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Citric acid/β‑alanine carbon 
dots as a novel tool for delivery 
of plasmid DNA into E. coli cells
Anju Pandey1, Asmita Devkota1, Anil Sigdel2, Zeinab Yadegari3, Korsi Dumenyo1 & 
Ali Taheri1*

Successful delivery of plasmid DNA into the microbial cells is fundamental in recombinant DNA 
technology. Natural bacterial transformation is limited to only certain species due in part to the 
repulsive forces between negatively charged DNA and bacterial membranes. Most common method 
of DNA delivery into bacteria is artificial transformation through heat shock and electroporation. 
These methods require sophisticated instruments and tedious steps in preparation of competent cells. 
Transformation by conjugation is also not applicable to all plasmids. Nanoparticles have been used 
successfully in therapeutics for drug delivery into animal cells. They are starting to gain popularity in 
plant sciences as novel DNA nano carriers. Despite their promise as tool for DNA delivery, their use in 
microbial cell transformation has not been reported yet. Here we report the synthesis of carbon dots 
(CDs) from citric acid and β-alanine and their use in DNA delivery into E. coli cells. CDs were fabricated 
using microwave assisted synthesis. Plasmids carrying RFP reporter and ampicillin resistance genes 
were transferred to bacterial cells and further confirmed using polymerase chain reaction. Our findings 
indicate that CDs can be used successfully for delivery of foreign DNA of up to 10 kb into E. coli. We 
have demonstrated the use of β-alanine/citric acid carbon dots as nanocarriers of DNA into E. coli 
cells and identified their limitation in terms of the size of plasmid DNA they could carry. Use of these 
carbon dots is a novel method in foreign DNA delivery into bacterial cells and have a potential for the 
transformation of resistant organism for which there is still no reliable DNA delivery systems.

Genetic manipulation of an organism is an important aspect of recombinant DNA technology and functional 
genomics research. These technologies rely on the use of bacterial cells for mass production of the desired pro-
teins and metabolites. Bacterial cells are also used for amplification of the recombinant DNA before insertion 
into the target organism. Successful delivery of recombinant DNA into the bacterial cell is a challenging task and 
not all bacteria are amenable to these techniques. The cell envelope of bacteria is composed of negatively charged 
phospholipids and lipopolysaccharides which repel the negatively charged DNA hence limiting its entrance into 
the cell. It has been estimated that natural uptake of DNA from surrounding environment occurs in only about 
1% bacterial species under laboratory condition1. The most common methods for genetic transformation of 
bacteria are heat shock and electroporation and with both methods, cells must be highly competent to accept 
the foreign genetic materials from their surroundings. Electroporation utilizes electric current to deliver the 
plasmid DNA into the competent cell whereas heat shock relies on a combination of chemical treatment (CaCl2) 
and short incubation at high temperature (42 °C). Even though electroporation is reported to be more efficient 
than heat shock approach, this system requires highly competent cells, specialized apparatus to generate the 
electric current and cuvette to transfer charge to cells. Also, this system is highly sensitive to presence of salt in 
the samples and most of the time, ligation reaction samples are needed to be purified before electroporation, 
in order to avoid sample arching. Hence, with these limitations in bacterial cell transformation, there is a need 
for alternate DNA delivery methods such as carbon-based nanomaterials. The use of carbon nanoparticles is 
reported to overcome the drawbacks associated with traditional gene delivery methods including host specificity, 
transformation complexity, and cells and tissue damage due to applied external forces2. Carbon nanomaterials are 
gaining popularity due to their prominent characteristics including nano structure (1–100 nm), biocompatibility 
and auto-fluorescence (easy to track inside the cells without staining or tagging with fluorescent molecules)3. In 
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addition, they are water soluble and less toxic to the cells and have higher chemical stability and easier prepara-
tion steps4–8. Therefore, nanomaterial use is becoming popular with applications in different sectors including 
biotechnology, energy, catalysts, biological labeling, bio-imaging, gene transfer, and drug delivery6,7,9,10.

Multiple forms of nanomaterials including, single walled carbon nanotubes (SWNT)2, magnetic 
nanoparticles11, mesoporous silica nanoparticles12, and carbon dots13 have been used in gene delivery. Car-
bon dots with high chemical stability, auto-fluorescence, customizable surfaces, ease of synthesis and minimal 
negative impacts on the environment are gaining popularity for gene delivery in humans, animals and even 
plants5,6,8,14,15. However, their use as nanocarriers in microbials transformation has not been reported yet. Here 
we are reporting the use of carbon dots (CDs) for plasmid DNA delivery into the bacterial cells (Escherichia coli) 
and evaluate their loading capacity in terms of DNA size. We also report the effect of light and temperature on 
carbon dots potential for plasmid DNA delivery into E. coli cells.

Result and discussion
Characterization of CDs.  Fourier-transform infrared (FTIR) spectroscopy was conducted to characterize 
the chemical functional groups on the CDs. The prepared CDs showed peaks at 1168 cm−1(C–O) of carbonyls 
group, 1400 cm−1 (C–N) of nitrile group, 1693  cm−1 (C=O) of ketone group and 2981  cm−1 (C–H) of alkane 
group. The successful passivation of β-alanine is indicated by the presence of 1400 cm−1 (C–N stretching)6,16. The 
obtained peaks were in accordance with previous literatures, suggesting successful synthesis of CDs6,16.

Photoluminescence properties of CDs synthesized using bottom-up approach, showed two characteristic 
absorbance peaks at 275 nm and 350 nm. The peak at 275 nm is due to sp2‐carbon network and peak at 350 nm 
is due to n–π* transition of surface carbonyl groups16,17. The fluorescence emission profile showed excitation 
dependent emission spectra of carbon dots synthesized using CA + β-alanine at pH 3. With an increase of exci-
tation wavelength from 335 to 440 nm, the emission peak shifts along with variation in the intensity16, giving 
longer wavelength photoluminescence18. Maximum emission peak for CDs is 425 nm upon excitation at 375 nm 
which is similar to other carbon dots and emits blue fluorescence16,19.

CDs synthesized using water at pH 3 had a zeta-potential of −5.46 ± 5.68 mV when measured using Malvern 
Zetasizer Nano-ZS ZEN 360016. This negative charge is due to the presence of two negatively charged functional 
groups (C=O and C–O) at the surface of the synthesized CDs which provide sufficient colloidal stability to 
CDs20,21.

Confocal imaging of the interaction of CDs with bacterial cells.  The interaction between cells and 
CDs was confirmed by confocal microscopy. Five µl of CA + β-alanine CDs (19 mg/mL) (pH3) and 50 µL of 
bacterial cells (O.D600 = 0.5) were incubated for 15 min. The cells were centrifuged and washed three times with 
sterile water to remove excess carbon dots outside the bacteria. Under confocal microscope, CDs were found 
bound all over the bacterial cell surface (Fig. 1).

Delivery of plasmid DNA into E. coli cells.  In order to find out the effect of pH on functionalization 
and plasmid delivery of CDs, water with different pH was used to prepare the CDs. E. coli (DH5α) cells were 
mixed with CDs and pU6-pegRNA-GG-Acceptor (RFP) plasmids and incubated for 15 min. Efficiency of CDs 
in delivery of plasmid DNA into bacterial cells was measured by counting the number of red colonies on LB agar 
plates. DNA carries a negative charge due to the presence of phosphate group therefore can form electrostatic 
interaction with positively charged cationic CDs, leading to the formation of CD-DNA complex22. Bacterial cells 
on the other hand, are negatively charged due to the presence of phospholipids, lipopolysaccharides (in gram-
negative bacteria) and teichoic acids linked to peptidoglycan (in gram-positive bacteria)23,24. The interaction 
between positively charged CD-DNA complex and negative elements of cell membrane enables them to perme-
ate through cell membrane22,25. While inside the cell, carbon nanomaterials release genetic materials in a more 
controlled and continuous manner due to their minimal cytotoxicity and higher solubility and stability, which 
leads to a higher transfection rate without damaging the cells22,26,27. It has been shown that the amine group on 

Figure 1.   Confocal Microscopy of E. coli cells. (A) Cells incubated with CA + β-alanine CDs for 15 min under 
confocal fluorescence microscope (B) Cells incubated with CA + β-alanine CDs for 15 min under differential 
interference contrast (DIC) microscopy (C). Merge visualization of CDs expression and live cells under confocal 
microscopy (× 63 magnification).
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the surface of synthesized CDs helps their DNA load to escape the enzymatic degradation in cytosol that results 
in continuous DNA release and a higher transformation rate26. CDs synthesized using citric acid as a carbon 
source and β-alanine as zwitterionic surface passivating agent contain both negative and positive surface charges 
due to the presence of negatively charged carboxyl group and positively charged amine moieties6. Therefore, 
despite their negative surface charge (−5.46), these CDs can successfully deliver DNA into the E. coli cells. How-
ever, their ability to deliver DNA into other bacteria still needs further investigation.

We also studied the effect of pH at the time of CDs synthesis on their DNA delivery efficiency. Among dif-
ferent pH used to prepare CDs, pH3, pH4 and pH5 gave a higher number of transformed colonies compared to 
CDs prepared using pH5.5, pH6, and pH7 (Fig. 2).

In addition, we tested the maximum size of plasmid that can be delivered into bacterial cells using these CDs. 
Plasmids with different sizes were incubated with the mixture of bacterial cells and CDs. plasmids that were used 
for this purpose included: 35Sp_sfGFP_nosT (4 kb), pPSU1 (10 kb), pPSU2 (7.7 kb) and pMDC123 (13.6 kb) 
(Fig. 3A). Confirmation of delivery was done by colony PCR using M13-Forward and M13-Reverse universal 
primers (Fig. 4). Our results show that CA + β-alanine CDs was able to deliver plasmids up to a maximum size 
of 10 kb. However, efficiency for delivery of the 10 kb plasmid was reduced significantly compared to 4 kb and 
7.7 kb plasmids (Fig. 3B). Our results also indicate that DNA delivery efficiency is higher when CA monohydrate 
is used instead of anhydrous CA (Fig. 5).

Effect of incubation temperature on DNA delivery.  An experiment was conducted on the effect of 
incubation temperature on DNA delivery where the mixture of cells, plasmid, and CDs were incubated at three 
different temperatures including 37 °C, 25 °C (room temperature) and 4 °C. Our results indicate higher number 
of transformed colonies in cells incubated at 4 °C followed by 25 °C and 37 °C (Fig. 6) which could be due to the 
higher activity of E. coli cells at higher temperature (37 °C) that leads to higher release of ROS and cell toxicity. 
Earlier reports also indicate that longer incubation of cells and CDs could lead to antimicrobial activity of CDs 
which limit their potential as DNA nanocarriers (Fig. 7)28. To our knowledge, this is the first report that high-
lights the effects of temperature on the efficiency of DNA delivery into the cells by carbon nanoparticles.

Discussion
In this study, we evaluated the efficiency of carbon dots (Citric acid/β-alanine) as novel nanocarriers in delivery 
of plasmid DNA into E. coli cells. The electrostatic interaction between the negatively charge plasmid DNA and 
positively charged amine group (C–N) at the surface of CDs (Citric acid/β-alanine) facilitate the delivery of 
plasmid DNA into the bacterial cells. CDs were able to deliver plasmid DNA into E. coli, however, the efficiency 
of gene delivery was dependent on pH of water at the time of preparation of CDs. CDs synthesized at lower 
pH (pH3-5) had higher efficiency of gene delivery than CDs synthesized at higher pH. This outcome could 
be the of result of variation in size and number of oxygen functional groups on the surface of CDs. The size 
of CDs are directly proportional to the pH of water29. With lower pH at the time of synthesis, the number of 

Figure 2.   Efficiency of CDs synthesized at different pH for pU6-pegRNA-GG-Acceptor (RFP) plasmid delivery 
in E. coli cells.
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oxygen functional groups increases which results in smaller carbon dots that have better penetrance than larger 
CDs6,30,31. CDs synthesized using leaf extract (Salvadora oleoides Decne.) and Zinc nitrate at lower pH (pH 5) 
were reported to be round in shape with average size of 26.66 nm while CDs synthesized at pH 8 have irregular 
shape and average size of 38.62 nm32. We are planning to perform particle size measurement for CDs synthe-
sized under different pH in the future to confirm the effect of size and shape on their DNA delivery capability 
(efficiency). In another study, we tested the maximum size of plasmid that can be delivered by these CDs. Our 
findings indicate that plasmids of up to 10 kb can be delivered into E. coli cells using these CDs, however, the 
efficiency is significantly increased as plasmid sizes decrease (7.7 and 4 kb). Similarly, the effect of incubation 
temperature on efficiency of DNA delivery was tested by incubating a mixture of cells, CDs and plasmid DNA 
at three different temperatures (4 °C/temperature that slows down the bacterial growth, 25 °C/room tempera-
ture and 37 °C/optimum temperature for bacterial growth). Our findings revealed that incubation temperature 
affects the transformation efficiency of CDs and higher number of transformed colonies were obtained at 4 °C 
incubation followed by 25 °C and 37 °C. Outer membrane of bacteria is composed of lipopolysaccharides and 
their fluidity changes with temperature variations. At higher temperature, membrane fluidity increases which 
increase the cell membrane permeability. With higher cell membrane permeability, more CDs could enter into 
the cells and interact with cellular components which leads to higher amount of reactive oxygen species (ROS) 
and cell toxicity33,34. However, at lower temperature, fatty acid tails move closer together and cells become more 
rigid, reducing the membrane permeability and limiting flow of compounds inside the cells. It is plausible that 

Figure 3.   Potential of CDs to deliver the plasmid DNA of different sizes into E. coli cells. (A) Plates with 
transformed colonies of E. coli using CDs (citric acid + β-alanine) showing number of transformed colonies 
decreases as the plasmid size increases ranging from 4 to 13.6 kb. (B) Effect of plasmid size on transformation 
efficiency. Bar diagram comparison of number of transformed colonies obtained for different size of plasmids. 
Values are mean from three replicates ± standard deviation.

Figure 4.   Confirmation of transformation by PCR amplification from positive colonies after plasmid delivery 
with CA/β-alanine CDs using (A) pPSU1 (10 kb), pPSU2 (7.7 kb) and (B) 35S_sfGFP_nosT (4 kb) plasmids. Six 
colonies were randomly picked from each transformation (C1–C6) for colony PCR.
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incubation of cells and CDs at low temperature minimizes ROS toxicity as the cells are not in active growth phase. 
Further studies are required to measure ROS activity in CD-treated cells under different temperature regimes, 
to understand the possible reasons why DNA delivery efficiency varies at different temperatures.

Conclusion
We have demonstrated the prospective of citric acid/β-alanine carbon dots as novel nanocarriers in DNA delivery 
into E. coli cells. We evaluated the effect of light, temperature and DNA size on the efficiency of DNA delivery 
into E. coli cells. Understanding the exact mechanism of DNA delivery into the cells by carbon dots and the effect 
of temperature on this process needs further investigation. Additionally, further studies are required to evaluate 
the potential use of CDs in delivery of foreign DNA into other bacterial species.

Figure 5.   Effect of hydration of CD on transformation efficiency. Bar diagram comparison of the number 
of colonies obtained from different size of plasmids for anhydrous and monohydrate CDs, indicating better 
performance of monohydrate CA in DNA delivery. Values are mean (from three replicates) ± standard deviation.

Figure 6.   Effect of incubation temperature and light condition on gene delivery by CDs.
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Methods
Materials.  All the reagents for CD synthesis were purchased from Thermo Fisher Scientific. Monohydrate 
citric acid (Cat#A104-500) and β-alanine (Cat#AAA166650I), were used for synthesis of carbon dots. Bacterio-
logical agar (IBI Scientific), Yeast extract (IBI Scientific), Tryptone (MIDSCI™) and NaCl (MIDSCI™) were used 
to prepare Luria Broth and agar media for E. coli culture.

Synthesis of carbon dots (CDs).  Carbon dots were synthesized using citric acid and β-alanine according 
to previous reports6,16 with slight variations. Briefly, CDs were synthesized by mixing 1:2 molar ratio of citric 
acid and β–Alanine. 2.1 g of citric acid monohydrate was mixed with 1.8 g β-alanine in 10 mL water (pH3) in 
a conical flask. The mixture was homogenized using Ultrasonicator (Ultrasonic Cleaner FS30, Fisher Scientific, 
Pittsburg, PA) and heated using commercial microwave oven (1200 W#JES2251SJ02, GE Appliance, Canada) at 
70% power level for 3 min to complete the carbonization and surface passivation steps. The brownish solid was 
then dissolved in 10 mL of distilled water.

Purification of CDs.  Purification of CDs was carried out using dialysis tubing (Spectra/Por®  7  Dialysis 
Membrane) with 11.5 mm diameter. water was refreshed every 2 h for the first 8 h, and once a day for the next 
4 days purified CDs were further sterilized by passing the solution through 0.22 µm pore-size filter16.

Bacterial strains preparation.  E. coli DH5α was cultured overnight in Luria Broth liquid medium at 
37 °C and 250 rpm in shaker-incubator. The OD600 was adjusted by subculturing the overnight grown cells and 
harvested at the logarithmic growth phase. Bacterial pellet was collected from 5 ml of culture using a tabletop 
centrifuge and washed three times with sterile distilled water and resuspended in 1 ml of 15% glycerol. 50 µl of 
cells was transferred into each 0.65 ml tubes and stored at −80 °C freezer for long-term use.

Characterization of CDs.  Characterization was done according to Pandey et al., 202116. Briefly, confir-
mation of functional groups of CDs was done using Fourier-transform infrared (FT-IR) spectroscopy Perkin 
Elmer Frontier Infrared spectrometer. Photoluminescence properties of the CDs was recorded using Synergy H1 
Hybrid Multi-Mode Microplate Reader (BioTek, Winooski, VT). Zetasizer nano ZS (Malvern Panalytical Inc., 
Westborough MA) was used to measure the electrostatic charges of CDs.

Binding of DNA and CDs and delivery into the cells.  Two µL (3000 ng) of plasmid DNA was added 
into 50 µL of E. coli cells that were prepared earlier and 5 µL (19 mg/ml) of freshly prepared CDs was added at 
a later step. Samples were mixed by gentle flicking on the side of the tube. The mixture was then incubated for 
15 min at room temperature. After incubation, 50 µL of water (pH 3) was added to each tube and mixture was 
plated (20–50 µL) on LB plates with selective antibiotic and incubated overnight at 37 °C.

Plasmids used for study.  To evaluate the loading capacity of synthesized CDs, plasmids with differ-
ent sizes were used for this experiment including, pU6-pegRNA-GG_acceptor (Addgene plasmid# 132777, 
size = 3004 bp) with RFP as reporter gene; 35S_sfGFP_nosT (Addgene plasmids# 80129 size = 4180 bp); pPSU2 
(Addgene plasmid # 89566, size = 7750 bp); pPSU1 plasmids (Addgene # 89439, size = 10,000 bp) all carrying 

Figure 7.   Effect of incubation temperature and light conditions on the number of transformed colonies. Values 
are mean (from three replicates) ± standard deviation.
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ampicillin resistance gene; and pMDC123 (Addgene # 59184, size = 13,658 bp) with kanamycin resistance gene 
(Fig. 8).

Confirmation of transformation.  Plasmids carrying ampicillin resistance gene, kanamycin resistance 
gene and RFP were used as selectable markers in bacterial transformation. Further confirmation was carried 
out using M13Forward and M13Reverse primers and PCR amplification of a plasmid fragment for 35S_sfGFP_
nosT, pPSU1, pPSU2 and pMDC123 plasmid. Successful delivery of RFP plasmid results in red colonies that are 
visible without a need of fluorescence microscope.

Effect of temperature and light on gene delivery.  To evaluate the effect of incubation temperature 
and light on gene delivery, the mixture of cells (DH5α), plasmid (pU6-pegRNA-GG_acceptor) and fresh CDs 
(Citric acid + β-alanine) were incubated in 3 replicates for 15 min at different temperature including 4, 25 and 
37 °C under dark or light condition.

Statistical analysis.  The number of colonies were counted using imageJ software from three replicates and 
analyzed using R software (V3.6.3). The mean of the treatments was calculated, and post hoc test was conducted 
by the least significant difference (LSD) t-test.

Data availability
All the data and figures are provided in the manuscript and supplementary files. Further details can be provided 
by reaching out to the corresponding author.
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