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A novel hybrid SEIQR model 
incorporating the effect 
of quarantine and lockdown 
regulations for COVID‑19
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Mitigating the devastating effect of COVID-19 is necessary to control the infectivity and mortality 
rates. Hence, several strategies such as quarantine of exposed and infected individuals and restricting 
movement through lockdown of geographical regions have been implemented in most countries. 
On the other hand, standard SEIR based mathematical models have been developed to understand 
the disease dynamics of COVID-19, and the proper inclusion of these restrictions is the rate-limiting 
step for the success of these models. In this work, we have developed a hybrid Susceptible-Exposed-
Infected-Quarantined-Removed (SEIQR) model to explore the influence of quarantine and lockdown 
on disease propagation dynamics. The model is multi-compartmental, and it considers everyday 
variations in lockdown regulations, testing rate and quarantine individuals. Our model predicts a 
considerable difference in reported and actual recovered and deceased cases in qualitative agreement 
with recent reports.

The consequences of the COVID-19 pandemic on human life and the economy are disastrous, and the propa-
gation of infection has not yet been controlled1–4. Governments have devised several strategies and imposed 
regulations and restrictions to decelerate the spread, control the cost of human lives and reduce the load on the 
health care industry5–7. While the development of several vaccines has been hopeful progress, evolving variants 
of SARS-COV-2 and its virulence is a threat8–10. Vaccination and acquired immunity have progressively led to the 
relaxation of lockdown restriction in a few geographical regions. However, considering the current vaccination 
rate and the bias in global distribution, most countries primarily rely on quarantine and lockdown procedures.

The quarantine and lockdown regulations and restrictions imposed by the governments target the reduction 
in disease transmission by confining the movement of the population and reducing the spread through human 
contacts5,11,12. Effective implementation of these procedures can slow down the spread and provide a window 
for the government to devise strategies to develop vaccines/drugs. Understanding the effect of lockdown on the 
dynamics of the pandemic is vital in planning and implementation11. SEIR model and its variants can be used in 
parameterizing and predicting the disease dynamics13–16. However, the typical formulations of the SEIR model 
do not take into account the complex effects of lockdown restrictions.

In the current study, we have adapted the standard SIER model to the current pandemic situation (COVID-
19) by addressing specific essential observations such as the presence of asymptomatic carriers, reduction in 
transmission rate due to lockdown and its effect on the infection rate of the disease. By incorporating these 
parameters, we have developed a model to provide robust estimates of asymptomatic carriers in the population. 
Apart from providing an estimate of the infected and recovered population, these data would elucidate the role 
of these external factors on COVID-19 transmission. In addition, we have also incorporated the real-world, day-
to-day mobility data, positive rate and number of tested samples into a Hybrid Susceptible-Exposed-Infected-
Quarantined-Removed (HySEIQR) model. The model accounts for the effect of lockdown on disease transmission 
through inter-person contacts and the movement of people across geographic regions. Simulation of our detailed 
model showed a good correlation with the observed trend in the number of recovered cases.
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HySEIQR model, notations and assumptions
Considerations in adapting SEIR model to COVID‑19.  Adapting standard SEIR model to the cur-
rent scenario requires addressing the following key elements: (a) asymptomatic carriers, (b) effect of quarantine 
and lockdown, c) multi-compartmental approach, (d) testing rate and efficiency, (e) varying viral strains and 
their virulence, and (f) availability of medical resources and efficacy of treatment. These elements are known 
to strongly influence disease transmission rate (β), the spread of infected individuals to newer regions, and the 
recovery and mortality of patients.

COVID-19 infected individuals can be symptomatic or asymptomatic, and in most cases, can develop symp-
toms over time. However, statistical studies have shown varying proportions of symptomatic and asymptomatic 
cases in different populations17,18. In most countries, symptomatic and identified (tested) individuals are quar-
antined or advised to self-isolation. Isolation of infected cases removes them from the general population, thus 
reducing the spread of the disease. Further, identifying the infected cases depends directly on the testing rate 
in the region19,20.

HySEIQR model.  The schematic representation of the SEIQR model is shown in Fig. 1, and the set of equa-
tions (Eqs. 1–10) listed below describes the model. Table 1 lists all the variables, parameters and constants along 
with the notations used in this study.

(1)Ṡ = −β(t).S ∗ (Ia.η+ Im+ Is)

(2)Ė = β(t).S ∗ (Ia.η+ Im+ Is)− σE

(3)İa = fa.σ .E − (µa + γa).Ia −H(Ia, t)

(4)˙Im = fm.σ .E − (µm + γm).Im −H(Im, t)

(5)İs = fs .σ .E − (µs + γs).Is −H(Is , t)

(6)Ḣa = H(Ia, t)−
(

µa
H + γH

a

)

.Ia

(7)Ḣm = H(Im, t)−
(
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H + γH

m

)

.Im

(8)Ḣs = H(Is , t)−
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H + γH
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)
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(9)Ṙ = γa.Ia + γm.Im + γs .Is + γa
H .Ha + γm

H .Hm + γs
H .Hs

(10)Ḋ = µa.Ia + µm.µm + µs .Is + µa
H .Ha + µm

H .Hm + µs
H .Hs

Figure 1.   (a) Illustration of multi-compartmental approach in HySEIQR. Circles represent sub-regions or 
compartments. The movement of infected between the compartments/sub-regions is governed by the parameter 
TrRate. (b) the schematic representation of the Hybrid SEIRQ model (refer Eqs. 1–12).
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where S, E, R and D denote the susceptible, exposed, recovered, and deceased population. σ , γ and µ represent 
the incubation, recovery and mortality rate. Infected cases were grouped into three categories: asymptomatic 
(Ia), moderately symptomatic (Im) and severely symptomatic (Is). Each category has a different recovery period 
(γ) and mortality rate (μ). And also, different contributions (η) to disease transmission (β). Similarly, Ha, Hm and 
Hs represent the identified infected cases, including self-quarantined and hospitalized cases. The transmission of 

Table 1.   List of variables, constants and parameters used in the model.

List of variables

S. no Variables Notation

1 Susceptible S

2 Exposed E

3 Infected I

4 Infected without symptoms Ia

5 Infected with moderate symptoms Im

6 Infected with severe symptoms Is

7 Hospitalized/quarantined infected individuals without symptoms Ha

8 Hospitalized/quarantined infected individuals with moderate symptoms Hm

9 Hospitalized/quarantined infected individuals with severe symptoms Hs

10 Recovered R

11 Recovered from disease without symptoms Ra

12 Recovered from disease with moderate symptoms Rm

13 Recovered from disease with severe symptoms Rs

14 Recovered from disease without symptoms while hospitalized/quarantined Ra
H

15 Recovered from disease with moderate symptoms while hospitalized/quarantined Rm
H

16 Recovered from disease with severe symptoms while hospitalized/quarantined Rs
H

17 Deceased D

18 Deceased due to the disease with moderate symptoms Dm

19 Deceased due to the disease with severe symptoms Ds

20 Susceptible and not infected individuals who were tested positive (false positives) HFP

21 Susceptible and not infected individuals who were positive after 14 days RFP

List of parameters

S. no Parameters Notation Value Range

1 Disease transmission factor β0 0.33 0.01–4

2 Initial number of exposed persons (t = 0) E0 600 10–2000

3 Number of days between first exposed case and first identified case lag 25 0–40

4 Lockdown coefficient for disease transmission (β) Wβ 0.45 0.0–1.0

5 Number of sub-regions Ne 1000 1–5000

6 Lockdown coefficient for movement between sub-regions WT 0.65 0.0–1.0

7 Transfer rate between sub-regions TrRate
0 0.25 0.0–1.0

8 Coefficient for disease transmission (β) due to asymptomatic cases η 0.35 0.0–2.0

List of constants

S. no Constants Notation Value

1 Number of repeats/runs of simulation n 10

2 Latent periods 1/σ 5

3 Fraction of asymptomatic cases fA 0.3

4 Fraction of cases with moderate symptoms fM 0.5

5 Fraction of cases with severe symptoms fS 0.2

6 Recovery period for asymptomatic cases 1/γA 7

7 Recovery period for cases with moderate symptoms 1/γM 10

8 Recovery period for cases with moderate symptoms (hospitalized/quarantined) 1/γM
H 14

9 Recovery period for cases with severe symptoms (hospitalized/quarantined) 1/γS
H 21

10 Mortality rate for asymptomatic cases μA 0.0

11 Mortality rate for cases with moderate symptoms μM 0.0001

12 Mortality rate for severe symptomatic cases μS 0.0002

13 Sensitivity of COVID-19 tests Test TPR 0.90

14 Specificity of COVID-19 tests Test TNR 0.95
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infection from Infected to Susceptible depends on the transmission factor, β(t) , a time-dependent variable. The 
number of hospitalized cases were obtained from real-world data (www.​covid​19Ind​ia.​org).

Multi‑compartment model and the stochastic nature.  A typical epidemiological model assumes the 
region understudy to be a single compartmental with a homogenous density of exposed and infected cases 
across the region and throughout the time. One of the implications of lockdown restrictions is the localization 
by isolating sub-regions with a higher density of infected individuals. These restrictions create heterogeneity 
which requires a multi-compartmental approach. In the HySEIQR model, a country/state is uniformly divided 
into multiple sub-regions with boundaries. These regions are placed on a square map. The size and number of 
sub-regions depend on parameter Ne (number of compartments/sub-regions). The disease propagation dynam-
ics is assumed to occur in each sub-region independently through the Eqs. (1–10). The movement of exposed 
and infected individuals between the neighbouring sub-regions is dependent on the transfer rate (TrRate

0).
The inclusion of a multi-compartmental approach adds stochastic components to the model. The transfer 

of individuals from a sub-region to neighbouring sub-regions occurs through random selection of the neigh-
bours. In addition, during the initialization of the simulation, the number of initially exposed individuals, E0, 
is distributed among randomly selected sub-regions. These events vary with iterations due to their dependency 
on pseudo-random numbers.

Incorporating real‑world data into the model.  The Hybrid SEIRQ model considers the day-to-day 
variations in government-imposed travel restrictions and lockdown conditions, the number of tested samples 
and positivity rate. The actual world data from various sources were collected and integrated into the model as 
functions λ(t), β(t) and H(t). We have collected the time-series data on the number of infections, deaths, recover-
ies, tested samples and positivity rate from COVID19India.org GitHub repository (https://​api.​covid​19ind​ia.​org) 
for the Indian population till May 2021. Further, the data on change in people movement was collected from 
Google mobility reports (https://​github.​com/​Googl​eClou​dPlat​form/​covid-​19-​open-​data) and Oxford strin-
gency index21 (http://​www.​bsg.​ox.​ac.​uk/​covid​track​er) as a measure of Quarantine and Lockdown stringency 
index (λ(t)). β(t) denotes the variation in transmission rate (Eq. 11). H(t) represents the actual number of posi-
tively tested cases in a day. The number of tested /identified cases predicted by the model on a day (t) depends 
directly on the number of infected cases (Ia, Im, and Is) on t but is limited by H(t). Seven-day window averages 
were used throughout our study to reduce non-specific day to day variations (Fig. S1).

where Wq and WT denote the weight associated with lockdown regulations, λ(t).

Interpreting the HySEIQR model
Parameter estimation and fit.  The parameters for the model were either defined as parameters (Table 1) 
and estimated through non-linear data fitting or as constants and derived from literature and published reports 
(Table 1). The parameters associated with disease dynamics, such as σ, β and γ, have been well studied and 
declared constants in this work22–24.

The rest of the parameters were estimated through a two-step approach. A systematic grid search is per-
formed in the parameter space (Table 1). For each point in the grid, the least-square optimization algorithm 
(least_squares) was applied to minimize the least-squares error between the predicted and actual number of 
identified recovered and infected cases25,26. The model with the lowest error was selected and further optimized.

Comparison between predicted and actual data.  Figure 2 shows the predicted number of recovered 
cases and change in infected cases over time, along with the actual data for the Indian population. As of 15th May 
2021, approximately 20.82 million and 270,000 recovered and deceased as per the available data with 3.54 million 
existing infected cases. Our model predicted 18.56 million identified and 772.28 million unidentified recovered 
cases. The number of unidentified recovered cases is nearly 37 [25, 49] times higher than the reported number of 
recovered cases. Similarly, our model predicted 2.6 [1.7–3.5] times higher deceased cases than reported deaths 
due to COVID-19. In other words, on average only ~ 3 in 100 recovered cases and ~ 1 in 3 deaths is reported. 
Despite the variations in the prediction results over iterations and its high sensitivity to parameters, the model 
consistently indicates several times higher recovered cases than reported. These results agree with earlier reports 
of undetected COVID-19 cases27–29. Especially considering the asymptomatic cases and the low testing rate, the 
actual number of recovered cases can be several times higher than the reported numbers.

To validate our simplified multi-compartmental design, we compared the distribution of recovered cases 
across the compartment/sub-regions with relevant administrative sub-division in India. We chose districts for 
comparison since our model consists of 1000 sub-regions in the similar range as the number of districts in 
India. Figure 3 shows the fraction of sub-regions and districts with the number of recovered cases greater than 
1000 and 10,000. A threshold of 1000 was used to check the presence of COVID-19 infection in a sub-region. 
In addition, a threshold of 10,000 was chosen to test the widespread of the disease. The results indicate that our 
model underestimates the presence of COVID-19 infection at a threshold of 1000). However, the model showed 
a better correlation with the spread of the disease in sub-regions at a threshold of 10,000. The difference between 
the predicted (sub-regions) and actual (districts) is expected since the size and distribution of sub-regions are 

(11)β(t) = β0 ∗
(

Wq.(1− �(t))+
(

1−Wq

))

(12)Tr
rate(t) = Trrate0 ∗ (WT .(1− �(t))+ (1−WT ))

http://www.covid19India.org
https://api.covid19india.org
https://github.com/GoogleCloudPlatform/covid-19-open-data
http://www.bsg.ox.ac.uk/covidtracker
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uniformly modelled, whereas districts vary significantly in size and geographical locations. The gaps can be 
overcome by using a network topology based on the distribution of districts sizes and their connectivity30,31.

Influence of lockdown regulations on disease‑control.  The lockdown-imposed restrictions (λ(t)) 
affects the disease transmission factor (β0) as described in Eq. 11. Wq is the weight that determines the influence 
of the λ(t) on β. Higher Wq indicates a more substantial influence of lockdown rules in reducing disease trans-
mission. To study the influence of the parameter, we run simulations by varying Wq from 0 to 1 at intervals of 
0.2 (Fig. 4). Figure 4a shows the change in the total number of infected cases (identified and unidentified) over 
time. The results show that with strong adherence to government-imposed lockdown regulations (Wq ≥ 0.6), 
the spread of COVID-19 could have been controlled within six months. However, non-adherence (Wq ≤ 0.4) to 
the restriction could lead to the rapid spread of disease with an average of million cases per day and spreading 
to almost every sub-region (Fig. 4b). We repeated the analysis by varying Tr0

rate, the transfer rate of infected 
between sub-regions (Fig. 5). With zero movements between the sub-regions (Tr0

rate = 0), the spread of disease is 
restricted to only the initial compartments and spread to compartments is stopped. Increasing Tr0

rate increases 
the rate of spread to other sub-regions, leading to a rapid increase in infection rate.

Discussion
Several methods have been developed using modified SEIR models to understand the spread of COVID-19. The 
most necessary adaptions are (i) identification of infected cases and quarantine of suspected cases, (ii) role of 
lockdown on social interactions and movement of the population and (iii) inclusion of asymptomatic cases32–34. 
Quarantine is one of the important strategies in controlling any contagious disease32. Senapati et al.35 developed 
a deterministic compartmental model incorporating quarantined and hospitalized for mild and severe sympto-
matic cases, respectively. The rate of quarantine and hospitalization are usually determined as part of the model 

Figure 2.   Actual and predicted number of (a) recovered and (b) change in infected COVID-19 cases in India. 
The shaded regions represent the standard error from 10 replicates.

Figure 3.   Comparing the predictions for the sub-regions in our model with the actual data from Indian 
districts. The y-axis represents the fraction of sub-regions (blue line)/districts (green line) with (a) more than 
1000 recovered cases and (b) more than 10,000 recovered cases. The shaded regions represent the standard error 
from 10 replicates.
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Figure 4.   Effect of lockdown and quarantine on the spread of COVID-19 infection. The simulated change in 
the (a) total number of infected individuals (identified and unidentified) and (b) the number of sub-regions/
compartments with more than 1000 recovered cases as a function of the parameter, Wq.

Figure 5.   Role of inter-compartment movement on the spread of COVID-19 infection. The simulated change 
in the (a) total number of infected individuals (identified and unidentified) and (b) the number of sub-regions/
compartments with more than 1000 recovered cases as a function of the parameter, TrRate

0, transfer rate between 
sub-regions.
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parameters. In our model, the quarantine/hospitalization is determined by the number of actual tested cases in 
the region obtained from real-world data and fed to the model. These tested cases are further distributed among 
symptomatic and asymptomatic cases based on testing sensitivity and specificity. These suspected cases, which 
include true and false positives, are quarantined during the expected recovery period (determined by γ). These 
assumptions are close to a real-world situation and also easily adaptable to other geographical regions.

The effect of lockdown on disease transmission is time-dependent and complex with various direct and 
indirect influences. For example, the government imposed regulations directly create barriers for the movement 
of people and indirectly generate awareness among the population to follow hygienic practices. Although these 
actions reduce the disease transmission rate (β), the influence of these measures changes over time. To accom-
modate this effect, studies have modelled β as a function of time or lockdown36–38.  Ianni and Rossi36 represented 
β as a decreasing exponential function to accommodate the increasing awareness of the population and the 
reducing disease transmission rate over 120 days since disease outbreak.

On the other hand, the awareness could gradually reduce over an extended period and governments can 
impose lockdown in phases, which create waves of awareness. While such approaches are convenient and easily 
adapted to standard epidemiological models/equations, disease transmission rate depends on complex social 
interactions among the population/community. Networks/graphs representing the interaction pattern among 
communities are often used to overcome these shortcomings30,31,39,40. In our model, we have incorporated two 
measures, namely Google mobility reports (https://​github.​com/​Googl​eClou​dPlat​form/​covid-​19-​open-​data) and 
Oxford stringency index (Hale et al., 2021) (http://​www.​bsg.​ox.​ac.​uk/​covid​track​er) as a measure of Quarantine 
and Lockdown stringency index (λ(t)). These measures represent the dynamic changes in government norms 
and associated population behaviour towards COVID-19. Thus, it provides a better reflection of the real-world 
situation for the model. The λ(t) influences the disease transmission rate, β and also affects the movement of 
people from one region to another, Trrate in the model (Eqs. 11 and 12). In addition, the multi-compartmental 
design model raises a barrier to people moving from one sub-region to another. Thus, the model mimics the 
effect of lockdown in a large geographical region like India.

Consideration of asymptomatic cases is another crucial and essential criterion for a COVID-19 epidemiologi-
cal model. Models, which incorporate asymptomatic cases consider a part of the infected cases to be asympto-
matic with no identifiable symptoms and are probably undetected. This fraction of the infected patients under-
goes natural recovery over a period of time27,41,42. A similar approach is employed in our model. Infected cases 
are considered to be part of one of the three classes: (i) asymptomatic, (ii) symptomatic with moderate and (ii) 
symptomatic with severe symptoms. Few models treated a constant fraction of infected cases as asymptomatic, 
which is determined by model optimization. These asymptomatic cases can remain asymptomatic until recovery 
or may show symptoms over time42.

Conclusions
We have developed a hybrid SEIQR model by incorporating several adaptations for COVID-19 disease, testing 
protocols, current quarantine, and lockdown regulations. In our approach to the model, several assumptions 
and simplifications were imposed to account for the following: (i) The government imposed lockdown regula-
tions were represented through over-simplified metrics from openly available reports, (ii) The role of hospitals 
in controlling mortality rate, allocation and availability of equipment in hospitals, the effect of viral strains in 
disease transmission and mortality rate were not factorized into the model and (iii) only part of the parameters 
was optimized, and the rest were considered constants based on the literature to ease parameter optimization.

Despite the limitations, our model captured the essence of the quarantine, lockdown and movement of 
infected between the regions. The model was developed with minimal dependency using core python libraries 
and is available as a webserver at https://​web.​iitm.​ac.​in/​bioin​fo2/​covid​19hys​eiqr/​home. The model is highly 
customizable and can be adapted to further modifications. The inclusion of network topology of administrative 
divisions in India and the effects of viral strains would benefit the community to a greater extent.

Ethics declarations.  No experiments on Human or Animals were conducted as part of the study. All data 
used in the study were collected from openly available repositories.

Data availability
All data used in the study were collected from openly available repositories. Sources are listed in the manuscript. 
In addition, the model is available as a webserver at https://​web.​iitm.​ac.​in/​bioin​fo2/​covid​19hys​eiqr/​home.
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