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Identification of molecular 
subtypes and prognostic signature 
for hepatocellular carcinoma 
based on genes associated 
with homologous recombination 
deficiency
Hongsheng Lin1,2,3,4,6, Yangyi Xie1,5,6, Yinzhi Kong1,5, Li Yang1,2 & Mingfen Li1,2*

Hepatocellular carcinoma (HCC) is a rapidly developing digestive tract carcinoma. The prognosis of 
patients and side effects caused by clinical treatment should be better improved. Nonnegative matrix 
factorization (NMF) clustering was performed using 109 homologous recombination deficiency (HRD)-
related of HCC genes from The Cancer Genome Atlas (TCGA) database. Limma was applied to analyze 
subtype differences. Immune scores and clinical characteristics of different subtypes were compared. 
An HRD signature were built with least absolute shrinkage operator (LASSO) and multivariate Cox 
analysis. Performance of the signature system was then assessed by Kaplan–Meier curves and receiver 
operating characteristic (ROC) curves. We identified two molecular subtypes (C1 and C2), with C2 
showing a significantly better prognosis than C1. C1 contained 3623 differentially expressed genes. 
A 4-gene prognostic signature for HCC was established, and showed a high predicting accuracy in 
validation sets, entire TCGA data set, HCCDB18 and GSE14520 queues. Moreover, the risk score 
was validated as an independent prognostic marker for HCC. Our research identified two molecular 
subtypes of HCC, and proposed a novel scoring system for evaluating the prognosis of HCC in clinical 
practice.

Liver cancer is one of the most rapidly developing digestive tract  tumors1. Hepatocellular carcinoma (HCC), 
which accounts for 90% of all liver cancer types, is characterized by high mortality and poor  prognosis2.Only 
5% to 15% of HCC tumors can be surgically removed after diagnosis. The first-line treatment options for the 
late stage is oral dosing with sorafenib, however, but it cannot effectively improve the condition of  HCC3. Hence, 
improving the prognosis of patients and reducing side effects are currently the major problems to be solved in 
clinical practice.

Studies have shown that homologous recombination deficiency (HRD) is common in cancer  development4. 
HRD as a functional defect in homologous recombinant DNA repair could result in permanent alteration in 
the genome in a specific, quantifiable pattern ("genomic scar")5. Studies showed that HRD occurs at different 
frequencies in many cancer  types6. In cancer cells with HRD, double-stranded DNA breaks are repaired through 
error-prone pathways (i.e., non-homologous end ligations), leading to cell death and tumor  shrinkage7,8. Previous 
reports analyzed the role of HRD in a variety of cancers, and found that HRD is visibly associated with survival 
of patients with ovarian cancer and glioblastoma polymordia, and is also related to a poor prognosis of adrenal 
cortical carcinoma, squamous cell carcinoma of head and neck, clear cell carcinoma of kidney, renal papillary 
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cell carcinoma, sarcoma and uterine corpus endometrial  carcinoma6. However, the relationship between HRD 
and HCC prognosis has not been fully characterized.

As HCC has highly heterogeneous genomic aberrations and microenvironments, frequent recurrence is 
another challenge in the treatment of  HCC2. Therefore how targeted therapies to kill individual cells remains 
a major tackle to be resolved, which also points to the clinical importance of classifying patients into relative 
subtypes based on key  characteristics9. A large-scale study identified three HCC subtypes using combined data 
from five platforms (DNA copy number, DNA methylation, mRNA expression, miRNA expression and RPPA) 
and simultaneous unsupervised  clustering10. Although many genome-wide analyses of HCC have been per-
formed, there is still a lack of hierarchical clustering analysis of HRD-associated genes to explore the prognostic 
characteristics of HCC.

In this study, we performed NMF clustering to classify HCC based on HRD-related genes, and investigated 
the relationship between subtypes, HCC immune infiltration and clinical characteristics. A risk score model was 
built to predict the prognosis of HCC patients. It is hoped that the current findings will provide new insights 
into personalized treatment of HCC.

Results
Characteristics of immune infiltration in HCC. To explore the immune cell infiltration in HCC, the 
relationship between prognosis and immune cells was analyzed according to MCP Counter, CIBERSORT and 
ssGSEA. The forest map showed that CD8 T cells, monocytic lineage, activated B cells, activated CD8 T cells, 
effector memory CD4 T cell, type 1 T helper cell, eosinophil, immature dendritic cell and natural killer T cell 
played a significant role in the prognosis of HCC (Fig. 1A-C). Analysis of the proportion of each immune cell 
in HCC demonstrated that T cells, Neutrophils, myeloid dendritic cells, monocytic lineage, fibroblasts and 
endothelial cells showed a high proportion in HCC (Fig. 1D).

Two molecular subtypes of HCC were identified by NMF clustering. From 109 HRD genes, 84 
genes with strong prognostic significance for HCC were screened by univariate COX analysis. NMF clustering 
was performed on the 84 genes, and according to cophenetic, suspension and silhouette indicators, the optimal 
k was determined to be 2 (Fig. 2A,B). The two molecular subtypes were defined as C1 and C2. The OS and 
progress-free survival (PFS) between C1 and C2 were significantly different, and OS and PFS in C2 were signifi-
cantly longer than C1 (Fig. 2C,D). The gene expression heat map of the two molecular subtypes demonstrated 
that prognosis-related HRD genes were high-expressed in the C1 subtype (Fig. 2E).

Identification of DEGs between subtypes and enrichment analysis. We also conducted associa-
tion analysis between the typing results and published immunotyping  results11 from the TCGA cohort. The 
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Figure 1.  Characteristics of immune infiltration in HCC. (A) Univariate Cox regression analysis of MCP 
counter detection of immune cells and prognosis. (B) The forest map showed the correlation between immune 
cells analyzed in CIBERSORT and prognosis. (C) Univariate Cox regression analysis of immune cells in ssGSEA 
and prognosis. The mountain map shows the scores of different immune cells in HCC. (D) The mountain 
diagram showed the proportion of immune cells in HCC.
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results indicated that C1 subtype mainly included the wound healing(C1), IFN-γ dominant (C2), inflamma-
tory (C3) and Lymphocyte (C4) subtypes identified by Vesteinn Thorsson et al., and that C2 subtypes mainly 
include C2, C3 and C4 subtypes defined by Vesteinn Thorsson (Fig. 3A,B). Difference analysis (at the threshold 
of FDR < 0.05 and | | FC > 1.5) showed that a total of 3623 genes were differentially expressed in C1 in com-
parison to C2 (Supplementary Table  S1). Specifically, among the 3623 genes, 3,301 were upward DEGS and 
322 were downward DEGS (Fig. 4A). The heat map of top 100 DEGs were shown in Fig. 4B. GO analysis of 
up-regulated DEGs demonstrated that histone modification and covalent chromatin modification (biological 
processes, BP), condensed chromosome and spindle (cellular components, CC), nucleosome binding and dam-
aged DNA binding (molecular function, MF) were the most significantly enriched terms (Fig. 5A). The most 
prominently enriched GO terms in down-regulated DEGs were regulation of protein processing and regulation 
of protein maturation (BP), high-density lipoprotein particle and lipoprotein particle (CC), monooxygenase 
activity and lipid transporter activity (MF) (Fig. 5C). KEGG analysis showed that the main enrichment pathways 
for upregulation of DEGs were mismatch repair, DNA replication, and homologous recombination (Fig. 5B). 
Supplementary S1.txt showed other up-regulated DEGs significantly enriched in GO terms and KEGG path-
way in addition to Fig. 3A and B. The down-regulated DEGs were significantly enriched in metabolism-related 
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Figure 2.  Two molecular subtypes of HCC were identified by NMF clustering. (A) Consensus map for NMF 
Clustering. (B) When rank = 2–10, the cophenetic correlation, residual sum of squares (RSS) and silhouette 
distribution. (C) Survival curves of C1 and C2 subtypes in TCGA dataset. (D) PFS of C1 and C2 subtypes in the 
TCGA cohort. E: Heat map of expression of 84 HRD genes in subtypes.
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pathways, including retinol metabolism, steroid hormone biosynthesis and drug metabolism (Fig. 5D). Supple-
mentary S2.txt showed down-regulated DEGs significantly enriched in GO terms and KEGG pathway in addi-
tion to Fig. 3C and D mentioned. Moreover, GSEA also identified significant enrichment pathways for the C1 
subtype, including mismatch repair, DNA replication, homologous recombination, cell cycle and base excision 
repair, while the C2 subtype was related to fatty acid metabolism, complement and coagulation cascades, retinol 
metabolism, drug metabolism cytochrome p450, and retinol metabolism (Fig. 5E). Therefore, the C1 subtype 
was more associated with tumor development, while the C2 subtype was more associated with metabolism.
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Relationship between molecular subtypes, immune infiltration and clinical features. Immune 
score reflects immune infiltration based on lymphocyte gene  expression12. Hence, the immune score was applied 
to estimate the state of immune cell infiltration in HCC samples. The C1 subtype exhibited a significantly higher 
immune score of activated CD4 T cell, central memory CD4 T cell, effector memory CD4 T cell, memory B cell, 
type 2 T helper cell, activated dendritic cell, myeloid-derived suppressor cell (MDSC) and natural killer T cell 
(Fig. 6A). The analysis results of MCP counter demonstrated that T cells, CD8 T cells, cytotoxic lymphocytes, 
NK cells, B lineage, monocytic lineage, myeloid dendritic cells, neutrophils, fibroblasts obtained significantly 
high immune scores in C1 subtype of HCC (Fig. 6B). ESTIMATE was used to evaluate the infiltration status 
of immune cells in HCC subtype of TCGA. Compared with C2 subtype, the infiltration degree of activated 
memory T cells, CD4 follicular helper T cells, regulatory T cells (Tregs), M0 macrophages and activated mast 
cells in C1 subtype was significantly higher, while the infiltration degree of resting NK cells, monocytes, M2 
macrophages and resting mast cells was sharply lower (Fig. 6C). These results suggested that tumors from dif-
ferent subtypes showed considerable variation in their immunoinfiltrative status. Clinical analysis of C1 and C2 
subtypes indicated that C1 patients with a poor prognosis had a higher mortality, T staging, grade, and AJCC 
staging than those with C2 subtype, and there were no significant differences in gender, N stage, or M stage 
between the two subtypes (Fig. 6D).

Risk models were constructed based on prognosis-related HRD genes. Univariate Cox analysis 
identified 33 genes significantly associated with HCC prognosis (Supplementary Table S2). LASSO- Penalized 
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Figure 5.  The pathway enrichment analysis of DEGS and subtypes. (A) Go functional annotation of 
differentially upregulated genes, including top 10 biological process (BP), top10 cellular component (CC) and 
top 10 molecular function (MF). (B) KEGG annotation of differentially upregulated genes. (C) GO functional 
annotation of differentially down-regulated genes. (D) KEGG annotation results of differentially regulated 
genes. E: GSEA analysis of main enriched pathways in the C1(left) and C2(right).
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Multivariate Cox analysis (Fig. 7A,B was performed on these 33 genes to establish a four-gene signature with 
the formula as follow:

The risk score for each case in the TCGA training cohort was calculated and ranked from the lowest to the 
highest. The risk score was positively related to the number of death cases. The heat map demonstrated that 
the expression of four genes differed considerably between the high-risk group (n = 79) and the low-risk group 
(n = 103) (Fig. 7C). The 5-year OS of the high-risk and low-risk groups also showed significant differences 
(Fig. 7D). The area under the ROC curve (AUC) of 1, 3 and 5-year OS was 0.82, 0.65 and 0.65, respectively 
(Fig. 7E). In the TCGA validation cohort and the entire cohort, the risk scores of cases were calculated according 
to the risk scoring formula to divide the samples into high-risk and low-risk groups (Fig. 7F,I). The difference in 
prognosis between the two risk groups remained significant (Fig. 7G,J). The ROC curves of 1-year, 3-year and 
5-year OS showed that the signature had a high OS sensitivity and predicting accuracy (Fig. 7H,K).

The prognostic model was validated in separate cohorts. We validated the robustness of the risk 
model in two independent external validation sets. In the GSE14520 cohort, 103 cases were assigned into the 
high-risk group, while 118 cases were in the low-risk group. In the HCCDB18 data set, 91 samples were in the 
high-risk group and 112 samples were in the low-risk group. This suggested that a higher risk score may indicate 
a higher death risk for HCC patients. The expression of four genes was also associated with increased risk scores 
in patients (Fig. 8A,D). In both cohorts, the high-risk group had distinctly shorter OS than the low- risk group 
(Fig. 8B,E). In the external validation set of GSE14520, the AUC for 1-year, 3-year, and 5-year OS predicted by 
the 4-gene signature was 0.72, 0.69, and 0.59, respectively (Fig. 8C). In the HCCDB18 validation cohort, the 
4-gene signature predicted that 1-year, 3-year, and 5-year OS was 0.72, 0.79, and 0.72, respectively (Fig. 8F). 
Overall, the 4-gene signature showed a satisfactory prediction of the prognosis of HCC.

The 4-gene signature was a stand-alone prognostic factor for HCC. Analysis on the risk scores 
with different clinicopathological characteristics (gender, T stage, N stage, M stage, AJCC stage and grade) 

Risk score = 0.064 ∗ FEN1+ 0.416 ∗HDAC2+ 0.149 ∗ RECQL4+ 0.137 ∗ TIPIN.
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Figure 6.  Relationship between molecular subtypes and immune infiltration and clinical features. (A) Immune 
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Figure 7.  Risk models were constructed based on prognosis-related HRD genes. (A) Screening of optimal lambda. (B) 
LASSO coefficient spectra of 33 HCC prognostic genes. (C) The risk scores of the TCGA training cohort were arranged in 
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Figure 8.  The prognostic model was validated in separate cohorts. (A) Risk score distribution, existential state, 
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showed that the risk scores of patients between male and female, N0 and N1, M0 and M1 were not significantly 
different. However, significant differences were detected in the risk scores among T1, T2, T3 and T4, and the risk 
scores increased with the increase of T stages. In addition, grade and risk score also showed an increasing trend 
with a higher grade. The risk scores of patients with different AJCC stages also presented significant differences 
(Fig. 9). Stratified analysis was performed for all cases in the TCGA dataset according to age, sex, T stage, AJCC 
stage and grade, and we observed that the risk scores of patients calculated by the 4-gene signature were corre-
lated with the survival time of age ≤ 65and age > 65, male or female, T1-T2 stage or T3-T4 stage, stage I-II or stage 
III-IV, G1-G2 or G3-G4 (Fig. 10). The results of univariate Cox and further multivariate Cox analyses validated 
that risk score was an independent prognostic factor for HCC (Fig. 11A,B). These results suggested that the risk 
score was an accurate model for predicting prognosis of patients with HCC.

Assessment of the risk models in predicting prognosis of HCC. To validate the reliability of the risk 
model in predicting prognosis, the risk model was compared with other previously reported signatures in HCC. 
3 reports were selected through a small-scale literature search 13–15. According to the HCC prognostic model 
reported in each literature, the risk assessment of TCGA-LIHC samples showed that the 5-year survival rate of 
patients with high-risk was much worse than that of patients with low-risk (Fig. 12A-C). Figure 12D showed the 
C-index of each model, and the model we developed had the highest C-index. In addition, the risk model built 
by this study had slightly better performance in predicting long-term prognosis of HCC than the other three 
models (Fig. 12E-G).

Discussion
HCC can adapt to high genomic stress conditions resulted from overactive DNA replication and genotoxic drug 
therapy, and the underlying mechanisms may involve enhanced DNA damage response/repair  procedures16. 
Homologous recombinant DNA repair plays an important role in DNA repair. HRD has been found to be impli-
cated in a variety of human cancers, especially in ovarian, breast, prostate, and pancreatic  cancers17. In this study, 
we performed NMF clustering on HCC cases according to HRD-related genes, and identified two molecular 
subtypes of HCC, C1 and C2. C2 had longer OS and PFS in both subtypes, possibly because the C1 subtype 
was more associated with many oncology features, including mismatch repair, DNA replication, homologous 
recombination, cell cycle and base excision  repair18–21. Another important reason was the large number of T cells, 
such as the high degree of infiltration of activated CD4 T cell, central memory CD4 T cell, type 2 T helper cell, 
natural killer T cell, T cells, CD8 T cells, effector memory CD4 T cell, activated memory T cells, CD4 follicular 
helper T cells and regulatory T cells in the C1 subtype  tissues22,23.
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Integrating various independent prognostic variables into a single formula could significantly improve prog-
nostic prediction ability. To address the heterogeneity between and within various HCC subtypes, the use of 
multiple genes rather than one single gene or pathway have been applied to define the risk for HCC initiation, 
progression and  recurrence24. The joint analysis of Arjun Sarathi and Ashok Palaniappan showed that there 
were different stage-specific genes in different AJCC stages of HCC, specifically, they identified 2 genes specific 
to stage I and II, 10 specific to stage III, and 35 specific to stage IV 25. Recently, a five-gene predictive signature 
was developed and highlighted potential prediction feasibility of recurrence of early-stage HCC 26. In our work, 
3623 DEGs between C1 and C2 subtypes were identified, and a risk score was constructed using univariate Cox 
analysis and LASSO-Cox regression analysis. Patients were ranked according to their risk score, and the number 
of death cases was found to be positively related to the risk score. Subgroup analysis revealed that the model was 
suitable for identifying and predicting HCC patients with different clinical characteristics. More importantly, 
our scoring model could accurately assess the prognostic risk of HCC cases in two independent external valida-
tion cohorts. We also noted that the risk scores of patients calculated according to the 4-gene signature were 
significantly correlated with age ≤ 65 and age > 65, male or female, T1-T2 stage or T3-T4 stage, stage I-II or stage 
III-IV, G1-G2 or G3-G4, indicating that the risk scoring model had a strong applicability. Additionally, the risk 
score was established as a stand-alone prognostic marker for HCC. All these evidence suggested a great potential 
of the risk scoring model for bedside application.

To conclude, study classified two molecular subtypes of HCC with different immune-infiltrating states and 
clinical characteristics. In addition, we established a 4-gene signature that showed high specificity and sensitiv-
ity in evaluating the prognosis of HCC and can be used as a stand-alone prognostic factor. To the best of our 
knowledge, our model was the first prognostic model constructed based on these four genes, and it could facilitate 
personalized treatment of HCC, as the signature showed a high stability and general applicability.
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Figure 10.  All HCC cases in the TCGA dataset were stratified according to clinicopathological parameters. (A) 
age ≤ 65; (B) age > 65; (C) Male; (D) Female; (E) T1-T2 stage; (F) T3-T4 stage; (G) stage I-II; (H) stage III-IV; (I) 
G1-G2; (J) G3-G4.
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Figure 11.  To analyze the independent prognostic value of 4-gene signature in HCC. (A) Univariate Cox 
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Multivariate Cox regression analysis identified stand-alone prognostic factors in HCC.
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Figure 12.  Assessment of the risk models in predicting prognosis of HCC. (A) The survival of samples in 
TCGA-LIHC was analyzed by six-gene signature (including CSE1L, CSTB, MTHFR, DAGLA, MMP10, 
and GYS2). (B) The Kaplan–Meier curve of sample survival in TCGA-LIHC was predicted by a risk model 
consisting of CA9, CXCL5, MMP12, SLC1A5 and G6PD. (C) The Kaplan–Meier curve of sample survival in 
TCGA-LIHC was predicted by a risk model composed of SPINK1, TXNRD1, LCAT and PZP. (D) C index 
of our risk model and the other three risk models. (E) ROC curve of six-gene signature for predicting HCC 
prognosis. (F) ROC curve for predicting HCC prognosis by risk model composed of CA9, CXCL5, MMP12, 
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Methods
Organization and processing of original data. Original expression profile information and clinical 
data of HCC downloaded were from the TCGA-LIHC, HCCDB18 (http:// lifeo me. net/ datab ase/ hccdb/ home. 
html) and Gene Expression Omnibus (GEO) database. For the TCGA-LIHC dataset, batch number of each sam-
ple was obtained from UCSC Xenabrowser (https:// xenab rowser. net/ datap ages/? datas et= TCGA- LIHC. GDC_ 
pheno type. tsv& host= https% 3A% 2F% 2Fgdc. xenah ubs. net& remov eHub= https% 3A% 2F% 2Fxena. treeh ouse. gi. 
ucsc. edu% 3A443), and the combat function of R software package SVA was used for batch effect removal. The 
expression of genes with multiple probes in the TCGA dataset was the median value of these probes. When a 
probe corresponding to multiple genes in the HCCDB18 dataset, it was removed. After processing, 365, 203 and 
221 HCC samples with complete clinical data from TCGA, HCCDB18 and GSE14520 were obtained. Table 1 
presents the clinicopathological statistics of the samples from the 3 datasets. 108 HRD-related genes were col-
lected from other  studies4,11,27–37. Supplementary Fig. S1 shows the study design.

Molecular subtypes were identified by nonnegative matrix factorization (NMF) cluster-
ing. The expression of 109 HRD genes was obtained from TCGA, and univariate COX analysis was per-
formed with coxph function in R. The HCC samples were clustered by  NMF38. Specifically, the standard "Brunet" 

Table 1.  Clinicopathological statistical information of HCC patients in the TCGA, HCCDB18, and GSE14520 
datasets.

Clinical features TCGA-HCC HCCDB18 GSE14520

OS

0 235 168 136

1 130 35 85

T stage

T1 180

T2 91

T3 78

T4 13

TX 3

N stage

N0 248

N1 4

NX 113

M stage

M0 263

M1 3

MX 99

Stage

I 170

II 84

III 83

IV 4

X 24

Grade

G1 55

G2 175

G3 118

G4 12

GX 5

Gender

Male 246

Female 119

Age

 ≤ 60 173

 > 60 192

Recurrence

YES 198

NO 167

http://lifeome.net/database/hccdb/home.html
http://lifeome.net/database/hccdb/home.html
https://xenabrowser.net/datapages/?dataset=TCGA-LIHC.GDC_phenotype.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-LIHC.GDC_phenotype.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
https://xenabrowser.net/datapages/?dataset=TCGA-LIHC.GDC_phenotype.tsv&host=https%3A%2F%2Fgdc.xenahubs.net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443
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was used for 100 iterations. The number of clusters k was set to 2–10, the average contour width of the common 
member matrix was determined using R package "NMF". In addition, Kaplan–Meier curve and log-rank test 
were used for survival analysis.

Difference analysis and enrichment analysis. The differences of different molecular subtypes were 
analyzed by R-package  Limma39. Differentially expressed genes (DEGs) were analyzed using WebGestalt 
40(V0.4.2) for KEGG pathway enrichment and GO function enrichment analysis. In addition, to analyze the 
enrichment of different molecular subtypes in different pathways, the cp.kegg.v7.0.symbols.gmt gene set was 
used as the reference gene set for Gene Set Enrichment Analysis (GSEA). The pathways with P < 0.05 and false 
discovery rate (FDR) < 0.25 threshold were considered as significantly enriched.

Immune scores and clinical characteristics of HCC patients with different molecular sub-
types. R software package single-sample gene set enrichment analysis (ssGSEA)41, MCP  counter42, 
 CIBERSORT43 were used to measure the immune score of each sample. Clinical characteristics of different 
molecular subtypes, including survival status, sex, TNM stage and AJCC stage, were analyzed using  ggplot244.

Construction and evaluation of a prognostic scoring system. The 365 samples in the TCGA dataset 
were grouped into a training set (n = 182) and a verification set (n = 183). Chi-square test showed no significant 
differences in overall survival (OS), TNM stage, clinical stage, grade, gender or age between the training set and 
the validation set (Table 2). In the training set, the relationship between HRD gene and HCC was determined by 

Table 2.  TCGA training set and validation set sample information table.

Clinical features TCGA-HCC train TCGA-HCC test P

OS

0 114 121
0.5582

1 68 62

T stage

T1 91 89

0.9113

T2 47 44

T3 36 42

T4 7 6

TX 1 2

N stage

N0 120 128

0.1145N1 4 0

NX 58 55

M stage

M0 133 130

0.1715M1 3 0

MX 46 53

Stage

I 83 87

0.3301

II 43 41

III 39 44

IV 4 0

X 13 11

Grade

G1 26 29

0.6808

G2 88 87

G3 59 59

G4 5 7

GX 4 1

Gender

Male 125 121
0.6816

Female 57 62

Age

 ≤ 60 87 86
0.9604

 > 60 95 97
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univariate Cox regression analysis. Least absolute correlation and selection operator (LASSO) and multivariate 
Cox regression analysis were performed to filter the HRD genes significantly associated with HCC prognosis 
and to establish a risk scoring system. Patients were grouped into high-risk and low-risk groups based on their 
standardized risk scores. R software package timeROC was used to generate receiver operating characteristic 
curve (ROC). Finally, univariate and multivariate Cox regression analyses were conducted to evaluate the inde-
pendence of the prognostic model.

Statistical analysis. The statistical analysis in this study was performed in R software, and the differences 
in clinicopathological and molecular features between different subtypes were calculated by student t- test and 
chi-square test. P < 0.05 was seen to be statistically significant.

Data availability
The datasets generated and/or analysed during the current study are available in the [GSE14520] repository, 
[https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE14 520].

Code availability
The code for generating the risk score model discussed in this study is available at Supplementary code.R.
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