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An integrative genomic 
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(Escalloniaceae)
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What we mean by species and whether they have any biological reality has been debated since the 
early days of evolutionary biology. Some biologists even suggest that plant species are created by 
taxonomists as a subjective, artificial division of nature. However, the nature of plant species has been 
rarely tested critically with data while ignoring taxonomy. We integrate phenomic and genomic data 
collected across hundreds of individuals at a continental scale to investigate this question in Escallonia 
(Escalloniaceae), a group of plants which includes 40 taxonomic species (the species proposed by 
taxonomists). We first show that taxonomic species may be questionable as they match poorly to 
patterns of phenotypic and genetic variation displayed by individuals collected in nature. We then use 
explicit statistical methods for species delimitation designed for phenotypic and genomic data, and 
show that plant species do exist in Escallonia as an objective, discrete property of nature independent 
of taxonomy. We show that such species correspond poorly to current taxonomic species ( < 20% ) and 
that phenomic and genomic data seldom delimit congruent entities ( < 20% ). These discrepancies 
suggest that evolutionary forces additional to gene flow can maintain the cohesion of species. We 
propose that phenomic and genomic data analyzed on an equal footing build a broader perspective on 
the nature of plant species by helping delineate different ‘types of species’. Our results caution studies 
which take the accuracy of taxonomic species for granted and challenge the notion of plant species 
without empirical evidence. Note: A version of the complete manuscript in Spanish is available in the 
Supplemental Materials.

A perennial question in biology concerns the possibility that plant species are not real, but presumably constructs 
of the psyche of  taxonomists1–3. Previous researchers investigating this question through phenotypic data have 
focused on validating taxonomic species (i.e., the species proposed by taxonomists)3,4. This means using taxo-
nomic species as standard references to gauge the strength of the evidence in support of the reality of species 
when researchers analyze phenotypic data with numerical taxonomy methods to identify  species5. In a highly 
influential paper, Rieseberg et al.3 compiled data across 400 studies which used numerical methods to identify 
plant and animal species with phenotypic data, and assessed how well the species delimited with statistical 
methods matched taxonomic species. This study revealed that validation of taxonomic species is low ( < 60% 
of statistically identified discrete clusters are congruent with taxonomic species) even though discrete pheno-
typic groups apparently exist in most taxonomic  groups3. However, by using a species validation approach, as 
opposed to a species discovery  approach6,7, this study assumed that taxonomic species are present. Unfortunately, 
Rieseberg et al.3 did not have access to statistical approaches useful to assess the reality of species independent 
of taxonomy or to multilocus sequence data as an additional line of evidence to investigate the nature of species 
across taxa. As a consequence, the fundamental question about the reality of plant species independent of the 
influence of taxonomists is not well understood. To date, no studies integrating phenotypic and genome-wide 
DNA data have assessed the reality of plant species for a group including multiple hypothesized taxonomic 
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species at a broad geographic scale. Here we investigate this question through high-density phenotypic (ca. 8300 
quantitative measurements) and genome-wide (ca. 1,000,000 DNA sequences) species delimitation analyses of a 
large data set of 848 individuals in Escallonia (Escalloniaceae), a group of shrubs and trees spanning the montane 
region of South America (Fig. 1, panels 1–3; Supplementary Table S1).

Many studies incorporating the procedure of species delimitation present several shortcomings relevant to 
understanding the nature of plant species. First, most studies using phenotypic data rely on statistical approaches 
disconnected from biological theory and hence are compromised in detecting biologically meaningful  species8. 
In particular, such studies typically use methods that rely on graphical analyses that convey little information on 
phenotype frequencies, exclude phenotypic traits potentially important for species detection, and use measures of 
central tendency which are inconsequential to assess species  distinctiveness8. Second, many studies use explicit 
numerical procedures to analyze phenotypic data only when analyzing ‘problematic taxa’ (i.e., species complexes, 
hybrid swarms), and thus may provide a distorted general perspective on the nature of plant species. Third, some 
studies do not investigate the nature of plant species directly using genetic data which bear an explicit relationship 
to evolutionary divergence and gene flow, two relevant criteria in delineating  species9. Conversely, other studies 
rely exclusively on genetic data which may fail to uncover species that maintain cohesion and independence via 
evolutionary forces additional to gene  flow10. Lastly, several studies do not consider the evidence of species in a 
geographic context despite the central role of geography in the study of the nature of  species11,12. We tackle these 
shortcomings in examining the nature of plant species by integrating multiple types of data and proper statistical 
approaches well grounded in evolutionary theory in Escallonia, a typical genus of flowering plants, seemingly 
composed of ‘good’ taxonomic  species13.

Trees and shrubs of the genus Escallonia make an excellent case study for carrying out such analyses to 
investigate the nature of plant species. These plants occur in a variety of habitats throughout the Andes and the 
mountains of southeastern Brazil, as well as in isolated mountain ranges like the Sierra de Córdoba (Argentina), 
Sierra Nevada de Santa Marta (Colombia), and Cordillera de Talamanca (Costa Rica)14,15. Most taxonomic spe-
cies have broad geographic ranges, with some species having populations separated by thousands of kilometers; 
a few narrowly distributed species span less than 200 km. Some taxonomic species are common locally, with 
approximately 30–40 plants per locality, while others are rare, few individuals being found in any one place (F. 
Zapata, pers. obs.). Several taxonomic species seem to segregate according to habitat or elevation, nevertheless 
the geographic ranges of many species overlap completely or partially, such that individuals of one taxonomic 
species can occur within the range of potential dispersal of gametes (seeds or pollen) of other taxonomic species 
(i.e., taxonomic species exhibit mosaic sympatry sensu)16.

In all taxonomic species, the fruit is a dry capsule that dehisces and releases the seeds, which fall out and are 
likely dispersed by wind or gravity. Little is known about the pollination biology of any taxonomic  species17, and 
from circumstantial observations in the field, the flowers of different taxonomic species of Escallonia appear to 
be visited by a diverse group of local insects that also visit unrelated plant genera. Studies quantifying repro-
ductive isolating barriers across Escallonia are necessary to understand the role of floral signals in speciation. 
Morphologically, the taxonomic species in Escallonia show substantial variation in leaf size and overall shape, 
likely associated with ecological conditions and habitat shifts (F. Zapata, unpublished). Taxonomic species can 
have either single flowers, or inflorescences with tens to hundreds of flowers. The flowers show considerable 
geographic variation in the size and shape of sepals, petals, and ovaries. Petal color varies from greenish-white 
to pink or deep red. Chromosome morphology and number ( n = 12 ) are the same for all taxonomic species so 
far  examined18–20, and horticulturists have generated artificial hybrids between morphologically distinct species 
that do not grow together in nature (e.g.21). However, there are no documented cases of hybrid speciation or 
stable hybrid zones in nature.

Escallonia thus appears to be a “typical” genus of flowering plants not considered unique or problematic taxo-
nomically. From a genetic perspective, there are no studies using genomic data that include several individuals 
per taxonomic species for all species across the geographic range of Escallonia (i.e., the status of the taxonomic 
species from a multilocus perspective is not known). It is useful to remember, however, that there is no docu-
mented natural rampant hybridization or introgression, there are no known cases of polyploidy, and, to our 
knowledge, there is no agamospermy or apomixis in the genus. From a morphological perspective, taxonomic 
species appear to be more or less well defined; some variation exists, but the genus is not notable or unusual in 

Figure 1.  (Presented as three panels) Phylogenetic history, taxon sampling, and evolutionary model-based 
species delimitation. Maximum Likelihood (ML) tree of Escallonia based on genome wide data (bottom-left) 
with tips indicating the six focal clades (Clade I–VI) of our study. For each clade, the first row shows the taxon 
sampling, with filled symbols indicating specimens used in phenotypic analyses and empty symbols specimens 
used in genomic analyses; the insets show the distribution of specimens along elevation. The second row shows 
results of the best fit model for species delimitation with phenotypic data (i.e., phenogroups); phenogroups are 
shown with different shapes in geographic space. The third row shows results of the best fit model for species 
delimitation with genomic data (i.e., genogroups); genogroups are indicated with different colors as tips of 
unrooted ML trees based on matrices of concatenated loci and mapped in geographic space. The fourth row 
shows the integration of phenogroups and genogroups with evolutionary history and geographic distribution 
to elucidate the nature of plant species; specimens without overlapping phenotypic and genomic data are 
designated as unknown specimens. The phylogenetic trees were inferred in IQ-TREE v2.0.3 (http:// www. iqtree. 
org). The maps were generated in R v4.1.1 using the libraries ggplot2 v3.3.5 (https:// ggplo t2. tidyv erse. org/ 
index. html) and maps v3.4.0 (https:// cran.r- proje ct. org/ web/ packa ges/ maps/).
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Figure 1.  (continued)
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Figure 1.  (continued)
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this regard. Taken together, Escallonia offers a great opportunity for studying in detail the geographic patterns 
of variation in phenotypic traits and genomics to examine the nature of plant species.

Elucidating the nature of plant species has broader implications beyond taxonomy. In particular, determining 
whether species do exist as objective properties of nature can impact other areas of biology which use species 
as the unit of analysis. Moreover, comparing geographic patterns of variation in phenotypic and genetic data 
can begin to shed light on the evolutionary forces at work in the origin, evolution, and structuring biodiversity.

Results and discussion
We present and discuss the major findings below in the context of the whole Escallonia radiation. Detailed results 
are presented in the Supplementary Material.

The current state of taxonomic species. We first characterized the evolutionary history of Escallonia 
using different phylogenetic approaches with a subset of specimens spanning the geographic range of these 
plants across South America (Fig. 1, panels 1–3; Supplementary Figs. S1, S2). In all of these analyses, we con-
sistently recover six groups of taxonomic species (hereafter, clades I–VI), in line with a previous study based 
on fewer  loci14. All clades are markedly restricted to geographic regions, except clade VI; this clade is mainly 
restricted to southeastern Brazil, Uruguay, and northeastern Argentina, but includes some species in the Andes 
(Fig. 1, panels 1–3). A closer examination of the relationship between clade composition and the geographi-
cal as well as elevational distributions of clades reveals that when specimens from different clades co-occur in 
close spatial proximity (e.g., Clades I, II, III, IV in the Tropical Andes), clades are genetically distinct with no 
intermixing (Fig. 1, panels 1–3; Supplementary Figs. S1, S2). Further, all clades have consistent composition and 
receive strong statistical support when we use different approaches to phylogenetic analysis (see “Methods” sec-
tion). However, when we include multiple specimens of the same taxonomic species, several of these specimens 
are not always each other’s closest relatives within clades (i.e., taxonomic species are either paraphyletic or poly-
phyletic; Supplementary Fig. S2). This result, along with the marked phylogenetic geographic concordance and 
consistent composition of clades, suggests that although clades are evolutionarily distinct, the limits of species 
boundaries within clades would benefit from closer  attention14. Therefore, we focus our subsequent analyses of 
phenotypic and genome-wide variation to investigate the nature of species in Escallonia on a clade by clade basis.

To investigate the current state of taxonomic species in Escallonia through phenotypic data, we first asked 
whether taxonomic species are quantitatively distinct and then asked whether specimens which are hypothesized 
to belong to a taxonomic species occupy the morphospace delimited by the combination of traits defining each 
taxonomic species. For these analyses, we used the morphological characteristics—leaf and floral traits—provided 
in the taxonomic description of each  species13. We focused on these traits because taxonomic descriptions include 
the characters useful in distinguishing all species and in comparing them with other  species22. We acknowledge 
that by focusing on these traits alone, we may be excluding traits related to functional species differences (e.g., 
functional plant traits). However, the traits used in taxonomic descriptions provide a logical starting point to 
assess the nature of species. It is along such dimensions of the phenotype where taxonomists have previously 
hypothesized natural breaks and many of these traits (certainly the floral traits) have biological relevance with 
respect to reproductive function. Additionally, our examination of approximately 3500 herbarium specimens 
and extensive field work confirm substantial variation in leaf and floral traits across taxonomic species.

We first tabulated the maximum and minimum values of ten quantitative continuous traits provided in each 
species description (these values are derived from specimens not included in the current dataset). We then 
used these values as vertices of a 10-cube to represent each species geometrically in phenotypic space and esti-
mated the pairwise overlap among all 10-cubes within clades. This analysis shows that taxonomic species within 
clades occupy distinct regions of 10-dimensional phenospace with little to no overlap (Table 1, Supplementary 
Figs. S5, S16, S27, S38, S49, S60). We followed these geometric-based analyses with a matching-prediction 
analysis whereby we assessed whether each specimen identified to a taxonomic species was inside or outside the 
10-cube of its corresponding species based on quantitative measurements of the morphological traits defining 
the 10-cube (see “Methods” section). Contrary to expectations, these analyses show that the majority ( 99.2% ) of 
specimens fall outside their respective 10-cube. Furthermore, 98.4% specimens fall outside any 10-cube (Table 1, 
Supplementary Figs. S5, S16, S27, S38, S49, S60). This means that most specimens had at least one measurement 
falling outside the range of variation provided in their taxonomic descriptions. The use of fixed ranges for trait 
values in species descriptions implies that species correspond to geometric shapes with sharp boundaries (e.g., 
10-cubes). Given both the statistical and mathematical properties of high-dimensional spaces, once a specimen 
is beyond the limit imposed by even one dimension of the 10-cube corresponding to its taxonomic species, such 
specimen immediately falls outside of the whole 10-cube (e.g., the curse of dimensionality)23,24. Because most 
specimens examined here fall outside their respective 10-cube, we suggest that taxonomic species in Escallonia 
may have limited power to capture the multidimensional patterns of phenotypic variation displayed by organ-
isms in nature.

This result is not likely an artifact of the taxonomic  monograph13 because the original species descriptions cite 
a large number of examined specimens which cover the known geographic range of all species. The specimens 
included in our analysis were collected in the same localities where monograph-cited specimens were collected; 
we even measured some of the herbarium specimens cited in the original species descriptions. Our findings 
highlight the need of including specimen-level data in taxonomic descriptions and monographs in the future, 
and using probabilistic approaches that incorporate the variance and covariance among traits to define species 
in order to capture the shape of species in nature. Although our results are limited to Escallonia, we speculate 
this may be a widespread phenomenon in other  groups25 because plant species delimited and described with 
morphology are rarely based on explicit statistical analyses of phenotypic variation grounded on biological 
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 theory26,27. Therefore, we suggest that investigating the nature of plant species by relying on validating taxonomic 
species alone can be generally problematic.

Evolutionary model‑based evidence to identify species as objective entities. We used Gauss-
ian finite mixture modeling (GFMM)28 within clades to determine both the number of species and the assign-
ment of specimens to species using phenotypic data without prior information about taxonomy. This modeling 
framework is well-suited for this problem because it implements the evolutionary model underlying the use of 
quantitative, continuous phenotypic variation in species discovery and  delimitation8,29. To perform this analysis, 
we used the same specimens and the same ten diagnostic morphological traits as in our previous analysis (see 
above). We rotated the original data matrix into orthogonal axes using robust covariance estimators and reduced 
the dimensionality of the orthogonal axes to only those that optimized the shape, orientation, and the number 
of phenotypic-based species (hereafter, phenogroups). We identified the best Gaussian Mixture Model—GMM 
(Naive model) in each clade in a Bayesian information criterion (BIC) and integrated complete-data likelihood 
(ICL) framework. In addition, we assessed support for alternative models in which we assigned specimens to 
groups defined a priori, including taxonomic species (Taxonomy model) as well as phenogroups we defined 
during specimen examination that were independent of taxonomy (Taxonomy Unaware model). The results 
from these analyses are shown in Fig. 1, panels 1–3, and Table 2. The Naive model was the best-supported model 
for five of the six clades ( �BIC > 8 ), while one clade had support ( �BIC < 1 ) even though the model was not 
the best supported for this clade (Supplementary Fig. S39). These results were insensitive to model-selection 
approach (BIC or ICL) (see Supplementary Material). The strong performance of the Naive model is not unex-
pected owing to the severe limitations of the competing, non-statistical approaches to delimit species without 
considering the shape, orientation, and arbitrary overlap of phenogroups in multidimensional phenotypic  space8 
(Supplementary Figs. S6, S17, S28, S39, S50, S61). This is also consistent with the prediction that nature is, in 
fact,  discontinuous30,31 despite suggestions that species are not discrete objective  entities2. Furthermore, because 
the majority of the identified phenogroups within clades co-occur locally in sympatry (Fig. 1, panels 1–3, Sup-
plementary Figs. S6, S17, S28, S39, S50, S61), species status for these groups is granted under a wide range of 

Table 1.  Current state of taxonomic species.

Clade
Taxonomic 
species Specimens

Minimum proportion 
overlap among 10-cubes

Maximum proportion 
overlap among 10-cubes

Percent specimens 
matching any 10-cube

Percent specimens 
matching correct 10-cube

I 2 33 0 0.00 0.0 0.0

II 2 33 0 0.00 0.0 0.0

III 6 130 0 0.02 1.6 0.8

IV 2 74 0 0.00 0.0 0.0

V 7 214 0 0.13 0.0 0.0

VI 10 195 0 0.00 0.0 0.0

Table 2.  Gaussian finite mixture modeling (GFMM) for phenogroup delimitation and model selection using 
the Bayesian information criterion (BIC).

Clade Model Phenogroups BIC Rank �BIC

I

Naive 2 54.03099 1 0.00000

Taxonomy 2 45.80586 2 8.22513

Taxonomy unaware 1 33.45654 3 20.57445

II

Naive 3 71.72976 1 0.00000

Taxonomy unaware 1 47.52785 2 24.20191

Taxonomy 2 17.77346 3 53.95630

III

Naive 5 387.15280 1 0.00000

Taxonomy unaware 4 170.83930 2 216.31350

Taxonomy 6 53.38527 3 333.76753

IV

Taxonomy 2 − 115.00390 1 0.00000

Taxonomy unaware 2 − 115.00390 1 0.00000

Naive 3 − 115.89910 2 0.89520

V

Naive 8 − 516.72340 1 0.00000

Taxonomy unaware 4 − 648.03900 2 131.31560

Taxonomy 7 − 791.45350 3 274.73010

VI

Naive 8 231.24780 1 0.00000

Taxonomy unaware 10 200.30380 2 30.94400

Taxonomy 10 − 517.76350 3 749.01130
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species  definitions8,9,16,32. Yet, phenogroups may conceal distinct species when similar phenotypes have evolved 
(or are evolving)  independently33. Thus, incorporating phylogenetic information is beneficial in understanding 
the nature of species and deciding whether all phenogroups are distinct species.

In order to identify species and assign specimens to species within clades using genetic data, we evaluated 
the fit of three common species delimitation models. These models implement three different species defini-
tions, namely species defined as genotypic  clusters34,35 (GC model), species defined as the transition point from 
cladogenesis to  anagenesis36,37 (CA model), and species defined as reproductively isolated  lineages11,38 (RI model). 
We note that these species definitions are not linked to any particular speciation mechanism. For instance, 
under different ecological or geographic speciation mechanisms species could be diagnosed as the transition 
from cladogenesis to anagenesis, or as isolated genetic pools. Our analysis is not an inference of the speciation 
process itself. Rather, our study is a search for patterns (i.e., species), which we then interpret in light of plausible 
speciation scenarios (see section below). For this analysis, we collected genome-wide data for a subset of the 
specimens used in our phenotypic analyses and compared competing species delimitation models in a Bayesian 
framework using Bayes  factors39 to identify genomic-based species (hereafter, genogroups). Because neither 
taxonomic species nor any other a priori groups have been proposed based on genetic data, we did not assess 
support for any other alternative species delimitation models. Figure 1, panels 1–3, and Table 3 show the results 
of these analyses. In general, the CA model outperformed the alternative models; in five of six clades, the CA 
model was the best-supported model, while the GC model fit better for only one clade. Further, the CA model 
adequately captures the species we discovered here (Table S2). Across clades, the best fitting model identified 
the largest number of genogroups. The reason why the models with more genogroups fit better in all clades is 
likely the result of the higher genetic variation between genogroups than within genogroups, apparent as long 
branches in the species trees (Fig. 1, panels 1–3). This suggests that genogroups are divergent lineages on separate 
evolutionary trajectories, and is consistent with the hypothesis that such lineages are distinct  species7,9. Moreover, 
several of these genogroups within clades co-occur locally in sympatry, and thus species status for such groups is 
granted under multiple species  definitions11,16,32. However, in some clades genogroups form isolated, allopatric 
groups of specimens, which could presumably result from sparse geographic sampling within a single  species40. 
Therefore, the weight of the evidence in support of the species status for these genogroups is weak and requires 
considering other lines of evidence on an equal footing.

Integrating phenotypic and genome‑wide variation, spatial information, and evolutionary 
history. With the phenogroups and genogroups derived from the evolutionary model-based analyses, we 
were able to examine the nature of species by integrating phenotypic and genome-wide data in an explicit spatial 

Table 3.  Genomic modeling for genogroup delimitation and model selection using Bayes factors (BF). a
Specimens assigned to demes using MAVERICK. bSpecimens assigned to demes using STRU CTU RE.

Clade Model Genogroups Marginal Likelihood ( loge) Rank BF (2 x loge)

I

GC 3 − 6580.495 1

AC 2 − 6754.495 2 348.000

RI 2 − 6754.495 2 348.000

II

AC 4 − 13460.917 1

GC 3 − 15036.438 2 3151.042

RIa 3 − 15036.438 2 3151.042

RIb 2 − 18963.342 3 11004.850

III

AC 7 − 8985.782 1

RIa 5 − 10014.260 2 2056.955

RIb 3 − 12233.131 3 6494.698

GC 3 − 12233.131 3 6494.698

IV

AC 6 − 9601.514 1

GC 3 − 11546.649 2 3890.271

RIa 2 − 12017.878 3 4832.728

RIb 2 − 12017.878 3 4832.728

V

AC 10 − 4588.693 1

GC 6 − 5381.361 2 1585.336

RIa 3 − 5601.058 3 2024.730

RIb 2 − 6085.998 4 2994.610

VI

AC 11 − 2921.024 1

GC 7 − 3627.806 2 1413.564

RIa 4 − 4661.351 3 3480.654

RIb 4 − 4661.351 3 3480.654
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and evolutionary context (Fig. 1, panels 1–3; Supplementary Figs. S13, S24, S35, S46, S57, S68). For this analysis, 
we first assigned each specimen to its corresponding phenogroup and genogroup, akin to a two-way contingency 
table (Fig. 2). This assignment allowed the identification of congruence—or lack thereof—between phenotypic 
and genomic groups. Some specimens were incomplete (e.g., sterile) and could not be scored for all phenotypic 
traits, while other specimens failed during processing for genomic work (hereafter, unknown specimens); nev-
ertheless, the geographic distribution of these unknown specimens in relation to the specimens with both kinds 
of data may inform the most parsimonious pheno- or genogroup assignment (for example, in Clade IV all the 
unknown specimens from northern South America likely belong to phenogroup 2 and genogroup 1; Fig. 1, panel 
2). Overall, we found that only a small percentage of phenogroups correspond directly to unique genogroups 
( 15% ), even assuming concordant group assignment for all unknown specimens ( 18% ). By contrast, we found 

Figure 2.  Integration of phenotypic and genome-wide variation to delimit species. For each clade (see panels 
of Fig. 1), we assigned specimens to their corresponding phenogroup and genogroup based on the best fit 
models for each type of data. Shaded cells show specimens assigned to a particular combination of best fit 
phenogroup and genogroup (i.e., each shaded cell is a species). Three types of species are recognized. First, 
specimens assigned uniquely to a single phenogroup and a single genogroup are recognized as ‘good species’ 
(e.g., phenogroup 4, genogroup 3 in Clade III). Second, specimens assigned to a single phenogroup across 
multiple genogroups are recognized as ‘phenotypic cryptic species’ (e.g., phenogroup 2, genogroups 1, 2 in Clade 
III). Third, specimens assigned to a single genogroup across multiple phenogroups are recognized as ‘genetic 
cryptic species’ (e.g., phenogroups 1, 3, genogroup 5, in Clade III). Empty rows or columns correspond to 
specimens which did not have overlapping phenotypic and genomic data and thus were assigned only to their 
corresponding phenogroup or genogroup, accordingly (e.g., genogroup 2 in Clade I).
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that in most clades a given phenogroup occurs across multiple genogroups (for example, see phenogroup 2 in 
clade IV, Fig. 2), and less frequently that a given genogroup occurs across different phenogroups (for example, 
see genogroup 9 in clade V, Fig. 2). Taken together, our results suggest that the proportion of ‘good species’ (i.e., 
phenotypic and genomic distinct and congruent groups) in Escallonia is remarkably low, particularly given the 
widespread notion in biology that ‘good species’ are the norm, and suggest that other types of species, including 
‘phenotypic cryptic species’33 (i.e., one phenogroup across multiple genogroups) and ‘genetic cryptic species’10 
(i.e., one genogroup across multiple phenogroups), are more common. The existence of these different types 
of species is consistent with the idea that the properties of species, such as morphological distinguishability or 
genealogical exclusivity of alleles, may evolve at different times and sequential order owing to the heterogeneous 
nature of the speciation  process41,42.

Interpreting the species that we identified in an explicit spatial and phylogenetic context can further elucidate 
the nature of plant species. Our motivation is to provide an interpretation of the type of species we uncovered 
(pattern) in light of plausible speciation mechanisms (process). We note, however, that further work with denser 
sampling and suitable analytical approaches is critical to infer the actual speciation process. Most ‘good spe-
cies’ co-occur in local sympatry or segregate according to elevation with other species (Figs. 1, panels 1–3, 2, 
Supplementary Figs. S13, S24, S35, S46, S57, S68). This suggests that environmentally-mediated selection in 
sympatry or along elevational gradients in parapatry may be an important evolutionary force driving  speciation43 
or at least maintaining species differences in Escallonia. While these species can differ in floral and leaf traits, 
studies about reproductive biology and the role of other biotic and abiotic factors are needed to unravel how 
‘good species’ in Escallonia originate and are maintained in nature. Alternatively, it is possible that these species 
are further along the speciation continuum and have accumulated enough  differences44,45. Further sampling in 
combination with phylogenetic dating approaches and experimental data in Escallonia are needed to evaluate 
these hypotheses with increasing rigor.

When the genogroups of ‘phenotypic cryptic species’ are distantly related, a reasonable hypothesis to explain 
this pattern is the idea of convergent evolution in phenotypes in response to similar selective regimes, either 
in sympatry or  allopatry46 (for example, see phenogroup 1, genogroups 2, 4, 10, 11, clade VI; Fig. 1, panel 3). 
Escallonia occurs in mountain habitats which show similar environmental conditions across separate geographic 
regions (e.g., the mountains of southeastern Brazil, the southern Andes, and the high elevation Tropical Andes)14. 
The possibility of replicated evolution of species with similar leaf and floral traits across separate geographic 
regions as a mountain archipelago is intriguing and should be investigated in detail. By contrast, when such 
genogroups are each other’s closest relatives and do not co-occur locally in sympatry (for example, see pheno-
group 2, genogroups 1, 2, clade III; Fig. 1, panel 2), under some species definitions genogroups may correspond 
to allopatric populations within a single  species11 rather than to distinct species resulting from recent speciation 
with little time for phenotypic differentiation, or speciation with niche  conservatism46,47. Exhaustive geographic 
sampling is necessary before these hypotheses can be confronted confidently and the nature of these species in 
Escallonia is better understood.

In all the ‘genetic cryptic species’ that we identified, phenogroups do not show a strong geographic structure 
(for example, see genogroup 10, phenogroups 2, 3, 5, 7, clade V; Fig. 1, panel 3). This is consistent with the 
intriguing possibility that these otherwise phenotypically distinct species could potentially be interconnected 
via gene  interchange48,49, likely facilitated by their broad overlap in geographical  space14. Whether this pattern 
reflects speciation with gene flow or gene flow after secondary contact remains unknown. Our current sampling 
in Escallonia is not designed to untangle these possibilities and further analyses are required. However, we note 
that genomic evidence for this type of species is rapidly accumulating for other  plants50–52 as well as various 
taxa across the tree of  life10,53. In other taxonomic groups these type of species include both recently diverged 
species, which plausibly differentiate in the face of gene flow, as well as species with over 10–20 million years of 
divergence with subsequent gene flow occurring after secondary  contact54,55. Yet, how these groups of species are 
initiated and persist, and what portion of their genomes is exchanged freely across species boundaries without 
species collapse needs to be studied in closer  detail56. Furthermore, we argue that the discovery approach we 
employ here, where both phenotype and genotype contribute equally and independently to the pattern of species, 
is essential to detecting these types of species groups where they are otherwise unexpected. Escallonia makes 
an excellent case study for tackling these critical questions, yet additional genomic, phenomic, and geographic 
sampling are needed.

Alternatively, these ‘genetic cryptic species’ may be the result of rapid divergence events driven by strong 
factors influencing traits relevant for ecological isolation with little time for alleles to sort completely between 
sister  species57. Because several phenogroups within a genogroup sometimes co-occur in mosaic  sympatry16 or 

Table 4.  Correspondence between taxonomic species and best-fit phenogroups and genogroups.

Clade
Taxonomic 
species Phenogroups

Perfect match taxonomic 
species to phenogroups Genogroups

Perfect match taxonomic 
species to genogroups

Perfect match taxonomic species 
to phenogroup and genogroup

I 2 2 2 3 1 1

II 2 3 0 4 1 0

III 6 5 1 7 3 1

IV 2 2 2 6 1 1

V 7 8 0 10 0 0

VI 10 8 2 11 5 2
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replace each other along  elevation14 (Supplementary Results), it is plausible that rapid divergence in Escallonia 
has been prompted by new ecological opportunities owing to climatic cycles and mountain  orogeny58. The lack 
of experimental studies about the functional ecology of leaf and floral traits in Escallonia precludes us from 
knowing what factors are responsible for maintaining the phenotypic divergence displayed by different pheno-
groups within a single genogroup. Some phenogroups may differ in floral traits which might bear a relationship 
with pollinators. Other phenogroups may vary more strongly in leaf traits which might relate to adaptation to 
local environments. Hence, it is plausible that different forms of selection maintain phenotypic differences and 
counteract the homogenizing effects of gene flow in nascent species, a possibility that requires further research. 
Further taxon and genome sampling in combination with explicit population genomic models that incorporate 
different forms of selection are thus required in Escallonia to isolate the signal of incomplete lineage sorting from 
 hybridization59 and model the role of selection between sister species and non-sister species in secondary contact.

Conclusion
In sum, our analyses of a large scale phenotypic and genome-wide dataset using state of the art model-based 
approaches for species discovery and delimitation reveal that plant species do exist in Escallonia as a property 
of nature independent of  taxonomy7,31. However, the observed pattern of excessive discordance between species 
identified with phenotypic and genomic data suggests that in the absence of evidence the prevalent assumption 
that phenotypically (or genetically) distinct entities are necessarily ‘good species’ is not warranted. Further-
more, parallel signatures of such discordance across divergent clades in Escallonia suggest that this may be a 
widespread phenomenon, which is consistent with the emerging patterns about the nature of species across 
the tree of  life10,33,51–54. The species discovery approach we use here, which explicitly considers both phenotypic 
and genetic data on an equal footing, is essential to revealing patterns useful to guide our inference of likely 
evolutionary processes at work in speciation. Previous studies have proposed that approximately 70% of plant 
taxonomic species represent ‘good species’3, but this is not supported in our study. Instead, our results suggest 
that the percentage of taxonomic species in Escallonia which correspond to ‘good species’ may be as low as 17% 
(Table 4, Supplementary Tables S4, S7, S10, S13, S16, S19). Because Escallonia appears to be a “typical” genus of 
flowering plants not considered unique or problematic taxonomically (see Introduction), this result is notable. 
We are not aware of datasets of similar magnitude for other plant groups, yet we speculate that our results may 
be widespread. To the extent that our findings capture any generalizable perspective about the nature of plant 
species, reinforced by the overall poor theoretical basis underlying plant species  delimitation26,27, our results 
suggest that studies in other areas of biology which assume taxonomic species represent good, biologically real 
entities may need critical evaluation. Our results underscore the need for further comparative studies combin-
ing high-throughput phenotypic and genotypic data across taxa and across broad and narrow spatial scales to 
comprehensively understand the nature of plant species and shed light into the evolutionary forces at work in 
speciation and in maintaining species in  nature7. Given the unprecedented advances in phenomics, genomics, 
and computation, there has never been a more thriving time to be a taxonomist than now.

Methods
Taxon sampling and data collection. This study complies with local and national regulations. Collect-
ing permits were obtained for field collections. A total of 848 specimens were included in this study (a mix 
of field collections and herbarium specimens). These specimens covered the entire geographic range of Escal-
lonia. To assign specimens to taxonomic species, one of us (Felipe Zapata) identified all plant material using the 
dichotomous key provided by  Sleumer13 as well as information on habit, habitat, geographic locality, and the 
available comparative material from ca. 3, 500 herbarium collections. Escallonia currently includes 40 taxonomic 
 species13,60; the specimens included in this study belong to 29 taxonomic species. Complete voucher information 
for all specimens is available in Table S1. On these specimens, we measured 10 quantitative, continuous pheno-
typic traits (leaf length, leaf width, pedicel length, ovary length, length of calyx tube, length of calyx lobes, petal 
length, petal width, filament length, style length) to characterize the geographic pattern of phenotypic variation 
across Escallonia. We focused on these traits because these are the traits used in the taxonomic monograph to 
describe and distinguish all  species13. All measurements were log-transformed prior to downstream analysis.

To examine the geographic pattern of genomic variation across Escallonia, we used double-digest Restriction-
Site Associated DNA Sequencing (ddRAD)61 for 315 specimens (out of the 848 specimens). We first extracted 
DNA from silica-dried adult leaves or herbarium specimens and then prepared quadruple-indexed, triple-enzyme 
RADseq libraries using the EcoRI, XbaI, and NheI restriction  enzymes62. All libraries were sequenced across 
multiple lanes of 100PE sequencing on the Illumina HiSeq 4000 Sequencing Platform. We assembled RAD loci 
and called variants using iPyrad v0.7.28 (https:// ipyrad. readt hedocs. io/ en/ master/)63, and filtered files for 
downstream analyses using VCFtools v0.1.14 (https:// vcfto ols. github. io)64 and custom-made scripts. To assess 
the sensitivity of our results to the amount of missing data, we ran analyses using three matrices with different 
levels of missing data (25%, 50%, and 75% missing data). Detailed descriptions on sampling and data collection 
are provided in the Supplementary Material.

The current state of Escallonia taxonomic species. We used a subset of specimens to reconstruct 
the phylogeny of Escallonia. We chose these specimens to represent the overall spectrum of morphological vari-
ation and the geographic range of each taxonomic species. We used Valdivia gayana as  outgroup14. We built 
phylogenies with two and four specimens per taxonomic species using the three data matrices with different 
amounts of missing data. For each dataset, we inferred lineage trees using a matrix of concatenated full loci in 
IQ-TREE v2.0.3 (http:// www. iqtree. org) and the edge-proportional partition model with 1000 ultrafast boot-
strap  replicates65–68. To infer species trees, we used SVDQuartets69 in PAUP* v4.0a168 (https:// paup. phylo 

https://ipyrad.readthedocs.io/en/master/
https://vcftools.github.io
http://www.iqtree.org
https://paup.phylosolutions.com


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:24013  | https://doi.org/10.1038/s41598-021-03419-0

www.nature.com/scientificreports/

solut ions. com)70 by evaluating all possible quartets. Confidence on species trees was assessed with a multilocus 
bootstrap analysis using 100 replicates. Both the lineage and species tree reconstructions across all subsets con-
sistently recovered six well-supported clades (see “Results and discussion” section; clades I–VI). We conducted 
all downstream analyses within clades considering only ingroup samples.

To examine the state of taxonomic species through phenotypic data, we used the most recent taxonomic 
monograph of Escallonia to tabulate the minimum and maximum values reported for ten quantitative traits used 
to describe and delimit each taxonomic  species13. The combination of these values predicts a hypervolume in 
phenotypic space occupied by each taxonomic species. Therefore, we used these values as vertices to construct a 
hypervolume (i.e., a 10-cube) to represent geometrically each species in 10 phenotypic dimensions. To determine 
the distinctiveness of each taxonomic species, we estimated the pairwise asymmetric proportion of overlap of all 
10-cubes within clades. To assess whether the specimens that we measured in this study matched the prediction 
specified by the taxonomic description of each species (i.e., whether specimens were inside the space defined 
by the hypervolume in phenotypic space), we used the morphological measurements to ask whether specimens 
assigned to a taxonomic species were inside or outside the 10-cube of their corresponding taxonomic species. 
We used this approach because taxonomic descriptions include all the characters useful in distinguishing spe-
cies and in comparing them with other species in multidimensional  phenospace22. Therefore, our approach 
provides a reasonable assessment of the range of variation present in nature predicted to be partitioned by each 
taxonomic species. We refer to this analysis as ‘matching-prediction analysis’. We did not include meristic or 
qualitative traits in this analysis because we focused on the same traits that we analyzed using explicit methods 
for species discovery and delimitation with phenotypic data, which are grounded on evolutionary theory (see 
below). Escallonia currently includes 40 taxonomic  species13,60; the specimens included in this study belong to 29 
taxonomic species. We used the R packages grDevices71 and geometry v0.4.572 to carry out these analyses. 
Further details are provided in the Supplementary Material.

Model‑based evidence for species using phenotypic data. To determine the number of phenotypic-
based species (hereafter, phenogroups) and the assignment of specimens to phenogroups within clades, we 
applied the quantitative genetics model for the distribution of continuous quantitative traits within a  species29. 
This model states that under the assumption of polygenic architecture for phenotypic traits and random mating, 
gene frequencies would be close to Hardy–Weinberg equilibrium and phenotypic variation among individuals of 
a single species would tend to be normally  distributed73. While we do not know the genetic architecture of any of 
the traits included in our study, analyses in other plants show that some of these traits are indeed  polygenic74,75. 
We assume that a similar genetic architecture is present in Escallonia, and therefore that the pattern of varia-
tion of such traits can be reasonably described with Gaussian distributions. We applied this Fisherian model 
employing Gaussian Finite Mixture Modeling (GFMM) to search for the mixture of normal distributions (i.e., 
phenogroups) that best explains the variation in the  data28. GFMM is a powerful framework to model the phe-
notypic variation of species seen in nature because it can combine normal distributions of different shapes and 
 orientations8. To define the phenotypic space for GFMM, we first used robust principal components analysis 
(rPCA)—an approach useful for high dimensional data when outliers could skew the orientation of the rotated 
axes  markedly76—on our ten, log-transformed, quantitative traits. We then used automatic variable  selection77,78 
to select the most useful set of robust PC axes for GFMM using forward variable selection and no variable 
transformation. Lastly, we fitted different Gaussian Mixture Models (GMM) specifying 1 to n+ n/2 number of 
phenogroups, where n is equal to the number of taxonomic species currently hypothesized to exist within each 
clade. This approach aimed to limit the number of phenogroups present in the mixture to a reasonable number 
informed by current taxonomy and minimize over-differentiation of phenogroups. We evaluated three compet-
ing models for phenogroup delimitation:

Naive model. The optimal GMM was determined without a priori assignment of specimens to phenogroups.

Taxonomy model. The GMM used specimens assigned a priori to taxonomic species (see above).

Taxonomy unaware model. The GMM used specimens assigned a priori to groups based on a comparative, 
non-explicit analysis of phenotypic variation (i.e., phenogroups were determined by eye).

Model selection. To determine the best fit model—including the number, orientation, and shape of pheno-
groups in the mixture as well as the assignment of specimens to phenogroups—, we used the Bayesian informa-
tion criterion (BIC)79 and the integrated complete-data likelihood (ICL)  criterion80. We used the R packages 
pcaPP v1.9-7381 and mclust v5.4.682 to perform these analyses. Further details are provided in the Supple-
mentary Material.

Model‑based evidence for species using genomic data. Because our sensitivity analyses were robust 
to the amount of missing data (see Supplementary Material), we performed the following analyses using the 
matrix with the lowest amount of missing data (25% missing data) for computational efficiency. To determine 
the number of genomic-based species (hereafter, genogroups) and the assignment of specimens to genogroups 
within clades, we evaluated three competing models for genogroup delimitation. In all analyses, we did not 
assign specimens to genogroups a priori.

https://paup.phylosolutions.com
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GC model (genotypic clusters model). This model is in essence the operational equivalent with genetic data of 
the Fisherian model described above. It states that the presence of two or more genotypic clusters in a sample 
of individuals provides evidence for more than one species because distinct genetic clusters are recognized by a 
deficit of intermediates, both at single and multiple  loci34. To delimit these genogroups, we employed GFMM in 
genotypic  space35. Using the matrix with a single nucleotide polymorphism (SNP) per locus, we first estimated 
the shared allele  distance83, defined as one minus the proportion of alleles shared by 2 individuals averaged over 
loci. Loci with missing data were not considered in the pairwise distance calculation. To define the genotypic 
space for GFMM, we followed Huasdorf and  Hennig35 and used non-metric multidimensional scaling (NMDS) 
to reduce the dimensionality. In all clades, we retained only two dimensions (stress < 15% ). In this space, we 
fitted different GMM specifying 1 to n+ n/2 number of phenogroups, where n is equal to the number of taxo-
nomic species currently hypothesized to exist within each clade. To determine the best GMM, we used the 
Bayesian Information Criterion (BIC). We used the R package prabclus v2.3-284 to carry out these analyses.

CA model (cladogenesis to anagenesis model). This model states that species reside at the transition point 
between evolutionary relationships that are best represented cladogenetically (i.e., between-species branch-
ing events) and relationships that are best reflected anagenetically (i.e., within-species branching events)36. To 
delimit these genogroups, we applied an explicit phylogenetic model to identify significant changes in the pace 
of branching events on a  phylogeny37. Under the assumption that the number of substitutions between species 
is significantly higher than the number of substitutions within species, these differences are reflected by branch 
lengths that represent the mean expected number of substitutions per site between two branching events (clado-
genesis and anagenesis). We applied this model within clades employing multi-rate Poisson tree process mod-
eling in the mPTP software v0.2.4 (https:// github. com/ Pas- Kapli/ mptp)37. We used the concatenated matrix with 
complete sequences for all loci and generated a phylogenetic tree per clade using IQ-TREE v2.0.3 (http:// www. 
iqtree. org) with ultrafast bootstrap approximation to assess branch  support66,67. Because mPTP requires a rooted 
phylogeny, we mid-point rooted each phylogeny using the R package phytools v0.6-9985. We ran mPTP under 
both a maximum likelihood and a Bayesian framework with a minimum branch length threshold of 0.0001 for 
all analyses. For Bayesian runs, we used default priors and generated 500 million samples (i.e., independent 
delimitations), sampling every 1 million steps and ignoring the first 1 million as burn-in. We summarized all 
runs to indicate the percentage of delimitations in which a node was identified as a cladogenesis event (nodes 
with values closer to 1) or a transition to anagenesis (nodes with values closer to 0).

RI model (reproductive isolation model). This model states that species are evolutionarily independent groups 
of individuals which do not exchange  genes11. To delimit these genogroups, we used an explicit population 
genetic  framework86 which, under the assumption of extremely limited to absent gene flow after speciation, 
models the evolution of gene trees within species and identifies groups of individuals in gene trees that are 
shared across  loci87. We applied this model within clades employing a Bayesian modeling framework using 
the software BPP v4.0 (https:// github. com/ bpp/ bpp)88 in the analysis mode A1189. Because BPP requires that 
specimens are assigned a priori to ‘genetic populations’ (i.e., demes), we used the matrix with one SNP per locus 
and employed model-based clustering for this initial step. This clustering approach uses multilocus genotypes to 
find demes that (as far as possible) are in Hardy–Weinberg or linkage equilibrium. We applied this model-based 
clustering approach in a Bayesian framework using the programs STRU CTU RE v2.3.4 (https:// web. stanf ord. 
edu/ group/ pritc hardl ab/ struc ture. html)90 and rMaverick v1.0.5 (https:// github. com/ bobve rity/ rmave rick)91, 
which uses thermodynamic integration instead of the heuristic estimators used in STRU CTU RE. For both analy-
ses, we fitted different models specifying 1 to n+ n/2 number of demes, where n is equal to the number of 
taxonomic species currently hypothesized to exist within each clade. To determine proper exploration across 
different species delimitation models, we used both algorithms (0 and 1) implemented in BPP87 and compared 
the results across replicated runs. For each run, we used a random starting tree and a chain with at least 500,000 
steps, sampling every 10 step and discarding the first 1000 samples as burn-in. Further details are provided in 
the Supplementary Material.

Model selection. To determine the best fit model for genogroup delimitation—including the number of geno-
groups and the assignment of specimens to genogroups—, we used Bayes factor delimitation (*with genomic 
data; BFD*)92. For this analysis, we used an explicit population genetic model to compute the likelihood of 
a species tree directly from the SNP datasets, which bypasses the sampling of the gene trees at each  locus93. 
To properly compare candidate species delimitation models, we applied the scaling of the marginal likelihood 
proposed by Leaché et al.92. We applied this framework employing the Bayesian Markov chain Monte Carlo 
(MCMC) sampler SNAPP v1.4.1 (https:// www. beast2. org/ snapp/)93, which we ran through the software BEAST 
v2.5.2 (http:// www. beast2. org)94. BFD* uses path sampling to estimate the marginal likelihood of the species 
delimitation  models92. We conducted path sampling with 24 steps, using an MCMC with 250,000 steps, sam-
pling every 10 steps, and ignoring the first 12, 500 steps as burn-in. If each of the 24 steps achieved an effective 
sample sizes (ESS) � 100 , we inferred convergence; otherwise, we ran a second path sampling with 24 more 
steps using an MCMC with 500,000 steps and 25,000 steps as burn-in. We compared competing models and 
chose the best model fit for genogroup delimitation using Bayes factors according to the framework provided 
by Kass and  Raftery95. A Bayes factor (BF) statistic (2× loge ) > 10 provides decisive evidence favoring the highest 
ranked model. These analyses were followed by a model adequacy analysis using a goodness-of-fit approach to 
determine whether the genogroups we delineated could be generated by the best-fit model. To carry out these 
analyses, we ran BEAST v2.5.2 on the CIPRES Science Gateway v3.3.96. Further details are provided in the Sup-
plementary Material.

https://github.com/Pas-Kapli/mptp
http://www.iqtree.org
http://www.iqtree.org
https://github.com/bpp/bpp
https://web.stanford.edu/group/pritchardlab/structure.html
https://web.stanford.edu/group/pritchardlab/structure.html
https://github.com/bobverity/rmaverick
https://www.beast2.org/snapp/
http://www.beast2.org
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Integrating phenotypic and genome‑wide variation, spatial information, and evolutionary 
history. Based on the best fit models for phenogroup and genogroup delimitation, we assigned all speci-
mens to their corresponding phenogroup and genogroup. Because each specimen was necessarily assigned to 
a single phenogroup and a single genogroup, we determined three types of species according to the possible 
combinations of phenogroup and genogroup assignment. First, specimens assigned to a single phenogroup and 
a single genogroup delineated species that we determined as ‘good species’. Second, specimens assigned to a 
single phenogroup across multiple genogroups delineated species that we determined as ‘phenotypic cryptic 
species’. Third, specimens assigned to a single genogroup across multiple phenogroups delineated species that we 
determined as ‘genetic cryptic species’. Several specimens did not have overlapping phenotypic and genomic data 
(e.g., old herbarium specimens for which only phenotypic data were available, sterile specimens for which only 
genomic data were available). Therefore, we assigned these specimens only to their corresponding phenogroup 
or genogroup, accordingly. We referred to these specimens as ‘unknown specimens’. To interpret the different 
types of species and the ‘unknown specimens’ in an evolutionary context, we mapped the phenogroup and geno-
group assignments onto the tips of the phylogenies inferred in the CA model analysis (see above). Similarly, we 
interpreted the different types of species and the ‘unknown specimens’ in a spatial context using the geolocation 
data available for each specimen. Both the evolutionary and spatial contexts provided insight into the nature of 
plant species by illustrating patterns of common ancestry and patterns of sympatry/allopatry across geography 
and elevation.

Correspondence between taxonomic species and model‑based species. To compare the taxo-
nomic species with the species we delimited based on phenotypic and genomic data, we assigned all specimens 
to their corresponding taxonomic species, and to their best fit phenogroup and genogroup. Because each speci-
men was necessarily assigned to a single taxonomic species, phenogroup, and genogroup, we counted the num-
ber of ‘perfect matches’. A perfect match is defined as a symmetrical match between a unique taxonomic species 
and a unique phenogroup, genogroup, or combination of phenogroup and genogroup. For instance, specimens 
assigned to species x and uniquely to phenogroup a as well as assigned uniquely to phenogroup a and species 
x represent a perfect match. This assessment enabled us to determine the number of taxonomic species that 
represent ‘good species’.

Data availability
Raw FASTQ reads for this study have been deposited in the SRA under Bioproject accession number 
PRJNA760914. All other data, including raw morphological measurements and intermediate files are available 
in a public repository at: https:// github. com/ zapata- lab/ ms_ nature_ of_ speci es.

Code availability
Code repository is available at: https:// github. com/ zapata- lab/ ms_ nature_ of_ speci es.
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