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Protein interaction networks define 
the genetic architecture of preterm 
birth
Alper Uzun1,2,4, Jessica S. Schuster1,4, Joan Stabila1, Valeria Zarate1, George A. Tollefson1, 
Anthony Agudelo1, Prachi Kothiyal3, Wendy S. W. Wong3 & James Padbury1,2*

The likely genetic architecture of complex diseases is that subgroups of patients share variants in 
genes in specific networks sufficient to express a shared phenotype. We combined high throughput 
sequencing with advanced bioinformatic approaches to identify such subgroups of patients with 
variants in shared networks. We performed targeted sequencing of patients with 2 or 3 generations 
of preterm birth on genes, gene sets and haplotype blocks that were highly associated with preterm 
birth. We analyzed the data using a multi-sample, protein–protein interaction (PPI) tool to identify 
significant clusters of patients associated with preterm birth. We identified shared protein interaction 
networks among preterm cases in two statistically significant clusters, p < 0.001. We also found 
two small control-dominated clusters. We replicated these data on an independent, large birth 
cohort. Separation testing showed significant similarity scores between the clusters from the two 
independent cohorts of patients. Canonical pathway analysis of the unique genes defining these 
clusters demonstrated enrichment in inflammatory signaling pathways, the glucocorticoid receptor, 
the insulin receptor, EGF and B-cell signaling, These results support a genetic architecture defined 
by subgroups of patients that share variants in genes in specific networks and pathways which are 
sufficient to give rise to the disease phenotype.

Genome-wide association studies (GWAS) are a contemporary approach to the investigation of complex dis-
eases that have made possible discovery of insights not previously  recognized1–3. However, GWAS have failed to 
demonstrate the “missing heritability” in many common  diseases4–8. The computational approaches underlying 
GWAS reflect the “common disease-common variant hypothesis,” that complex disease architecture is due to 
additive genetic effects of variants in individual genes. However, the genetics of complex diseases suggests that 
is unlikely. The more likely genetic architecture is that subgroups of patients share variants in genes in specific 
networks and pathways which are sufficient to give rise to a shared phenotype. It is also likely that variants in 
genes in different networks and pathways express similar phenotypes and define different subgroups of patients.

Preterm birth is an important, complex genetic disorder affecting up to 10% of pregnant  women11. We built 
the Database for Preterm Birth, containing a validated collection of genes with an a priori connection to preterm 
 birth9. This was the result of a semantic data mining and curation of published literature and publicly available, 
high-throughput databases. We used this resource to analyze a large genome wide association study to identify the 
biological networks and pathways associated with preterm  birth10. In this report, we present the results of targeted 
sequence of the genes, flanking sites and haplotype blocks identified by gene set enrichment of that  GWAS10. 
Further, in order to leverage the likelihood of genetic discovery, we exploited an “extreme phenotype” of preterm 
birth by concentrating our enrollment on patients with a family history of preterm birth. We compared variants 
identified in women with 2–3 generations of preterm birth with term controls without history of preterm birth. 
We then used Proteinarium, a multi-sample, protein–protein interaction analysis (PPI) tool, to identify clusters 
of patients with shared PPI networks associated with preterm  birth11.
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Material and methods
Patient identification and enrollment. Large epidemiological studies drawn from population based 
analyses support a predominantly maternal origin for the genetic contribution(s) to risk of preterm birth, with 
little contribution by paternal or fetal genetic  factors12–14. We therefore concentrated our efforts on identifica-
tion of maternal genetic variants. Women & Infants Hospital of Rhode Island is the sole provider of high-risk 
perinatal services in Rhode Island, northeastern Connecticut and southeastern Massachusetts. We used this 
population-based service to enroll patients with a prior history of preterm birth. The study was approved by the 
Institutional Review Board of the Women & Infants Hospital of RI, 08-0117. All methods were performed in 
accordance with the relevant guidelines and regulations. An informatically driven retrieval from our electronic 
medical record gave us a daily report on all preterm births. A clinical research assistant, formally trained in 
genetic interviews, reviewed the records of all patients delivering ≥ 24 weeks and < 34 weeks. Following informed 
consent, women underwent an interview focused on family history of preterm birth. We asked explicit ques-
tions about preterm birth in mother, grandmother, her first order relatives and also paternal relatives. Careful 
clinical history with an emphasis on additional risk factors for prematurity including medical illnesses, drug 
use, psychiatric disorders and employment history was recorded on all patients. We excluded patients delivered 
prematurely for considerations related to preeclampsia, drug use, diabetes or multiple gestation. Controls were 
patients who delivered ≥ 37 weeks gestation in whom the same, formal genetic history revealed no history of 
preterm birth on either maternal or paternal side of the pedigree. All of the patients’ identifying data was coded 
and redacted for the purposes of data analysis. 190 patients were enrolled for targeted sequencing. Samples 
were taken from 122 women with multiple generations of preterm birth, and 68 race, ethnicity matched control 
women at term. Residual maternal whole blood was obtained for extraction of genomic DNA. The samples were 
stored continuously at − 80 °C until processing.

Sample preparation. We targeted the 329 genes and 132 haplotype blocks for sequencing that are highly 
associated with preterm  birth10. Genomic DNA from maternal whole blood was extracted using QIAamp DSP 
DNA blood mini kit from Qiagen following the manufacture’s protocol. Samples were quantified using Qubit 
technology (Life Technologies, Carlsbad, CA, USA) and sequencing libraries were constructed from 2 μg each 
of case/control DNA. Library preparation was performed using Illumina TruSeq DNA LT Sample prep Kit 
(Illumina, San Diego, CA, USA), with enzymatic fragmentation using dsDNA Fragmentase (NEB), followed by 
indexing and clean-up. DNA capture was performed using custom capture probes from SeqCap EZ choice kit 
(Roche NimbleGen).

Targeted sequencing. The library was sequenced on an Illumina HiSeq 2500 using 100 bp paired-end 
protocols. Following sequencing, the multiplex indices were used to bin the samples for each patient and QC 
sequence data was recorded. High quality sequence data from well-balanced pools was observed. There was an 
average of 25 million reads from each patient, with an average Q30 of 91%. Reads were then mapped to the to 
the human reference sequence (Hg19) with  BWA15, sorted and indexed with  SAMtools16.

Sequence data, variant calling and genotype testing. Variants were flagged as low quality and fil-
tered using established metrics: if three or more variants were detected within 10 bp; if four or more alignments 
mapped to different locations equally well; if coverage was less than ten reads; if quality score < 30; if low qual-
ity for a particular sequence depth (variant confidence/unfiltered depth < 1.5); and if strand bias was observed 
(Phred-scaled p-values using Fisher’s Exact Test > 200). A variant identified by any one of these filters was labeled 
“low quality” and not considered for further analysis. For variant discovery we used the Gene Analysis Tool Kit 
(GATK) version 3.2 to analyze the sequence  reads17. Duplicate reads were marked and removed using Picard 
Tools version 1.77. Haplotype caller was applied for variant  detection18. Twenty-five base pairs upstream and 
downstream of each exon were included in the design of capture probes and in variant detection. Variants were 
annotated using ANNOVAR for pathogenicity prediction scores. We used Eigenstrat to control for population 
stratification during genotype testing of differential abundance of variants in cases and  controls19. To investi-
gate the frequency of potentially relevant single variants, we extracted variants with the following filters: cov-
erage ≥ 10×, a Polyphen 2 HDIV prediction if a change is damaging (≥ 0.957), a SIFT score (< 0.05), a CADD 
score > 10, and minor allele frequency (MAF) < 0.05 from the Exome Aggregation Consortium (ExAC)20, and 
significant difference by genotype  testing22.

Network analysis. In order to identify patients with shared networks and pathways associated with pre-
term birth, we used Proteinarium11. This is a tool for analysis of protein–protein interactions that uses the String 
interactome database, Dijkstra’s algorithm and the Jaccard index to build a network similarity matrix of protein–
protein interactions (PPI) between  samples11. The top 30 genes, based on the most significant variants (ranked 
by Eigenstrat genotype p value) for each patient, were used as the seed genes for input into Proteinarium. We 
selected Proteinarium’s user defined output minimum path length of 2, which includes pathways in which seed 
proteins are connected directly to each other and/or via a single intermediary protein. We refer to these interme-
diary connecting proteins as imputed proteins. The output of Proteinarium is a UPGMA generated dendrogram 
that shows clusters of patients with shared PPI networks, gene lists forming the networks and the group assign-
ment for each patient. Statistical significance for each branch under the dendrogram is calculated by Fisher 
exact test comparing the probability of observing a cluster of that size relative to the total number of samples 
and group assignment.
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Network separation testing. Computational methods have been developed to identify disease-disease 
similarity by comparison of individual networks from the protein–protein  interactome21. This network-based 
approach compares the shortest distances between proteins within each disease or network to the shortest dis-
tances between the disease networks. This approach has been applied to other complex disease  phenotypes22. We 
computed the separation between our clusters using the seed genes identified for each of the patients. Using the 
union of the seed genes for patients within each of the clusters, we identified genes unique to each cluster to use 
as input for the separation  analysis21. A negative score indicates an overlap between networks within the interac-
tome. The more negative the score the greater the similarity/overlap between two networks.

Phenotypic analysis. In order to identify significant differences in the clinical, phenotypic characteristics 
between the clusters identified by Proteinarium, we used a Bayesian generalized linear model implemented via 
the Arm package in R and the optimal model was determined using stepwise model selection with the MASS 
package (https:// CRAN.R- proje ct. org/).

Results
The clinical characteristics of the patients and their distribution by race/ethnicity are shown in Table 1. The only 
significant difference between the groups was in gestational age and birth weight. As described in the Methods, 
in order to leverage genetic discovery, the patients were carefully phenotyped with respect to history of preterm 
birth. The distribution of family history of preterm birth among the enrolled patients is shown in Table 2. Of 
the enrolled patients, 84 had a multi-generational history of preterm birth, 6 had an intra-generational history 
of preterm birth, 32 were first generation with multiple preterm births and 68 control patients had no family 
history of preterm births.

We identified a total of almost 140,000 variants, the bulk of which were in intronic regions captured from 
the haplotype blocks previously  identified10. We restricted our subsequent analyses to variants in regions with 
greater than tenfold coverage which resulted in 39,472 variants. There were also almost 7000 exonic variants and 
several splice variants. After application of the initial filters for coverage and variant pathogenicity, there were a 
total of 264 variants (Supplemental Table 1). Of these, there were 9 variants that were nominally associated with 
preterm birth. All were non-synonymous, exonic variants (Table 3).

A single SNV in the AOAH gene was more abundant in the cases, whereas the remaining eight variants 
were only present in the controls. Nonetheless, none met significance after correction for multiple comparison 
testing. None of the splice variants passed genotype testing for differential abundance between preterm cases 
and controls.

For replication of these univariate data, we compared our results to a cohort of patients recruited at the 
INOVA Translational Medicine Institute, Falls Church VA 23,24. They enrolled 816 families who underwent 
60X whole genome sequencing. From these families, there were 60 cases and 321 controls that met our strict 
phenotypic criteria (singleton pregnancy, less than 34 weeks gestation, no history of preeclampsia or drug use). 

Table 1.  Clinical characteristics of patients. Mean ± SD.

Cases N = 128 (%) Controls N = 68 (%) p-value

Maternal age 27 ± 6 27 ± 7 N.S

Gravida 3 ± 2 2 ± 1 N.S

Gestational age, week 31 ± 3 40 ± 1 0.001

Birth weight, g 1724 ± 607 3451 ± 371 0.001

African American 15 (12) 8 (13) N.S

Asian 4 (3) 3 (5) N.S

Caucasian (non-Hispanic) 75 (59) 37 (60) N.S

Hispanic or Latino 30 (23) 14 (23) N.S

Native American 1 (1) 0 (0) N.S

Other 3 (2) 0 (0) N.S

Table 2.  Family history of preterm birth among enrolled patients.

Number of patients Case definition

15 3 generations of PTB

57 2 generations of PTB

12 Generational skips

6 Intra-generational PTB

32 Same mother with multiple PTB

68 No personal or family history PTB

https://CRAN.R-project.org/


4

Vol:.(1234567890)

Scientific Reports |          (2022) 12:438  | https://doi.org/10.1038/s41598-021-03427-0

www.nature.com/scientificreports/

INOVA provided the variant data for the genes and haplotype block intervals described above. With similar 
functional filters, among the 264 variants identified from our cohort, 165 (63%) were also identified in the 
INOVA sequence data.

Among our cases with a family history of preterm birth, we found that each patient had an average of 163 
variants that passed the coverage and Eigenstrat genotype testing above. In order to identify clusters of patients 
with shared networks associated with preterm birth, the top 30 genes based on the most significant variants 
(ranked by genotype p value) for each patient were used as the seed genes for input into Proteinarium. The 
resulting dendrogram is shown in Fig. 1.

For ease of visualization the dendrogram has been circularized and the significant clusters have been high-
lighted in colors. The inset in Fig. 1 shows the distribution of cases and controls that belonged to each clus-
ter. There were four significant clusters identified at a Fisher exact test with p < 0.001. Out of the 190 patients 
sequenced, a total of 66 subjects were assigned to statistically significant clusters. The two largest significant 
clusters (A and B) had significantly more cases than controls, encompassing 45 of the 122 cases. There were also 
two small control-dominated clusters. The layered networks for the case-dominated clusters A and B are shown 
in Fig. 2. The unique genes associated with these clusters are highlighted in light blue. There were 9 unique genes 
in cluster A and likewise 6 genes unique to cluster B (Table 4). All of the genes from the layered network graph 
of the two case dominated clusters and group membership of each gene are shown in Supplemental Table 2.

For replication of this network analysis, a similar approach using the filters described above to identify vari-
ants in individual patients was applied to the INOVA cohort. The top 30 seed genes for each subject were used for 
input into Proteinarium. There were four significant case-dominated clusters identified encompassing 40 of the 
60 cases. The layered networks for these four clusters are shown in Fig. 3. The unique genes associated with these 
clusters are highlighted in light blue. The gene lists for the layered networks for the case dominated clusters from 
the preterm birth cohort and the replications cohort and group membership is shown in Supplemental Table 2.

We used separation testing to compare the networks identified by Proteinarium. The two case dominated 
clusters from our preterm birth cohort (clusters A and B) showed overlap with each other within the interactome. 

Table 3.  Nominally significant genes from univariate analysis. Nonsynonymous SNV (nSNV).

Chr Gene pos Exonic function Polyphen2_HDIV_score CADD_phred SIFT_score ExAC_ALL

1 COL16A1 32,164,127 nSNV 1 14 0 0.002

7 AOAH 36,656,035 n SNV 1 21 0.01 0.1172

9 QRFP 133,769,023 n SNV 0.999 18 0 0.0043

10 SORBS1 97,144,031 n SNV 1 17 0.01 0.0007

11 ATM 108,098,576 n SNV 0.98 18 0 0.0074

12 TBX5 114,837,349 n SNV 1 23 0 0.0034

16 CHST4 71,571,658 n SNV 0.999 17 0.02 0.0033

19 MYH14 50,747,534 n SNV 1 15 0 0.0029

20 TCFL5 61,485,507 n SNV 1 16 0 0.0028

Figure 1.  Dendrogram showing significant clusters of patients (colored). Inset: distribution of cases and 
controls in each of the clusters.
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This was reflected by negative separation values (separation = −0.285) when compared to the control dominated 
clusters that showed higher separation values (ranging from −0.037 to 0.11).

We also compared the separation of the case dominated clusters from our preterm birth cohort to the case 
dominated clusters in the INOVA replication cohort. The results are shown in Table 5. Case clusters B’ and D’ 
from the replication cohort showed the greatest similarity when compared to our case clusters B and A, respec-
tively, indicating significant overlap within the interactome. In order to identify the pathways modulated by the 
genes defining the networks within significant clusters of cases, we carried out comparative pathway analysis 
for the genes defining each cluster using Ingenuity Pathway Analysis. For this analysis we included the genes 
unique to each of the layered network graphs of the two case dominated clusters (clusters A and B) in the preterm 
birth cohort and the two case dominated clusters in the replication cohort that had the smallest separation with 
those clusters (clusters B’ and D’). To avoid false positive inferences, we used stringent criteria with p values 
ranging from  106 to  108. The pathway similarity is illustrated in the heatmap shown in Fig. 4. Canonical pathway 
analysis of the unique genes defining these clusters demonstrated enrichment in numerous signaling pathways. 
This includes signaling by IL6, IL-7, IL-15, IL-8, JAK/Cytokine signaling, toll-like receptors, the glucocorticoid 
receptor, the insulin receptor, EGF and B-cell signaling.

We also sought to determine if there were underlying phenotypic differences between the patients in the dif-
ferent clusters we identified using Proteinarium. The clinical phenotype of the case patients in Cluster A, were 

Figure 2.  Layered network graphs for the case dominated clusters A & B from Fig. 1. The unique genes 
associated with each cluster are highlighted in light blue.

Table 4.  Unique genes from case dominated preterm birth clusters shown in Fig. 2: Cluster A and Cluser 
*Alphabeticall.

Genes* Cluster

APP A

CASR A

CTTN A

CXCL8 (IL-8) A

CXCR4 A

FOXO3 A

MAPK8 A

STAT5A A

FOXO3 A

CHRM1 B

EGF B

EGFR B

PAK1 B

WASF 1 B

WASL B
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compared to the characteristics of the remaining patients not included in Cluster A or Cluster B. An analogous 
analysis was performed for Cluster B. In addition, the characteristics of patients in Clusters A and B were 
compared to each other. The distribution of clinical characteristics for these comparisons is shown in Table 6. 
Comparing the cases from Cluster A to the subjects in neither of the two clusters, there was a significant differ-
ence in the distribution of maternal racial background and in the generational history of preterm birth (p < 0.05). 
For Cluster B compared to the subjects in neither of the two clusters, there was a significant difference in the 

Figure 3.  Layered network graphs for the INOVA replication cohort showing significant clusters A’, B’, C’, D’. 
Unique genes to each cluster are shown in light blue.

Table 5.  Separation scores for comparison of case dominated clusters from the preterm birth cohort and the 
replication cohort. The values in bold are significant.

Replication cohort

A’ B’ C’ D’

Preterm birth cohort
A −0.224 0.010 −0.193 −0.330

B 0.114 −0.491 −0.123 −0.239
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proportion with chorioamnionitis (p < 0.05). Comparison of the patients in Cluster A and Cluster B, showed a 
significant difference in income and the distribution of maternal racial background (p < 0.05). Nonetheless, the 
majority of these differences in clinical characteristics were very modest.

Discussion
We performed targeted sequencing of gene sets and haplotype blocks that are highly associated with preterm 
birth on carefully phenotyped patients. We enrolled women with idiopathic, singleton births < 34 weeks gesta-
tion, the majority of whom had multiple generations of preterm birth. We compared them to term controls with 
no family history of preterm birth. We used Proteinarium, a multi-sample, protein–protein interaction tool, to 
identify clusters of patients with shared protein–protein interaction networks associated with preterm  birth11. 
Using seed genes from each patient, Proteinarium mapped the input genes onto the STRING PPI interactome to 
build individual networks. The similarities between all subjects’ PPI Networks were used as the distance metric 
for clustering samples. We identified two significant clusters with a predominance of preterm birth patients 
encompassing 45 out of the 122 women with a multi-generation history of preterm birth. We also found two 
small control-dominated clusters. For replication, we compared our data to a large birth cohort collected at 
INOVA Health 24. Sequence data analyzed from INOVA’s 60 cases and 321 controls identified 40 preterm cases 
in four significant clusters. Separation analysis of the layered PPI networks of the significant clusters from our 
preterm birth cohort and the replication cohort demonstrated overlap of these clusters within the interactome. 
Canonical pathway analysis of the unique genes defining these clusters demonstrated enrichment in inflamma-
tory signaling by IL-6, IL-7, IL-15, IL-8, JAK/Cytokine signaling, toll-like receptors, the glucocorticoid receptor, 
the insulin receptor, EGF and B-cell signaling, p ~  10–6 to  10–8.

The individual, unique genes from the two case-dominated preterm birth clusters are shown in Table 4. Sev-
eral of the genes unique to Cluster A have been association with inflammation and immune responses. CXCR4 
is among the gene sets and pathways upregulated in whole blood from women with spontaneous preterm birth 
when compared to patients delivering at  term25. Moreover, CXCR4 is located in genomic regions with large ROH 
that we have shown to be in greater abundance in women delivering preterm than full  term26. CXCR4 has also 
been evolutionarily linked to preterm  birth27. CXCL8 (IL-8) is a monocyte macrophage chemoattractant. It has 
been widely studied in labor and shown to be expressed in multiple gestational tissues including myometrium, 
cervix and  decidua28. CXCL8 is upregulated in chorio-decidua samples collected from preterm labor patients 
when compared to patients at term and in  labor28. This is consistent with the increase in inflammatory cells in 
the decidua during labor. The gene FOXO3 codes for the forkhead box 03 transcription factor that regulates 

Figure 4.  Comparative network analysis from Ingenuity Pathway Analysis. Comparison of case dominated 
clusters A, D,’ B, B’. All pathways significant p<  106 to  108.
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inflammation in non-gestational tissues. It has also been shown to be expressed in human myometrial  tissue29. 
Further, higher FOXO3 gene and protein expression have been demonstrated in myometrium from women in 
labor compared to non-laboring samples. In isolated cells, FOXO3 silencing was associated with a significant 
decrease in IL-1 induced I-L6 and IL-8 expression and cyclooxygenase 2 production. Overexpression of FOXO3, 
increased cytokine expression, prostaglandin production and MMP9 expression are all observed in myometrial 
cells following administration of IL-1B. Thus, FOXO3 may be implicated in the pathways regulating labor and 
it may be a potential target for prevention of preterm  birth29. The STAT5A gene is present in a network of cell-
mediated immune responses, cellular movement and hematologic system development that was identified in a 
genome-wide association study looking at single nucleotide polymorphisms (SNP) in peripheral blood of patients 
who are in preterm labor compared to full term  labor30. Most importantly, serial sampling and transcriptional 
profiling of circulating immune cells during pregnancy has been carried out to identify patterns of gene signa-
tures across pregnancy that are associated with gestational age and thus define a “gestational clock” 31. These 
studies revealed an important role for IL-2 dependent STAT5A signaling in modulating T-cell function during 
pregnancy. Baseline gene expression was compared with expression following activation with receptor-specific 
ligands including interferon and a cocktail of interleukins. The endogenous STAT5A signal in naïve cells and 
the phospho-STAT5A response to interleukins and neutrophils were among the strongest features correlated to 
immunological adaptations to pregnancy and association with gestational  age31. The Comparative Toxicogenom-
ics Database (CTD) contains more than 5,000 curated and inferred gene–disease associations (including preterm 
birth) extracted from the published literature by formal  curation32. STAT5A is also among the CTD gene disease 
phenotypic associations with preterm birth. MAPK8 is also among the CTD gene disease associations associated 
with preterm  birth32. Lastly, several genes in Cluster A are involved in cellular migration and invasion, which may 
be important in the onset of labor. CTTN is the cortactin gene. It functions as a key regulator of actin cytoskel-
eton and has roles in actin-based cellular processes including cell migration and invasion. Polymorphisms in 
the VEGFA gene in a discrete haplotype block have been shown to be associated with preterm  birth30. This may 
play an important role in angiogenesis during placentation. Nonetheless, the latter study was of modest size and 
the findings just reached nominal significance.

In support of the network analysis, many of the genes are involved in uterine contractility, signal transduction 
and cell–cell signaling. Moreover, there is substantial literature based evidence that 4 out of the 6 unique genes 
in Cluster B are involved in uterine contractility. Signaling via EGF and the EGF receptor in human amnion 
cells regulates their proliferation and increases calcium mobilization and PGE2 production which may also 
have significant effects on uterine  contractility33. PAK1, one of the genes identified in the Database for Preterm 
 Birth9, encodes a member of the serine threonine P21 activating kinases. PAK1 is only present in pregnant 
myometrial tissue. PAKs have shown to regulate uterine  contractility34. We have also previously reported that 
PAK1 is located in a genomic region with runs of homozygosity (ROH) which are significantly more abundant 

Table 6.  Proportion of patient clinical characteristics within clusters. *p < 0.05, Cluster A vs remaining 
patients. + p < 0.05 Cluster B vs remaining patients. ^ p < 0.05 Cluster A vs Cluster B.

Covariate Phenotype and clinical characteristics Cluster A Cluster B Remaining patients

Generational status*

3 Generations of PTB 0.000 0.091 0.085

2 Generations of PTB 0.375 0.485 0.246

Generational skips 0.000 0.061 0.070

Intragenerational 0.125 0.000 0.028

Multiple PTB 0.500 0.242 0.113

No personal or family history of PTB 0.000 0.121 0.451

NA 0.000 0.000 0.007

Maternal racial  background*,^

Caucasian 0.125 0.697 0.585

African American 0.500 0.061 0.106

Hispanic or Latino 0.313 0.152 0.254

Asian 0.000 0.091 0.035

Native American 0.000 0.000 0.007

Other 0.063 0.000 0.014

Do not know 0.000 0.000 0.000

Income^

$0–$19,999 0.313 0.091 0.211

$20,000–$29,999 0.000 0.212 0.092

$30,000–$49,999 0.000 0.091 0.070

$50,000+ 0.000 0.364 0.254

Other 0.688 0.242 0.373

Previous preterm
No 0.375 0.333 0.662

Yes 0.625 0.667 0.338

Chorioamnionitis+
No 0.813 0.848 0.965

Yes 0.188 0.152 0.035
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in mothers delivering preterm than  term26. Activation of the CHRM1 receptor by acetylcholine increases uterine 
 contractility35. Of functional significance, CHRM1 has been shown to be down-regulated in preterm human 
myometrium compared to patients at term and not-in-labor36. WASF1 is an A-kinase anchoring protein. It has 
been implicated in preterm labor by the Ontario Birth Study where it was shown to be differentially expressed in 
patients undergoing preterm  labor37. It was further shown to be responsive to glucocorticoids in another study 
of peripheral blood mononuclear cells from patients delivering  preterm37.

Previous investigations have been undertaken to identify social, environmental and genetic associations 
with preterm  birth14,38–41. This has included case controlled studies of single nucleotide polymorphisms (SNP) 
in the protein coding regions, regulatory and intronic sequences of specific genes have been described. Because 
of the prominent inferences of inflammatory reactivity and alterations in uterine contractility, candidate have 
largely been  investigated14,38–53. Modest associations in some SNPs and alterations in the expression of genes 
regulating inflammatory mechanisms have been identified. Nonetheless, the results do not explain the cause of 
prematurity without evidence of inflammation or infection. Additionally, while treatments directed at infection 
and inflammation in animal models have been successful, they have not demonstrated benefit in the treatment 
of preterm birth or prolongation of gestation in  humans49.

More recently, investigations using high throughput and multi-omic techniques have been undertaken. Sakabe 
et al. compared transcriptome and regulatory maps of decidua-derived stromal cells to a genome-wide association 
study of gestational  duration54. Using a combination of techniques, including ATAC-seq, Hi-C and ChIP-seq, 
they identified the chromatin landscapes in decidua-derived stromal cells. These were then compared to the 
heritability of annotations in the GWAS of pregnancy-related traits. They showed the heritability of gestational-
duration was enriched for functional annotations in decidual stromal  cells54. Volozanoka recently carried out 
targeted sequencing of genes shown to be related to cervical insufficiency following a systematic literature analysis 
similar to that underlying this  study9,55. They identified 12 genes that were normally linked to cervical insuf-
ficiency. However, this was a modest study involving only 21 patients and there were no overlaps with our gene 
set. Zhou et al. recently analyzed publically available gene expression data sets derived from maternal blood in the 
second and third trimesters of women with spontaneous preterm birth and term  birth56. Expression of a single 
gene, EBF1, was associated with preterm  birth57. In a large genome-wide association study of over 1300 cases of 
spontaneous preterm birth in comparison to 12,000 ancestry-matched controls, they identified only two inter-
genic loci associated with preterm birth. The authors concluded that the genetic contributions to preterm birth 
are unlikely due to single common genetic variants but could be explained by interactions of multiple variants 
or environmental  influences57. Meta-analysis of maternal and fetal transcriptomic data from genomic databases 
for studies related to preterm birth identified genes differentially expressed in spontaneous preterm birth relative 
to term. Ontogeny analysis demonstrated that maternal changes were enriched in immune-related pathways, 
upregulation of innate immunity and downregulation of adaptive  immunity58. By comparison, analysis of the 
transcription profile in cord blood showed a downregulation of innate immune findings. Nonetheless, the results 
demonstrate a significant relationship of immune functions in the pathogenesis of preterm birth. Multi-omic 
analysis of preterm birth from the parent study of our INOVA replication samples has been  reported24. It was a 
large study integrating whole genome sequencing, RNA sequencing and DNA methylation data for 270 preterm 
births and 520 control families. In their univariate analysis there were no variants that reached genome-wide 
significance. However, there were groups of genes associated with preterm birth in subsets of patients that were 
identified in secondary  analyses24. Integration of the three data sources (WGS, RNAseq, DNAm) identified a set 
of 72 candidate biomarker genes for very early preterm birth (VEPTB) and genes associated with PTB. RAB31 
and RBPJ were identified by all three data types in preterm birth patients. Additionally, pathways associated with 
VEPTB included the EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, 
chemokine signaling, IFN-γ signaling, and Notch1  signaling24.

Our study has many strengths which contributed to successful identification of genetic variants in genes 
in networks associated with preterm birth. First, we used a very carefully phenotyped cohort of women with a 
strong family history of preterm birth. Our control cases were as carefully ascertained to have no family history 
of preterm birth. Second, we carried out targeted sequencing on genes with a demonstrated role in preterm birth. 
Third, we employed a novel analysis of protein–protein interactions to identify clusters of patients with shared 
PPI networks associated with preterm birth. Our study also has limitations and areas that deserve consideration. 
A power calculation was not carried out. This was an opportunistic, discovery sample. The significant clusters 
of preterm birth cases included unique genes that were both in our targeted sequencing as well as imputed via 
network analysis. Even though not included in our original sequencing, the fact that the unique imputed genes 
had a strong association with preterm birth, uterine contractility and immune responses is noteworthy. This 
was a modest sample size. We identified significant clusters of patients with networks and pathways associated 
with preterm birth but those findings were restricted to 45 out of the 122 cases. We did not anticipate being 
able to assign each of the cases to a significant cluster. We believe that the targeted sequencing contributed to 
our successful discovery even though all cases were not assigned to significant clusters. Nonetheless, the fact 
that we were able to identify significant case dominated clusters in our preterm birth cohort at all and that we 
were able to demonstrate similarity to clusters of patients with shared networks in the replication cohort lends 
validity to our hypothesis on the genetic architecture of this complex disease and the genetic leverage provided 
by the family history of preterm birth. The fact that this was not a whole exome study likely contributed to the 
number of cases we were able to assign to significant clusters. Futures studies employing similar techniques but 
with whole exome sequencing are likely to expand the number of case clusters that we will be able to identify 
using this approach. It is beyond the scope of this report to thoroughly discuss the control dominated clusters. 
Nonetheless, several elements deserve mention. We interpret the networks and pathways that are shared between 
control patients to represent protective genes or genes that confer resiliency against preterm birth. It is notable 
that we were able to identify significant clusters in the controls from our preterm birth cohort but none were 
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identified in the replication cohort. We attribute this to the careful phenotyping that was used to enroll patients 
in the primary study.

In summary, we used a novel multi-sample, protein–protein interaction tool, to identify clusters of patients 
with shared protein–protein interaction networks associated with preterm birth. We showed similarity between 
these networks and results from an independent replication cohort. Our results provide insights into the genetics 
of PTB and support a genetic architecture defined by subgroups of patients that share variants in genes in specific 
networks and pathways which are sufficient to give rise to the disease phenotype.
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