distance ℓ 
between two randomly chosen nodes scales as ℓ ∼ logN38. This property of complex networks was given fame 
and renown thanks to social psychologist Stanley Milgram’s six degrees of separation  experiment40–42. Empirical 
studies of epidemiology and pandemics reveal that the small-world property became possible with long-range 
and inexpensive transportation on railroads, airlines and ocean  liners43. Systems such as the World Wide Web, 
the Internet and social networks exhibit the small-world property.

The Watts-Strogatz model is a network construction algorithm capable of generating graphs which exhibit 
the small-world property, with short average path lengths and high clustering  coefficients35,36,38. The algorithm 
randomly rewires links in a regular network with probability p, which is a tunable parameter, thereby being 
capable of interpolating between regular lattices and disordered graphs.

In order to explore the small-world effect on the phase transitions of the three-state majority-vote model, 
we construct the networks with a two-dimensional square lattice subject to a rewiring scheme, whereby we 
randomly rewire the links in this lattice with probability p, in similarity with the Watts-Strogatz model. We use 
Monte Carlo simulations and finite-size scaling techniques to calculate the critical noise parameter qc , and to 
obtain the order-disorder phase diagram of the system. We also perform Monte Carlo simulations to estimate 
the standard critical exponents β/ν , γ /ν , and 1/ν for the rewiring probabilities p considered.

This paper is organized as follows. In Sect. "Square lattices and small-world networks",we describe the random 
link-rewiring prescription for the construction of small-world networks starting from a square lattice. We also 
investigate the main topological features of these networks, as revealed by degree distributions, average clustering 
coefficients and average shortest path lengths. In Sect. "The model", we describe the model and the dynamics 
of the social agents, as well as the macroscopic observables of interest to study the phase transitions. In Sect. 
"Numerical results and discussion", we present the numerical results of the Monte-Carlo simulations, including 
the phase diagram of the system and finite-size scaling results. In Sect. "Concluding remarks" we present our 
final remarks and conclusions.

Square lattices and small‑world networks
We consider the three-state majority-vote model in a small-world network, in which each node in the network 
represents an individual and the links represent nearest-neighbor interactions between pairs of nodes.

In this work, the construction of the structures of small-world networks follows a link-rewiring scheme, 
illustrated in Fig. 1. We assemble a two-dimensional square lattice with L nodes per side and periodic boundary 
conditions, for a total of N = L× L agents or individuals. We consider each node in the network sequentially 
and, for a given node, i, the links that connect it to its neighbors to the right and to the bottom are rewired with 

Figure 1.  Illustration of the rewiring prescription for the construction of small-world networks. The network 
starts as a regular lattice shown in (a). One obtains (b) after the random rewiring of the first link. In (c) we 
illustrate the final result once the rewiring scheme is complete.
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probability p to some other nodes in the network chosen at random. This scheme is forbidden from rewiring 
the link to another of the original nearest neighbors of node i from the initial square lattice. Double connections 
between the same pairs of nodes are also forbidden. In this way, after repeating the procedure over the N nodes, 
the network is built with the small-world property enabled. It is known that even a minimal number of rewir-
ings, denoted by small values of p, is enough to produce the small-world property, shortening the diameter of 
the network appreciably. In contrast, for p = 1 , one obtains topologies that have maximum disorder. Therefore, 
p is a parameter that controls the topology of the network, interpolating from a square lattice ( p = 0 ) to a small-
world network, to a maximally disordered network ( p = 1 ), as it increases.

The size of the giant component of the small-world networks built according to the link-rewiring scheme is 
exactly equal to the size of the whole network for all values of p, including p = 1 . In this context, the rewiring 
scheme produces networks with only a single component for every value of p explored. The investigation of 
the numbers of components in the networks and of their respective sizes revealed that there was not a single 
instance of the realization of the disorder, p  = 0 , amongst the tens of thousands of networks built, that produced 
multiple disconnected components or isolated nodes. In other words, the network remains cohesively as a single 
component as the links are rewired.

The effect of changing the rewiring probability p on the topology of the network can be partially illustrated 
by investigating the degree distribution of the network. Figure 2 presents the degree distribution of the networks 
built according to the random rewiring prescription described earlier. In the p = 0 limit, the degree distribu-
tion is a Kronecker delta function centered around k = 4 , as expected for a two-dimensional regular lattice with 
periodic boundary conditions. Increasing the value of p has the effect of widening the distribution as some nodes 
gain connections and others lose them via random rewiring, thereby decreasing the diameter of the network 
and producing the small-world effect. For p = 1 , we rewire all the links of the original square lattice. Note that 
the peak of the distribution remains centered around k = 4 . Since no links are being added or removed from 
the network during the rewiring procedure, the total number of links in the network is conserved. Therefore, 
the average of the degree distribution is also fixed at �k� = 4 , irrespective of p.

In this work, we rewire a square lattice network to yield the small-world structure. Given the differences 
between the square lattice and the ring-like regular networks in which the Watts-Strogatz algorithm is initi-
ated, a substantive contrast is observed in the behavior of the clustering coefficient. Indeed, using the Watts-
Strogatz method, the average clustering coefficient is a monotonically decreasing function of the link-rewiring 
 probability38. For the networks explored in this investigation, the local clustering coefficient is zero for all nodes 
when p = 0 , since the network is a square lattice with periodic boundary conditions. As p increases, we expect 
the increasing disorder to enhance the community structure between the neighbors of an individual node in the 
 network44. We illustrate this behavior in Fig. 3a, where we plot the average clustering coefficient CL(p) , which 
increases with p for the values of L explored in this work. The curves are normalized relative to the maximum 
average clustering coefficient measured Cmax

L = maxp CL(p) for each value of L. The average clustering coefficient 
CL(p) is the arithmetic average of all the local clustering coefficients. Each data point averages over 1000 different 
networks built in accordance with the square lattice link-rewiring scheme.
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Figure 2.  Degree distributions P(k) of complex networks built according to the rewiring scheme for four values 
of the rewiring probability, p = 0, 0.01, 0.1, 1 (shown in black, red, green and yellow, respectively). Each sub-
figure in the panel corresponds to a fixed value of p averaged over a total of 1000 different networks, starting 
from initial two-dimensional square lattices of size L = 140 for a total of N = 19600 nodes per network.
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In Fig. 3b, we show the effect of the square lattice link-rewiring scheme on the average shortest path length 
ℓL(p) . The curves are normalized relative to ℓL(0) . For a given pair of nodes (i, j) in the network, the trajectory 
with minimal path lengths ( dij ) connecting i and j is considered. The average shortest path length ℓL(p) is com-
puted as the arithmetic average of all such shortest path lengths dij between all of the N(N − 1)/2 pairs of nodes 
(i, j) in the network. As expected, the networks are susceptible to the increase of p, showing that even a small 
fraction of links rewired is sufficient to effectively shrink the network’s diameter. Indeed, rewiring only 1% of the 
links in the networks with L = 140 , for instance, is enough to drop ℓ to approximately 30% of the value it would 
have in the case of the square lattice. These networks settle, at maximum rewiring p = 1 , at a final average shortest 
path length that is roughly 10% that of the square lattice p = 0 case. This shows the emergence of the small-world 
effect in the networks considered in this work as topological disorder is increased by random link-rewiring.

The model
With the network of social interactions successfully built, we execute the dynamics of the three-state majority-
vote model. In this model, each agent’s opinion is represented by a node and it assumes any one of three available 
states σ ∈ {1, 2, 3} at any instant in time. These states represent three possible opinions on a given social subject 
or referendum. For example, in a financial context, such states could represent a desire to purchase a unit of an 
asset, to sell a unit of an asset or to remain neutral/inactive. It may also represent a citizen’s vote in an election 
where there are three available political options: left-wing, right-wing or centre.

The update of an opinion follows a probabilistic prescription. The state of each individual tends to follow the 
local majority, i.e., there is a tendency to agree with the opinion of the majority of its nearest neighbors with prob-
ability 1− q , or to dissent from it with probability q. Consider agent i in the event of a single majority state of its 
neighbors. The agent i may adopt it with probability 1− q , whilst each of the two local minority opinions may be 
adopted by i with probability q/2. In the event of a tie between two local majority states, agent i shall assume any 
of those two opinions with probability (1− q)/2 each, and the opinion of the local minority with probability q.

Let ki,σ represent the number of nearest neighbors of agent i that find themselves in state σ ∈ {1, 2, 3} , with 
ki,1 + ki,2 + ki,3 = ki , where ki stands for the degree of agent i. For square lattice networks with nearest-neighbor 
interactions, p = 0 and ki = 4 for all i ≤ N . The aforementioned rules for the update of the state of agent i fol-
lowing the three-state majority-vote dynamics with noise q, for any network, can be summarized thus:

The probabilities for the remaining two states (2 and 3) follow easily from the symmetry operations of the C3ν 
group. It is worth noticing that the condition P(1|{ki})+ P(2|{ki})+ P(3|{ki}) = 1 holds for any configuration 
{ki} ≡ {ki,1; ki,2; ki,3} of the connected neighbors, as it should, for the update probabilities to be conserved. The 
model is defined for values of the noise parameter in the range 0 ≤ q ≤ 2/3 , since it may increase from zero to 
the amount corresponding to the situation in which each opinion is equally probable 1− q = q/2.

(1)

P(1|ki,1 > ki,2; ki,3) = 1− q,

P(1|ki,1 = ki,2 > ki,3) = (1− q)/2,

P(1|ki,1 < ki,2 = ki,3) = q,

P(1|ki,1; ki,2 < ki,3) = q/2,

P(1|ki,1 = ki,2 = ki,3) = 1/3.

Figure 3.  (a) Average clustering coefficient CL(p) of networks with L = 60, 100, 140 , built according to the 
link-rewiring scheme as a function of p. Each data point averages over 1000 different networks. The rates of 
growth of the CL(p) seem to be universal and consistent, irrespective of the values of L explored in this work, as 
denoted by the collapse of the curves of CL(p)/C

max
L  . (b) Average shortest path length ℓL(p) of networks with 

L = 60, 100, 140 built according to the square lattice link-rewiring scheme as a function of p. Each data point 
averages over 100 different networks.
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Numerical quantities. We quantify the degree of opinion order of these social systems in terms of an order 
parameter. Following the analogy with magnetic systems, we shall adopt the magnitude of the average magneti-
zation m, defined in analogy with the three-state Potts  model45. The instantaneous magnetization consists in a 
vector with components: mσ for σ ∈ {1, 2, 3} . Its magnitude is thus given by m =

√
m2

1 +m2
2 +m2

3 , and its 
components are defined as:

where Nσ is the number of agents in state σ and N = L2 is the total number of nodes in the small-world net-
work. With this definition, it can be shown that the components of the magnetization are not independent of 
one another. In fact, it holds that m1 +m2 +m3 = 0 . Also, the magnitude of the instantaneous magnetization 
of the system becomes m = 0 in the fully disordered phase, i.e, when all three states are equally populated 
( Nσ /N = 1/3 ). The fully ordered phase exhibits m = 1 , where only one state is populated, e.g., N1/N = 1 and 
the remaining two are vacant N2/N = N3/N = 0.

The order parameter proper, given by the average magnetization of the system, is therefore computed as

where 〈...〉t denotes time averages taken in the stationary regime of the system, and 〈...〉c denotes configurational 
averages.

We shall also be interested in quantifying the magnitude of the fluctuations of the order parameter of the 
system. For this purpose, we define the magnetic susceptibility of the system as a measure of the variance of the 
order parameter in analogy with Ising-like magnetic systems

As is the case near the critical points of magnetic systems, we expect the susceptibility to peak and attain its 
maximum value in the vicinity of qc . Indeed, in the thermodynamic limit L → ∞ , the magnetic susceptibility 
would exhibit singular behavior manifested as a divergence at qc.

We also evaluate the fourth-order Binder cumulant as a measure of the kurtosis of the order parameter 
ML(q, p) of the system, defined as follows

This quantity tends to 2/3 deep in the ordered phase of the system and it decreases to zero well into the disordered 
phase. It can be shown that, for sufficiently large system sizes, the Binder cumulants are rather insensitive to the 
system size, and their curves cross each other at the same point qc , regardless of L, thus providing an estimate of 
the critical point in the thermodynamic limit ( L → ∞).

It has been shown numerically that the three-state majority-vote model exhibits a second-order phase transi-
tion in a square lattice network ( p = 0 ), with a critical noise parameter of qc ≈ 0.118 and with critical exponent 
values given by β/ν = 0.134± 0.005 , γ /ν = 1.74± 0.02 , in accordance with the three-state Potts model, for 
which β/ν = 2/15 , γ /ν = 26/15 and ν = 5/612–14.

Numerical results and discussion
We perform Monte Carlo simulations on small-world networks built on underlying two-dimensional square 
lattices with linear sizes ranging from L = 40 to 140. In this work, a Monte Carlo Step (MCS) is defined as unit 
of time in our simulations, corresponding to a total of N = L2 attempts of changing the opinion states of the 
agents in the network. We prepare the initial configuration by setting the opinion state of all agents to σ = 1 . 
To allow the system to thermalize and reach a steady state in a given simulation, we skip the first 5× 104 MCSs, 
after which we evaluate time averages over a window of another 2× 105 MCSs. We repeat the simulations for up 
to 200 different samples for the calculation of the configurational averages.

In Fig. 4, we show the dependence of the average magnetization ML for several values of the rewiring prob-
ability p and L = 140 . The curves of the order parameter ML suggest the presence of spontaneous magnetization 
for low q, where ML ∼ O(1) . We note that ML ∼ 0 when increasing q above some critical value, which depends 
on p. Figure 4 also exhibits the existence of second-order phase transitions occurring between ordered and a 
disordered states. From this figure, we conclude that the presence of long range interactions promote consensus 
for the three-state majority vote model, since the noise value that induces a vanishing magnetization increases 
with the rewiring probability p.

In Fig. 5, we show the curve of the magnetic susceptibility χL obtained from Eq. (4) versus the noise param-
eter q. The data from χL provide further evidence for the phase transitions on the three-state social system. The 
maxima of these curves indicates the approximate location of the critical noises qc for each value of the rewiring 
probability p for a system of size L = 140 . We observe that these critical noise values depend on the system size 
L; thus, we name them pseudocritical points, denoted by qc(L) . Further analysis on the size dependence provide 
a precise evaluation for qc = qc(L) with L → ∞ , which does not depend on the system size.

We observe a substantial topological phenomenon for the scaling law of the magnetic susceptibility of the 
Eq. (8). The locations of the magnetic susceptibility peaks, denoted by the pseudocritical points qc(L) , tend to 
move horizontally as we vary p. For higher values of the rewiring probability p, the locations qc(L) of the peaks 

(2)mσ =

√
3

2

[
Nσ

N
−

1

3

]
,

(3)ML(q, p) = ��m�t�c ,

(4)χL(q, p) = L2[��m2�t�c − ��m�t�
2
c ].

(5)UL(q, p) = 1−
��m4�t�c

3��m2�t�c
2
.
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shift to higher values of q as L increases, eventually settling at the actual critical noise qc in the thermodynamic 
limit L → ∞ . However, for low values of the rewiring probability p, the locations qc(L) of the peaks shift to lower 
values of q as L increases. In Fig. 6, we illustrate this effect on the peaks of χL(q, p) for two values of p.

The reason behind this interesting effect is tied to the nature of the small-world network construction pro-
cess used, i.e., the link-rewiring scheme. The small-world effect increases with increasing p, and the diameter 
of the network shrinks with increasing probability of link rewiring. This effect becomes stronger still and more 
pronounced with increasing linear system size L, since, effectively, the diameter of the network (and the average 
geodesic distance between nodes) decreases relative to the size of the network N as L increases. Therefore, as 
shown in Fig. 6a, this causes the pseudocritical points qc(L) to shift to higher values of q when the topological 
disorder of the network p is large, making the ordered phase of the system more stable with increasing system 
size. The counterpart to this situation has a similar explanation. When p is small, the small-world property of the 
network is weak. Thus, the square lattice structure dominates the critical behavior of the social network. In this 
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Figure 4.  Average magnetization ML(q, p) as a function of the noise parameter q for several values of the 
rewiring probability p and L = 140 . For each value of p, ML ∼ O(1) for q < qc(L) and ML ∼ 0 for q > qc(L) . 
The error bars are smaller than the symbol size, and the lines are just a guide to the eyes.
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Figure 5.  Magnetic susceptibility χL(q, p) as a function of the noise parameter q for several values of the 
rewiring probability p and L = 140 . The locations of the maximum values of χL indicate the approximate critical 
noise qc parameters for each value of p. The error bars are smaller than the symbol size, and the lines are just a 
guide to the eyes.
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context, the pseudocritical points decrease with the increase of the linear system size L as expected. Therefore, 
as Fig. 6b illustrates, the susceptibility peaks shift to smaller values of q with increasing system size. In Fig. 9c 
we show the line fits to the data for lnχL at qc versus ln L , where the slopes for each line provide an estimate for 
the critical exponent γ /ν of the model.

In Fig. 7 we illustrate the Binder cumulant UL of the system for several values of the rewiring probability p. 
The curves of fourth-order Binder cumulants UL similarly suggest the existence of a phase transition, given their 
visible drop from the value of UL = 2/3 around the locations of the critical noise values previously observed in 
Figs. 4 and 5. This qualitative picture of the behavior of the pseudocritical points qc(L) indicates that the critical 
noise parameter qc is an increasing function of the rewiring probability of the small-world networks p.

The Binder cumulant defined in Eq. (5) does not depend on the system size L at the critical point of the system 
qc for any value of the rewiring probability p. We explore this property to estimate the critical noise parameter for 
each p in the thermodynamic limit, qc(p) , as the points where the fourth-order Binder cumulants UL for different 

Figure 6.  Magnetic susceptibility peaks for different system sizes and (a) p = 1 and (b) p = 10−4 . For large 
values of p, the pseudocritical points qc(L) shift to higher values of q with increasing system size L. For low 
values of p, the the peaks of the susceptibility, and thus the pseudocritical points, shift to lower values of q with 
increasing L.
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Figure 7.  Binder fourth-order cumulant’s UL(q, p) dependence on the noise parameter q for several values of 
the rewiring probability p and L = 140 . UL(q, p) moves to the right as the rewiring probability p increases, in 
agreement with ML(q, p) and χL(q, p) . The error bars are smaller than the symbol size, and the lines are just a 
guide to the eyes.
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sizes L intercept each other. In Fig. 8a, we present the Binder cumulant versus the noise parameter q for the rewir-
ing probability p = 0.0001 , and L = 60, 80, 100, 120 , and 140. Here, we estimate qc = 0.1181± 0.0002 . We repeat 
the evaluation of qc(p) for several values of the rewiring probability p, thus enabling the construction of the phase 
diagram of Fig. 8b. In this phase diagram, we exhibit the order-disorder transition for the three-state majority-
vote model (closed symbols) and the phase diagram for the two-state version (open symbols)34,44, for comparison 
purposes. The ordered phase lives below the curves for each system, for which there is spontaneous magnetization 
and symmetry-breaking. Conversely, the region of points that lie above the curve correspond to the disordered 
and symmetric phase of the system, where the average magnetization is zero. The phase diagram clearly presents 
the observation made earlier that the critical noise parameter qc is a monotonically increasing function of the 
rewiring probability p, with asymptotic behavior in the critical noise parameter in the q → 0 and q → 2/3 limits.

The previous set of results suggests that increasing the rewiring probability, thereby reducing the diameter 
and average path distance of the network, enhances the long range ordering effect on the opinions. Moreover, 
it is clear that, for small values of p, a small increase in the rewiring probability increases the critical noise sub-
stantially and, for large values of p, it quickly saturates as the networks become more random and the decrease of 
the average path length is no longer appreciable. Therefore, increasing the randomness in the network topology 
makes the ordered phase more resilient against thermal noise.

We remark that the small-world topology developed in this investigation allows us to highlight the contribu-
tion of long-range interactions to the robustness of the ordered phase in the three-state majority-vote dynamics 
for a fixed average degree �k� = 4 . Complementary studies suggest that the order in this particular model can 
also be improved by increasing the average connectivity 〈k〉 of an  agent14,39.

Phase transitions on small‑world networks. To obtain the three standard critical exponents that char-
acterize the phase transitions of the model, we note that in the region of criticality q− qc ≃ 0 , the pseudocritical 
noise qc(L) , the average magnetization ML , the magnetic susceptibility χL and the Binder cumulant UL satisfy the 
following finite-size scaling relations:

where b is a constant, ε = q− qc is the distance to the critical noise, and M̃ , χ̃  and Ũ  are universal scaling func-
tions that depend on the scaled variable x = εL1/ν.

Using Eq. (6), we estimate the critical exponent 1/ν exploring the pseudocritical noise dependence on the 
system size L. In Fig. 9a we plot the logarithm of the distance between the pseudocritical point and the critical 
noise |qc(L)− qc| versus the logarithm of L . The slopes of the linear fits to the data provide numerical estimates 
for the critical exponent 1/ν for each rewiring probability p. In this figure, we use the function n(p), defined in 
Table 1 to separate the curves corresponding to different values of p for the sake of visual clarity. We perform 

(6)qc(L) = qc + bL−1/ν ,

(7)ML(q, p) = L−β/νM̃(εL1/ν),

(8)χL(q, p) = Lγ /ν χ̃(εL1/ν),

(9)UL(q, p) = Ũ(εL1/ν),

Figure 8.  (a) Fourth-order Binder cumulant UL as a function of the noise parameter q for L = 60, 80, 100, 120 
and 140. The lines are cubic polynomial fits to the data, yielding for p = 0.0001 a critical noise 
qc = 0.1181± 0.0002 . In the inset we show an overview for UL and the lines are guides for the eye. (b) Phase 
diagram of the three-state (two-state) majority-vote model in small-world networks (open symbols). The points 
represent the critical noise parameters qc as function of the rewiring probability p. The error bars are smaller 
than the symbols, and the lines are guides to the eye.
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a similar analysis using Eqs. (7) and (8) to obtain the critical exponents β/ν and γ /ν , associated to the order 
parameter and to the magnetic susceptibility, respectively. In Fig. 9b,c we show the log-log plots of lnML and 
lnχL as a function of the logarithm of the system size ln L for different rewiring probabilities p, where the slopes 
of each line fits to the scaled data, and provide numerical estimates for the critical exponents of the model.

In Table 2 we provide the estimates for the critical exponents 1/ν , β/ν and γ /ν of the three-state majority-
vote model on small-world networks. We also present the value of the effective dimension of the system for each 
value of p, calculated as deff = 2β/ν + γ /ν , in accordance with the hyperscaling relation for critical systems for 
p in the small-world regime. The case for p = 0 corresponds to the regular square lattice, where the numerical 
results for both the critical noise parameter and the critical exponents agree with the numerical calculations 
provided by previous investigations, consistent with the universality class of the three-state Potts model on the 
square  lattice12,13,45. As seen in the table, the values of deff  suggest that the effective dimensions of the small-world 
system are close, as expected, to d = 2.

We remark that when p increases away from the small-world region, where p ≥ 0.1 , the system goes through 
different topological regimes, as discussed in Fig. 6, and the values of the critical exponents are quite challenging 
to calculate. However, it is well known that the effective dimension for complex networks does not necessarily 
equal the space dimension on which they are  inserted34,46–49.

The estimations of the values of these critical exponents serve as a guideline for plotting the scaling func-
tions ML(q, p)L

β/ν , χL(q, p)L−γ /ν , and UL(q, p) versus the rescaled noise parameter of the system, |q− qc|L
1/ν . 

These plots reveal the respective data collapse of the functions corresponding to different system sizes into the 
expected universal scaling functions M̃ , χ̃  and Ũ  when using the exponents from Table 2. In Fig. 10, we present 
data collapses for the p values in regular and small-world regime p = 0 , p = 10−4 , and p = 10−3 , respectively. 
As seen in the figures, changing the rewiring probability p exhibits similar behavior for the data collapse of each 
quantity, regarded that we use the suitable exponents from Table 2 for each rewiring probability p. The universal 
behavior for each rescaled function, where different system sizes all collapse in one line, indicates that the critical 
exponents obtained for the system present reasonable precision in the small-world regime, where 0 < p < 0.0138.

Figure 9.  Plot of (a) the distance ln |qc(L)− qc| between the pseudocritical points and the critical point qc , (b) 
the magnitude of the magnetization lnML , and (c) the magnetic susceptibility lnχL as functions of the of ln L 
for different rewiring probabilities p. The slopes of (a–c) yield estimates for the critical exponents 1/ν , β/ν , and 
γ /ν , respectively. The function n(p), defined in Table 1 is used to separate the curves corresponding to different 
values of p for the sake of visual clarity.

Table 1.  Definition of the function n(p).

p 0 10
−4

10
−3

10
−2

10
−1

5× 10
−1 1

n(p) 0 1 2 3 4 5 6

Table 2.  Table of critical noise parameters qc , their correspondent critical exponents β/ν , γ /ν , and 1/ν , and 
the effective dimension of the system deff  for the three-state majority-vote model on small-world networks for 
different rewiring probabilities p.

p qc β/ν γ/ν 1/ν deff

0 0.1180(2) 0.136(3) 1.76(2) 1.25(5) 2.03(2)

0.0001 0.1181(2) 0.152(7) 1.70(3) 1.28(2) 2.00(3)

0.001 0.1201(3) 0.16(1) 1.69(4) 1.28(1) 2.01(5)

0.01 0.1297(2) 0.24(2) 1.63(5) 1.05(5) 2.12(8)

0.1 0.1624(1) 0.24(1) 1.89(4) 1.58(1) 2.37(6)

0.5 0.1986(1) 0.31(2) 1.91(3) 1.97(5) 2.53(8)

1 0.2035(3) 0.25(1) 1.90(3) 2.04(8) 2.42(6)
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We conclude that the disorder promoted by long-range small-world interactions on square lattices strongly 
improves the magnetic order, remaining more robust under the social temperature parameter q. The rewiring 
probability also changes the critical behavior of the three-state majority-vote model, while leaving the average 
connectivity �k� = 4 unchanged.

Concluding remarks
We investigate the statistical mechanics of the three-state majority-vote model on small-world networks. Similar 
to the isotropic two-state version, the opinion variable of an individual σ may assume only one of three discrete 
values, such as σ = 1, 2, 3 . In this model, an individual tends to adopt the opinion of the majority of its neighbors 
with probability (1− q) , and a different opinion with a probability q. Here, q stands for the noise parameter of 
the model and it induces the social disorder. From the generalized update rules for an opinion given by Eqs. 
(1), the three-state majority-vote model it is placed within the framework of previous studies on other complex 
network structures, as the square  lattice12,13,32, random  graphs14, and Barabási-Albert (scale-free)  networks39.

Small-world networks are built starting with two dimensional square lattices whose links are rewired with 
probability p, with double links forbidden. We explore the main topological characteristics of these networks 
by means of degree distributions, clustering coefficient and average path length calculations, which reveal the 
role of disorder in the shrinking of the networks. We show that the average clustering coefficient CL(p) reaches a 
maximum for p ∼ O(1) , and the average shortest path length ℓL(p) decreases in the presence of rewired links as 
expected. These results indicate the emergence of the small-world effect in the networks considered in this work.

Monte Carlo simulations and finite-size scaling analysis reveal that the system exhibits second-order phase 
transitions, spontaneous symmetry breaking and long-range correlations. The critical noise parameter, qc(p) is 
a monotonically increasing function of p, thereby suggesting that randomness in the topology of the network 
makes the ordered opinion phase more resilient against social thermal fluctuations induced by q. We estimate 

Figure 10.  Data collapse into universal scaling functions for the average magnetization ML , the magnetic 
susceptibility χL , and for the fourth-order Binder cumulant UL for regular square lattices, i. e., p = 0 , and for 
small-world interactions with rewiring probability p = 10−4 and p = 10−3.
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the critical exponents for different values of the rewiring probability p, and confirm them by means of the data-
collapse of the average magnetization, magnetic susceptibility, and fourth-order Binder cumulant into their 
universal scaling functions. For p = 0 , the two-dimensional regular lattice with periodic boundary conditions 
obtains and the critical exponent values measured are in agreement with numerical calculations in the literature, 
consistent with the three-state Potts model. However, in the presence of topological disorder p > 0 , the results 
suggest that the critical exponents depend on the value of the rewiring probability p; thus indicating they belong 
to different universality classes.

The numerical results suggest that the link-rewiring scheme and the ensuing topological disorder effects 
slightly increase the effective critical dimension of the system above d = 2 , a manifestation of the fact that the 
network changes its length scales due to the small-world property. This result agrees with previous studies, where 
the effective dimension of the complex networks, in general, does not agree with the spatial dimension of the 
embedding lattice.
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