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Cy3‑ATP labeling of unfixed, 
permeabilized mouse hair cells
Itallia V. Pacentine & Peter G. Barr‑Gillespie*

ATP‑utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory 
hair cells in the inner ear. We used a fluorescent ATP analog, EDA‑ATP‑Cy3 (Cy3‑ATP), to label ATP‑
binding proteins in two different preparations of unfixed hair‑cell stereocilia of the mouse. In the first 
preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3‑ATP. Hair cells 
and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly 
strongly with Cy3‑ATP. In many cases, vanadate  (Vi) traps nucleotides at the active site of myosin 
isoforms and presents nucleotide dissociation. Co‑application with  Vi enhanced the tip labeling, 
which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization 
inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at 
stereocilia tips was not involved. Cy3‑ATP labeling was substantially reduced—but did not disappear 
altogether—in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas 
lacking MYO7A. In the second preparation, used to quantify Cy3‑ATP labeling, we labeled vestibular 
stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer 
stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to 
Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the 
Cy3‑ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine 
the control of MYO15A ATPase activity in situ.

Abbreviations
Cy3-ATP  γ-(6-Aminohexyl)-ATP-Cy3
IHC  Inner hair cell
OHC  Outer hair cell

Myosin motor proteins are essential to the development of the inner ear’s actin-based stereocilia, which project 
from the apical surface of hair cells and detect mechanical  stimuli1. Stereocilia are constructed with bundled 
actin filaments, and are enveloped by the plasma membrane. The ~ 100 stereocilia making up a hair bundle, the 
mechanosensory organelle of inner-ear hair cells, are coupled together with a variety of extracellular linkages. The 
most famous of these links is the tip link, which gates the mechanotransduction channel that underlies hair-cell 
 transduction2,3. Maintaining proper tension in tip links is essential for gating the mechanotransduction channel, 
which underlies auditory and vestibular  sensation4.

Myosin isoforms that move to the plus ends of actin filaments and are expressed in hair cells include MYO1C, 
MYO3A, MYO3B, MYO7A, and MYO15A; these isoforms transport essential structural and functional proteins 
from the soma into the specialized environment of the  stereocilia5. In addition, the minus-end-directed myo-
sin motor MYO6 also plays developmental and functional roles in  stereocilia5. MYO7A has been proposed to 
interact directly or indirectly with PCDH15 and CDH23, the two cadherins that make up the hair cell’s tip links, 
and transports them along the stereocilia actin core to tension these  linkages6,7. Myosins also provide a slow 
adaptation mechanism that reduces mechanotransduction in response to a sustained  activity8–10, although the 
molecular identity of the responsible myosin remains  controversial10–14.

Considering their essential role in hearing and balance, we sought to study the dynamic activity of myosin 
motor proteins in stereocilia. Most studies of myosin activity are conducted in vitro using single actin filaments 
as platforms for myosin proteins; these experiments do not allow localization within a cell. Antibody labeling 
is the usual approach for studying the localization of proteins, but typically requires fixation of the tissue; fixa-
tion causes protein crosslinking, which then prevents study of dynamic protein trafficking or movement. Direct 
measurement of myosin ATPase activity in isolated stereocilia offers another approach, but does not allow 
localization of responsible myosin  isoforms15.
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In previous  work9,16, we showed that myosin molecules could be directly labeled with  [32P]UTP if vanadate 
 trapping17,18 was used to stabilize the myosin-nucleotide complex prior to photoaffinity labeling. We reasoned 
that vanadate trapping could also be used to slow the dissociation of fluorescent nucleotides from the active sites 
of myosin molecules (Fig. 1a). Moreover, if maintained in situ in a permeabilized cell preparation, fluorescent 
nucleotide labeling would provide an alternative way of localizing myosins within  stereocilia19. Here, we show 
that EDA-ATP-Cy3 (Cy3-ATP) can be used to label unfixed, permeabilized hair cells at the tips of their stereocilia, 
and that a substantial proportion of the labeling is dependent on the presence of MYO15A.

Results
We first visualized Cy3-ATP in mouse cochleas. A diagram of a prototypical hair bundle is presented in Fig. 1b. 
We dissected juvenile mouse cochleas and permeabilized for 10 min using a mixture of saponin and Triton X-100 
at low concentration in an intracellular-like solution. We then incubated tissues with phalloidin labeled with 
Alexa Fluor 488, which allowed us to visualize stereocilia, and mounted the cochleas in a perfusion chamber 
(Fig. 1c,d). We introduced 5 μM Cy3-ATP in intracellular solution to the preparation, then imaged the hair cells 
using light microscopy with Airyscan detection or lattice SIM acquisition and processing.

We observed consistent strong labeling of the distal tips of hair cell stereocilia (Fig. 2). While tip signal was 
observed in both inner (Fig. 2a–h) and outer hair cells (Fig. 2i), we focused on inner hair cells (IHCs) because 
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Figure 1.  Experimental materials and apparatus. (a) We expect that the hydrolysis of Cy3-ATP proceeds 
according to this scheme, which is thought to hold for most myosin isoforms. In this scheme, actin is 
represented by A and myosin by M. Nucleoside triphosphates such as Cy3-ATP bind to (1) and dissociate (2) the 
actomyosin complex. After hydrolysis of the nucleotide (4), actin and myosin reassociate (5). A fraction of the 
nucleotide is hydrolyzed without dissociating the actomyosin complex (3). The hydrolysis products, inorganic 
phosphate  (Pi) and Cy3-ADP, are released sequentially (6) and (9). Between the release of  Pi and that of Cy3-
ADP, the myosin proceeds through a power stroke and a kinetically irreversible step (8). Vanadate can bind 
before Cy3-ADP release; the slow dissociation of vanadate will trap Cy3-ADP on myosin for a prolonged time 
(7). Although specific rate constants may differ, this mechanism is thought to hold for all myosin  isoforms34. (b) 
Diagram of a cochlear hair bundle, with key structures called out. (c) Perfusion chamber. (d) Perfusion chamber 
mounted on microscope, with a tissue paper wicking liquid out of the chamber on one side and drawing liquid 
(blue) into the chamber following the direction of the arrow.
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their stereocilia are larger and are more easily distinguished. Moreover, IHC stereocilia often could be observed 
in an image plane that excluded the cell bodies, which improved our ability to measure signals at the tips. The 
tip signal was easily distinguished from background signal even with 5 μM Cy3-ATP in solution, suggesting that 
the local concentration of Cy3-ATP at tips was substantially more than 5 µM; subsequently, all cochlear images 
were taken during exposure to Cy3-ATP unless otherwise stated.

Figure 2.  Cy3-ATP labels the tips of cochlear stereocilia. (a) IHCs labeled with Cy3-ATP at P3.5. Z-projections 
using maximum intensity. Increasing the image gain (right) shows that shorter stereocilia also have signal at 
their tips (yellow arrowheads). (b) IHCs labeled at P6.5. The top two examples are single section images; the 
bottom two examples are z-projections using maximum intensity. (c) IHCs labeled at P8.5. The top left example 
is a single section image; the other three examples are z-projections using maximum intensity. (d) IHCs at P14.5; 
z-projections at maximum intensity. (e) IHCs at P9.5; z-projections using maximum intensity. (f) Cochlear 
tissue at P9.5 labeled with phalloidin alone; z-projections using maximum intensity. The single row of inner hair 
cells (white arrowhead) shifted away from the three rows of outer hair cells (yellow arrowhead) in one region. 
(g, h) IHCs at P6 or P9.5; z-projections using maximum intensity. (i) OHCs labeled at P9.5; z-projections using 
maximum intensity. (j) IHCs labeled at P7.5; z-projections using maximum intensity. Left images are before 
exposure to ADP, middle images are during exposure to 500 μM ADP, and right-images are after ADP has been 
washed out. Panel full heights: (a) 9 μm (left) and 3.5 μm (right); (b,c) 6.7 μm; (d) 9.3 μm; (e) 40 μm; (f) 399 μm; 
(g–i) 9.3 μm; (j) 7.0 μm. Panel (a) is from a lattice-SIM processed images; all others are Airyscan. Actin was 
labeled with phalloidin 488. All images except f were taken during exposure to 5 μM Cy3-ATP in C57B/6 mice.
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We examined labeling of cochlear tissue from P3.5 to P14.5 (Fig. 2a–d) and observed consistent, punctate label 
at the tips of stereocilia at all ages. Labeling of longer and thicker IHC stereocilia in rows 1 and 2 was considerably 
stronger than that in row 3 (Fig. 2a, arrowheads). By P14.5, IHCs were more resistant to permeabilization (Fig. 2d; 
see below). We also observed high signal from the soma, particularly the nuclei (Fig. 2e). We sometimes observed 
that the apical surface of the hair cell had stretched away from the cell body (Fig. 2e, left), sometimes seeming 
to break off entirely (Fig. 2e, right). We presume this is due to tissue perturbance by the permeabilization step.

Consistent Cy3-ATP labeling was beset by several challenges. The first was the proximity of the IHCs to the 
outer hair cells (OHCs); if splayed IHC stereocilia overlapped other cells, the signal from the underlying soma 
could overwhelm the tip signal (Fig. 2h). We found that when the cochlear tissue was perturbed sufficiently to 
separate the row of IHCs (Fig. 2f, white arrowhead) from the rows of OHCs (Fig. 2f, yellow arrowhead), IHCs 
were much more likely to be ideally oriented for imaging.

A second challenge was that unfixed IHCs were more resistant to permeabilization than other cells. Too 
much detergent destroyed cells; too little resulted in IHCs that were unlabeled by phalloidin but paradoxically 
still showed Cy3-ATP labeling (Fig. 2g). Moreover, the older the tissue, the more resistant the IHCs were to 
detergent. Due to these constraints, the most robust Cy3-ATP labeling of IHCs was seen between P3.5 and P8.5. 
Use of 0.008% saponin alone allowed selective labeling of OHCs; addition of small amounts of Triton X-100 
(0.012–0.016%) to the saponin mixture was required for robust IHC labeling. Younger tissue (P3.5–P5.5) required 
less Triton X-100 for permeabilization (0.012%), while older tissue (P6.5–P14.5) required more (0.016%).

To confirm that our signal was a result of nucleotide binding and not due to an effect of the Cy3 tag, we co-
applied an excess of ADP with Cy3-ATP (Fig. 2j). We first exposed the tissue to Cy3-ATP alone and imaged the 
cells, observing tip signal (Fig. 2j, left panels). We then perfused with intracellular solution to eliminate remain-
ing Cy3-ATP; after the tip signal was below detection, we then exposed the cells to 5 µM Cy3-ATP and 500 µM 
ADP. We imaged the same set of cells and observed that the fluorescence signal was absent from stereocilia 
(Fig. 2j, middle panels). To confirm reversibility, we washed the tissue again, waited 5 min, and then re-applied 
5 µM Cy3-ATP, which restored the tip signal (Fig. 2j, right panels). This experiment suggested that the binding 
of Cy3-ATP to stereocilia results from interaction of nucleotides with an unknown partner.

Vanadate sensitivity of cochlear Cy3‑ATP target. As assessed by protein mass spectrometry, ATP-
binding molecules in vestibular hair bundles fall into several classes that exhibit widely varying  concentrations20. 
Actin isoforms are very abundant, accounting for 400,000 molecules per stereocilium. The unconventional 
myosins MYO1C, MYO1H, MYO6, MYO7A, and MYO15A together account for about 2000 molecules per 
stereocilium, while the  Ca2+ pump ATP2B2 is also present at 2000 molecules per stereocilium. A variety of other 
ATP-binding proteins can also be detected in  stereocilia21.

To narrow down which proteins account for Cy3-ATP labeling at hair-cell stereocilia tips, we used ortho-
vanadate  (VO4

3−, also known as vanadate), which acts as an analog of inorganic phosphate and binds to both 
actin and  myosin17,18,22,23. When bound to myosins, vanadate prolongs the ADP-bound state by replacing the 
hydrolyzed phosphate, preventing ADP dissociation.

To test whether our observed tip signal is sensitive to vanadate, we exposed the tissue to Cy3-ATP for 2 min. 
We imaged during exposure, then washed and imaged the cells over 10 min (Fig. 3a). We included 250 μM ADP 
in our initial wash solution to prevent Cy3-ATP rebinding. We then washed with a solution lacking ADP and 
waited 5 min for target sites to clear. We then repeated the Cy3-ATP labeling procedure on the same preparation, 
this time with 1 mM vanadate co-applied with Cy3-ATP (Fig. 3b). Co-application with vanadate increased the 
persistent tip signal generated by Cy3-ATP (Fig. 3b-c). This result suggests that the binding partner of Cy3-ATP 
is sensitive to vanadate.

No effect of actin polymerization inhibitors on cochlear Cy3‑ATP tip labeling. Labeling at stere-
ocilia tips, where actin polymerizes, suggested that newly added actin monomers might be responsible for Cy3-
ATP labeling at tips. In this scenario, exchange of bound unlabeled nucleotide for Cy3-ATP might be enhanced 
on actin monomers found at stereocilia tips, which could add to existing filaments. To prevent actin polymeriza-
tion, we used two known blockers of actin addition to pre-existing filaments, latrunculin A and cytochalasin D. 
Latrunculin A binds to actin monomers and prevents them from binding to actin  filaments24, while cytochalasin 
D binds to the growing (positive) end of filaments, preventing monomers from  binding25. Cochlear cells were 
exposed for 10 min to a mixture of 20 μM latrunculin A and 20 μM cytochalasin D, then 5 μM Cy3-ATP was 
added for 2 min (Fig. 3d, left panels). Cells were washed for 5 min, then re-exposed to 5 μM Cy3-ATP for 2 min. 
Latrunculin A and cytochalasin D had no effect on the signal at stereocilia tips (Fig. 3d). This experiment sug-
gests that the Cy3-ATP signal is unlikely to derive from actin incorporation.

Cy3‑ATP tip labeling in isolated utricular stereocilia. To provide a better preparation for quantifying 
Cy3-ATP binding, we isolated vestibular stereocilia on  glass26,27 and measured Cy3-ATP tip signal by fluores-
cence microscopy. Using C57BL/6 mice, utricular stereocilia mice can be isolated in much greater numbers and 
with much less contamination than can cochlear stereocilia. Unlike with cochlear stereocilia, when we imaged 
vestibular stereocilia in the presence of 5 µM Cy3-ATP in solution, the signal at tips was relatively weak com-
pared with the solution signal. We therefore added vanadate to prolong signal lifetime, allowing robust Cy3-ATP 
tip signal to persist for over an hour after washing, which permitted imaging of many stereocilia with a single 
exposure to Cy3-ATP.

In isolated utricular stereocilia, we also observed Cy3-ATP signal at the tips of stereocilia, including even in 
short stereocilia (Fig. 4a–j). There was also a much less intense but consistently observable Cy3-ATP signal at 
the stereocilia taper region (Fig. 4a,b, yellow arrowheads), which required increasing the gain to visualize clearly 
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Figure 3.  Cy3-ATP tip signal is sensitive to vanadate trapping and is not binding to actin. Actin was stained 
with phalloidin-488. All images are Airyscan in C57B/6 mice. (a) A single inner hair cell during a time-lapse 
experiment, z-projections with averaged intensity. (b) Images of the same hair cell during a second time-lapse 
experiment performed 5 min after the experiment in (a), with 1 mM vanadate in the initial solution. (c) Graphs 
of fluorescence signal at the tips of stereocilia from the cell in (b) and (c), n = 7 stereocilia at 12 time points 
for two conditions (with or without vanadate). The full experiment described in b and c was repeated with 
similar results (N = 2 mice). Statistical significance was determined by multiple t-tests with a two-stage step-up 
 method50; Q = 1%. *p < 0.001 **p < 0.0001. (d) Single section images of two inner hair cells during an exposure 
and wash regiment. The orange bar represents 12 min of exposure to a co-application of 20 μM latrunculin A 
and 20 μM cytochalasin D. The black bar represents 8 min of wash with intracellular solution (1 min to perform 
wash, 5 min wait for cells to clear, 2 min with concurrent exposure to Cy3-ATP). The blue bar represents 2 min 
of exposure to 5 μM Cy3-ATP. N = 6 mice. Scale: All panel heights are 8.9 μm.
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(Fig. 4b). We also observed long structures that we presume to be kinocilia, as they labeled with Cy3-ATP but 
not phalloidin (Fig. 4j, yellow arrowheads).

Cochlear Cy3‑ATP tip labeling in myosin knockout lines. Myosin motor proteins are vanadate-sen-
sitive, and several unconventional myosin isoforms are found in  stereocilia5. Several are found at stereocilia tips, 
including  MYO15A28. To test the role of MYO15A, we used the shaker-2 allele of Myo15a29. Loss of MYO15A 
causes stunted stereocilia lengthening and reduced pruning, resulting in short hair bundles and extra rows of 
stereocilia.

In the intact cochlea preparation, the Cy3-ATP tip signal was still visible in Myo15ash2/sh2 hair cells, but was 
substantially reduced compared to hair cells of heterozygote siblings (Fig. 5a,b). We also examined cochleas 
from mice with the 8J allele of Myo7a, which have no functional  MYO7A30. While stereocilia are disorganized 
in Myo7a8J/8J mice, the Cy3-ATP tip signal did not appear to be reduced as compared to controls (Fig. 5c,d).

To quantify Cy3-ATP labeling in the mutant mouse lines, we compared stereocilia isolated from utricles 
of control and mutant mice. Comparing Myo15ash2/+heterozygote (Fig. 5e) and Myo15ash2/sh2 knockout mice 
(Fig. 5f), we measured the length of each stereocilium and the fluorescence intensity at its tip. We plotted the 
stereocilia length distributions for Myo15ash2/+and Myo15ash2/sh2, fitting each with a single Gaussian (Fig. 5g). As 
expected, Myo15ash2/+stereocilia were longer (up to 17 μm), while Myo15ash2/sh2 stereocilia did not exceed 4 μm 
in length (Fig. 5g). We plotted tip signal against length for each stereocilium, and found that longer stereocilia 
have higher signal, albeit with considerable variability (Fig. 5h).

To avoid a confound from length, we divided signal by length for each stereocilium, and plotted the mean for 
heterozygotes and Myo15ash2/sh2 (Fig. 5i). Even correcting for length, tip signal in Myo15ash2/sh2 stereocilia was 
significantly less than in heterozygote siblings. When we only used the heterozygote stereocilia under 4 μm in 
length to match the length of Myo15ash2/sh2 stereocilia, a significant difference remained. Since there were fewer 
heterozygous stereocilia shorter than 4 μm, we added in additional data not plotted in Fig. 5h and increased the 
number of < 4 μm heterozygote stereocilia to more closely match the number of Myo15ash2/sh2 stereocilia. In all 
cases, there was a statistically significant difference between tip signal/length of Myo15ash2/+ and Myo15ash2/sh2 
(Fig. 5i).

We also isolated stereocilia from Myo7a8J/+heterozygote and Myo7a8J/8J homozygote mice (Fig. 5j,k) and 
did not observe any statistical differences between their ratios of tip signal to length (Fig. 5m,n). Interestingly, 
stereocilia from Myo7a8J/8J knockout mice were significantly longer than heterozygotes, reaching lengths up to 
26 μm (Fig. 5l). The binned distribution appeared to be bimodal, and was better fit with a sum of two Gaussians 
(Fig. 5l, orange line).

MYO3A and MYO3B localize to the tips of stereocilia in hair cells and could plausibly account for the signal 
remaining in Myo15ash2/sh2 stereocilia. Because we do not have access to a Myo3 double knockout line, we instead 
used an antibody against MYO3A in Myo15ash2/sh2 mice. In both cochlea (Fig. 6a,b) and utricles (Fig. 6c,d), we 
observed MYO3A labeling at the tips of stereocilia in heterozygote and Myo15ash2/sh2 mice. This confirmed that 

Figure 4.  Cy3-ATP labeling in isolated utricle stereocilia. (a–j) Examples of isolated stereocilia from utricles of 
P9.5-P11.5 C57B/6 mice using Airyscan imaging. (a,b) show low- and high-gain images of a single field from 
P9.5 utricle. Yellow arrowheads indicate weak Cy3-ATP signal at stereocilia taper regions. Yellow arrowheads in 
(j) indicate probable kinocilia. Panel full heights: (a, b) and (f,g) 14 μm; c, 12 μm; (d,e) 5.8 μm; (h) 3.4 μm; (i) 
8.3 μm; (j) 13.6 μm.
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MYO3A is still present in the absence of MYO15A, and that myosin 3 proteins could account for the remain-
ing Cy3-ATP tip signal observed in Myo15ash2/sh2 mice. As a positive control, we also used an antibody against 
MYO7A in Myo15ash2/sh2 mice. We observed that MYO7A label is present even in the absence of MYO15A 
(Fig. 6e–h).

Discussion
We present here two methods for visualizing ATP-binding proteins in unfixed hair cell stereocilia, with intact 
cochlea or isolated utricle stereocilia. Strikingly, the most prominent labeling of stereocilia is of their tips, which 
is where length is controlled and mechanotransduction occurs. Based on results with mutant mice, we suggest 
that both methods primarily detect MYO15A.

Cy3‑ATP labels a nucleotide binding site. A large molecule like Cy3-ATP, which contains hydrophilic 
adenosine triphosphate and hydrophobic Cy3 moieties, conceivably could bind targets in the tissue through the 
nucleotide or another portion of the molecule. Because unlabeled ADP or ATP completely block labeling, how-
ever, it seems very likely that it labels stereocilia through the nucleoside triphosphate moiety. Moreover, the rapid 
reversibility of labeling is consistent with an interaction through the nucleotide rather than the hydrophobic Cy3 
moiety. Finally, the effect of vanadate on the labeling is also consistent with the molecule binding with a bona 
fide nucleotide binding site.

Cy3‑ATP does not label actin. A plausible scenario for labeling of actin would be for Cy3-ATP to bind 
to G-actin, presumably during profilin-catalyzed ADP:ATP  exchange31, followed by addition of the Cy3-labeled 
monomer to the filament ends growing at stereocilia  tips32,33. This outcome seems unlikely since two inhibitors 
of actin polymerization had no effect on the Cy3-ATP tip labeling. An alternative possibility is that Cy3-ATP 
labels nucleotide-binding sites on newly polymerized actin in filaments, but the persistence of tip labeling after 
several cycles of washing calls into question why the tips would be preferentially labeled. The evidence makes 
actin less likely than other molecules, but the high level of actin at stereocilia tips means that it is difficult to rule 
this possibility out.

Cy3‑ATP labeling of MYO15A. Stabilization of the Cy3-ATP signal at stereocilia tips when vanadate was 
included in the labeling solution implicates myosin isoforms. Moreover, localization at stereocilia tips is a logical 
location since most myosins travel towards actin filament plus  ends34; all stereocilia actin filaments are organized 
with their plus ends pointing towards stereocilia  tips35.

The myosin isoforms most convincingly preferentially localized to stereocilia tips are the Class III myosins 
MYO3A and  MYO3B36–38, as well as the MyTH4-FERM myosin  MYO15A28,39. We saw robust labeling for MYO3A 
in Myo15ash2/sh2 mice, which nevertheless showed a significant diminution of Cy3-ATP labeling. MYO3A is thus 
unlikely to account for the majority of the Cy3-ATP tip labeling, MYO7A is often observed at tips, but usually is 
found throughout the  stereocilia40 or is concentrated at the upper insertion point of the tip  link7,13. In addition, 
Cy3-ATP labeling at stereocilia tips was not diminished in Myo7a8J/8J mice, which do not express  MYO7A30. 
While MYO7A may well be labeled by Cy3-ATP, if so, it is not labeled efficiently.

By contrast, Cy3-ATP labeling decreased significantly (by 50%) in Myo15ash2/sh2 mice, even when the shorter 
stereocilia length of the mutants was accounted for. Other myosin isoforms are also not labeled efficiently. MYO6 
is by far the most abundant myosin in  stereocilia20, but is not found at stereocilia  tips19,41. Interestingly, we often 
saw lower intensity labeling of Cy3-ATP at stereocilia tapers, where MYO6 is  concentrated19,41. Like MYO7A, 
however, if MYO6 is labeled by Cy3-ATP, labeling is not particularly efficient.

In cochlea, the preponderance of Cy3-ATP labeling at stereocilia tips is not stabilized by vanadate. This result 
suggests the possibility that some of this labeling is not due to myosin molecules. Alternatively, vanadate trapping 
with Cy3-ATP may be significantly less efficient than trapping with less-bulky nucleotides.

Comparison to labeling stereocilia myosins using radiolabeled nucleotides. We previously used 
vanadate and  [32P]UTP and  [32P]ATP to label myosin molecules in an isolated stereocilia  preparation9,16. Under 
these conditions, a 120-kD protein that we identified as MYO1C was predominantly labeled, although 160 kD 
and 250 kD proteins were also labeled. The 160 kD protein is most likely MYO6, which is very abundant in ves-
tibular hair  bundles21, although MYO3A and MYO3B may contribute as well. The 250 kD band labeled by  [32P]
UTP probably corresponds to MYO7A, MYO15A, or both.

While our results suggest that MYO15A is the predominant myosin labeled with Cy3-ATP, they also indicate 
that other nucleotide-binding proteins are labeled in stereocilia, which may include MYO1C, MYO1H, MYO3A, 
MYO3B, MYO6, and MYO7A. MYO15A is clearly preferentially labeled, out of proportion with its abundance 
in  stereocilia21. Presumably structural characteristics of the active site of MYO15A accommodate the bulky Cy3 
moiety in a way that does not occur readily with other myosin isoforms.

Utility of Cy3‑ATP labeling. Cy3-ATP has been used for labeling nucleotide-binding proteins in including 
muscle or muscle  fibers42,43, especially for fluorescence resonance transfer experiments, but has not been used 
for protein localization. Proteins are usually visualized in hair cells using antibodies following fixation, which 
crosslinks proteins and usually eliminates enzymatic activity. In our permeabilized cell prep, tissue is unfixed 
and remaining proteins are amenable to chemical intervention. Future modifications of this method should 
allow us to study myosin ATPase activity in a more-native environment.
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Cy3-labeled nucleotides have been used to examine activity of single myosin molecules in vitro44–47. We do 
not have single-molecule resolution in our experiments, however, and it is probable that many myosin molecules 
contribute to the signal that we measure at stereocilia tips. Nevertheless, we conceivably can use this tip-labeling 
method to determine the influence of factors that control MYO15A activity or that of other myosins.

Methods
Use of live vertebrates. The procedures described in this manuscript were approved by the Oregon Health 
& Science University Institutional Animal Care and Use Committee (protocol #TR01_IP00000714). All experi-
ments were performed in accordance with relevant guidelines and regulations. Because we used excised explants 
for investigation, all experiments began with animal euthanasia, which followed guidelines reported in the 
American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals (2020).

We used C57BL/6J mice (RRID:IMSR_JAX:000664, Jackson Laboratories, Bar Harbor, ME), Myo15ash2/sh2 
on a C57BL/6 background (MGI Cat# 3046320, RRID:MGI:3046320), and Myo7a8J/8J on a C57BL/6 background 
(MGI Cat# 5425619, RRID:MGI:5425619)30. Mice were backcrossed beyond the 6th generation. In all cases, we 
used a mixture of female and male animals.

When possible, we complied with ARRIVE  guidelines48. In the experiments of Figs. 2 and 4, only C57BL/6J 
mice were used in comparisons of Cy3-ATP labeling conditions; in addition, these experiments were qualita-
tive and not quantitative. Quantitative experiments of Fig. 3 also used C57BL/6J mice. In the experiments of 
Figs. 5 and 6, we compared either Myo15ash2/+heterozygotes to Myo15ash2/sh2 homozygotes (both Figs. 5 and 6) 
or Myo7a8J/+heterozygotes to Myo7a8J/8J homozygotes (Fig. 5 only). Animal numbers are indicated in figure leg-
ends; power analyses were not used to determine sample sizes. No results were excluded for quantitative analysis. 
Randomization was not used. Blinding was impossible in the comparisons of different mouse genotypes as the 
genotypes were obvious from phenotype. Outcome measures and statistical methods for quantitative experi-
ments (Fig. 5) are discussed below.

Materials
EDA-ATP-Cy3 (Cy3-ATP) was obtained from Jena Bioscience (#NU-808-CY3); sodium orthovanadate (referred 
to as vanadate) was purchased from Sigma-Aldrich (#S6508); 6-(2-MeBu)-ADP (referred to as ADP) was pur-
chased from Biolog (#M028). Latrunculin A was obtained from Cayman Chemical Company (#10010630) and 
cytochalasin D was obtained from ApexBio (#B6645). Alexa Fluor 488 phalloidin (#A12379; phalloidin-488) and 
Alexa Fluor 568 phalloidin (#A12380; phalloidin-568) were obtained from Thermo Fisher Scientific.

Primary antibodies for immunocytochemistry were 1:500 mouse anti-MYO7A (Proteus, Ramona, CA; #25-
6790; RRID:AB_10015251) and 1:250 mouse anti-MYO3A (QHF antibody, raised against the C-terminal 22 
amino acids of X. laevis MYO3A; from B. Burnside, University of California, Berkeley). The secondary antibody 
was Alexa 488 donkey anti-rabbit IgG (H + L) from Thermo Fisher (#A-21206).

Permeabilized cell preparation. Using forceps, we dissected cochleas or utricles in cold Hank’s bal-
anced salt solution (#14025076, Thermo Fisher Scientific) supplemented with 5 mM HEPES, pH 7.4 (dissection 
buffer). In cochleas, we removed the modiolus and the basilar membrane before permeabilizing for 10 min with 
gentle rotating in intracellular solution (15 mM HEPES, 50 mM KCl, 1 mM  MgCl2, 1 mM EGTA, 1 mM DTT, 
pH 7.5) with 0.008% saponin and 0.012% or 0.016% Triton X-100 (higher concentrations for P6.5 and older). To 
label actin filaments, we also added 1:100 phalloidin-488 to the permeabilizing solution.

Figure 5.  Cy3-ATP signal is significantly reduced in Myo15ash2/sh2 mice, but not Myo7a8J/8J mice. (a–d) 
Maximum intensity z-projections of cochlear hair cells. (a) IHCs from Myo15ash2/+mice. (b) IHCs from 
Myo15ash2/sh2 mice. (c) IHCs from Myo7a8J/+ mice. (d) IHCs from Myo7a8J/8J mice. (e) Stereocilia isolated from 
Myo15ash2/+ mouse utricles. (f) Stereocilia isolated from Myo15ash2/sh2 mouse utricles. (g–i) Quantitation of 
utricle stereocilia from 5 Myo15ash2/+ animals and 4 Myo15ash2/sh2 animals. (g) Number of stereocilia binned 
by length of stereocilium (1 μm bins); single Gaussian fits. Myo15ash2/+:  R2 = 0.8694, Myo15ash2/sh2:  R2 = 0.9956. 
(h) Tip signal dependence on length for individual stereocilia. Y-axis is logarithmic; all negative values were 
converted to 0.1 (35 converted to 0.1 of n = 300 for Myo15ash2/+; 99 converted of n = 450 for Myo15ash2/sh2). 
Data were fit with linear regression: Myo15ash2/+, 21x + 27  (R2 = 0.1754); Myo15ash2/sh2, 12x + 11  (R2 = 0.0284). (i) 
Tip signal divided by length (mean ± SEM). Statistical significance determined by multiple t-tests with a two-
stage step-up  method50; Q = 1%. **p < 0.0001. Negative values were converted to zeros (Overall: 35 converted 
of n = 298 for Myo15ash2/+, 99 converted of n = 450 for Myo15ash2/sh2; Overall < 4 μm: 25 converted of n = 143 
total Myo15ash2/+, 99 converted of n = 450 for Myo15ash2/sh2; Overall< 4 μm n > 450: 98 converted of n = 530 for 
Myo15ash2/+, 99 converted of n = 450 for Myo15ash2/sh2). (j) Stereocilia isolated from Myo7a8J/+ mouse utricles. 
(k) Stereocilia isolated from Myo7a8J/8J mouse utricles. (l–n) Quantitation of utricle stereocilia from 6 Myo7a8J/+ 
animals and 6 Myo7a8J/8J animals. (l) Number of stereocilia binned by length of stereocilium (1 μm bins); single 
Gaussian fits. Myo7a8J/+ data were fit with a single Gaussian,  R2 = 0.9274; data for Myo7a8J/8J were fit with a 
sum of two Gaussians. (m) Tip signal dependence on length for individual stereocilia. Y-axis is logarithmic, 
negative values were converted to 0.1 (n = 22 converted of n = 400 total Myo7a8J/+, n = 36 converted of n = 400 
total Myo7a8J/8J). Data were fit with linear regression: Myo7a8J/+: 41x − 62  (R2 = 0.3549); Myo7a8J/8 J: 34x − 26 
 (R2 = 0.2981). (n) Tip signal divided by length (mean ± SEM). Statistical significance determined as in (h); 
ns, not significant. Negative values were converted to zeros (Overall: 22 converted of n = 400 for Myo7a8J/+, 
36 converted of n = 400 for Myo7a8J/8J; Overall > 1 μm: 20 converted of n = 386 for Myo7a8J/+, 33 converted of 
n = 387 for Myo7a8J/8J). Panel full heights: (e, f) and (j, k) 10.1 μm.

◂
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After washing three times with intracellular solution, we mounted the cochleas on a slide with the hair cells 
facing up and removed the tectorial membrane. Slides were prepared with two strips of 0.12 mm SecureSeal 
Adhesive (Grace Biolabs SA-S-1L, #092321) so that, after addition of a 50 × 22 mm coverslip, the tissue was inside 
a handmade perfusion chamber (Fig. 1b).

For utricles, we used an eyelash brush to remove otoconia, and then gently blotted the utricles against cover-
slips to isolate stereocilia as previously  described19,49. Square #1.5 glass coverslips (Corning) were washed with 
water and 70% ethanol, autoclaved, and then coated with 100 μg/ml poly-l-lysine for 10–20 min. Poly-l-lysine 
was removed and coverslips dried for 30–60 min. The coverslip was wetted with intracellular solution, then 
utricles were gently pressed against the poly-l-lysine-coated coverslip surface to isolate stereocilia. We then 
permeabilized the blotted stereocilia for 5 min to intracellular solution with 0.008% saponin, 0.012% Triton 
X-100, and 1:100 Alexa Fluor 488 phalloidin. After washing three times with intracellular solution, we attached 
coverslips face-down to slides with two strips of SecureSeal Adhesive, taking care to renew the solution during 
the preparation steps to prevent blotted stereocilia from drying out.

After mounting the perfusion chambers on the microscope, solution was placed on one side of the overhang-
ing coverslip. When put in contact with the solution in the chamber on the other side of the coverslip, a piece 
of tissue paper wicked the old solution out and perfused the new solution into the chamber by capillary action 
(Fig. 1c). Given the chamber size, 50 µl was sufficient to replace the solution, and up to 200 µl could fit on the 
coverslip overhang.

Samples were labeled with internal solution containing 5 µM Cy3-ATP; in some cases, 1 mM vanadate was 
included as well. To avoid polymerization of vanadate, 200 mM stock solutions at pH 10 were prepared from 
sodium  orthovanadate17 and stored at − 80 °C.

Microscopy. Figure 1b,c was captured using an iPhone 5 camera. Figure 2a was captured using a Zeiss Elyra 
7 inverted microscope using lattice-based SIM with a 63 × 1.4 n.a. Plan Apochromat objective, and processed 
using automated Wiener filter estimation determined by the manufacturer’s algorithm. We omitted the default 
baseline cut and manually assessed the lower cut-off to preserve faint signals in high dynamic range images. 
All other images in the paper were captured with an LSM 880 using Airyscan, and processed using automated 
Wiener filter estimation determined by the manufacturer’s algorithm. Permeabilized isolated stereocilia from 
utricles and fixed tissues were imaged using a 63 × 1.4 n.a. Plan Apochromat oil objective, while permeabilized 
cochleas were imaged using a 40 × 1.2 n.a. W LD LCI Plan Apochromat water objective. Figure 2f used a 20× 
water objective.

Quantification of Cy3‑ATP signal. We used Fiji/ImageJ to quantify fluorescence signal and stereocilia 
length. We used GraphPad Prism to generate all graphs and perform all statistical tests.

In Fig. 3c, we quantified Cy3-ATP signal at the stereocilia tips of the cell from Fig. 3a,b. To do this, we gen-
erated z-projections using averaged intensity for 12 time points, the first being during exposure to Cy3-ATP, 
and the next 11 time points being post-wash images every minute for 10 min. We used the phalloidin signal as 

Figure 6.  Both MYO3A and MYO7A are normally localized in Myo15ash2/sh2 mice. All images are Airyscan 
and are single sections unless stated. (a–d) IHCs from Myo15ash2/+ (a) and Myo15ash2/sh2 (b) cochleas labeled 
with anti-MYO3A. Similar results were seen in 1 Myo15ash2/+ animals and 3 Myo15ash2/sh2 animals (applies 
to c-d too). (c, d) Vestibular hair cells from Myo15ash2/+ (c) and Myo15ash2/sh2 (d) utricles labeled with anti-
MYO3A. Viewed in profile using x–z reslice, except for top panels in (d). (e, f) IHCs from Myo15ash2/+ (e) 
and Myo15ash2/sh2 (f) cochleas labeled with anti-MYO7A. MYO3A. Similar results were seen in 4 Myo15ash2/+ 
animals and 4 Myo15ash2/sh2 animals (applies to g-h too). (g, h) Vestibular hair cells from Myo15ash2/+ (g) and 
Myo15ash2/sh2 (h) utricles labeled with anti-MYO7A. Viewed in profile using x–z reslice. Panel full heights: (a, b) 
and (e, f) 23 μm; (c, d) and (g, h) 7.8 μm.
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a reference point to maintain the same z-depth of the sections used for the projection. At each time point, for 
both conditions (with or without vanadate), we drew seven regions of interest (ROIs) around the same seven 
stereocilia in row 1. These stereocilia were chosen because they were more central and were well isolated from 
each other and objects in the image. We measured the integrated density in each ROI of the channel with an 
emission peak at 568 nm. We also used collected integrated density from an area adjacent to the stereocilia tips 
to subtract background. We then graphed the mean with standard deviation of each time point for the with or 
without vanadate conditions (Fig. 3c). We compared the two conditions at each time point; statistical signifi-
cance was determined by multiple t-tests with a two-stage step-up  method50, with Q = 1%. We used G*power to 
determine that we had reached appropriate sample size to detect statistical differences with α = 0.05, which was 
a minimum of three stereocilia in each condition.

In Fig. 5, we analyzed images of stereocilia that had been captured after exposure to 5 μM Cy3-ATP and 1 mM 
vanadate, and then washed with intracellular solution containing 1 mM vanadate. Because vanadate extended the 
life of the signal, images were taken up to 1 h post-wash for each utricle blot. To quantify tip signal, we drew an 
ROI around the tips of stereocilia and measured the integrated density of the channel with an emission peak at 
568 nm. We also measured the length of each stereocilium. We subtracted background by measuring integrated 
density in > 10 ROIs drawn over blank areas of the image, avoiding large fluorophore aggregates. To avoid sample 
bias, we measured all stereocilia whose lengths could be determined and whose tips were not confounded by 
fluorophore aggregates or other background noise. Then we chose a random sample of 50 stereocilia from each 
utricle. Data obtained for statistical analysis of Myo7a8J/+ and Myo7a8J/8J labeling were each from N = 4 mice, 8 
utricles, and n = 400 stereocilia. Data for Myo15ash2/+ used N = 3 mice, 6 utricles, n = 300 stereocilia; Myo15ash2/sh2 
used N = 5 mice, 9 utricles, n = 450 stereocilia. For Fig. 5g,l, we binned stereocilia by length and plotted the num-
ber of stereocilia in each 1 μm bin. We fitted a Gaussian (in the case of Myo7a8J/8J, a sum of two Gaussians) to 
the data for each genotype. For Fig. 5h,m, we plotted stereocilia length against stereocilia tip signal, then fitted a 
linear regression to the data points for each genotype. For Fig. 5i,n, we divided stereocilia tip signal by stereocilia 
length for each individual stereocilium in the dataset, and then graphed the mean and SEM. For Fig. 5i, negative 
values were first converted to zeros. All Fig. 5i data: 35 converted of n = 298 for Myo15ash2/+, 99 converted of 
n = 450 for Myo15ash2/sh2; Fig. 5i data < 4 μm: 25 converted of n = 143 total Myo15ash2/ + , 99 converted of n = 450 
for Myo15ash2/sh2; Fig. 5i data < 4 μm n > 450: 98 converted of n = 530 for Myo15ash2/+, 99 converted of n = 450 for 
Myo15ash2/sh2. For Fig. 5n, negative values were converted to zeros. All Fig. 5n data: 22 converted of n = 400 for 
Myo7a8J/+, 36 converted of n = 400 for Myo7a8J/8J; Fig. 5n data > 1 μm: 20 converted of n = 386 for Myo7a8J/+, 33 
converted of n = 387 for Myo7a8J/8J). Statistical significance was determined by multiple t-tests with a two-stage 
step-up  method50, with Q = 1%.

Immunocytochemistry. Using forceps, we dissected cochleas or utricles in dissection solution. For utri-
cles, we used an eyelash brush to remove otoconia prior to fixation. Tissue was fixed for 1  h at room tem-
perature in dissection solution with 4% paraformaldehyde, then washed 2–3 times with PBS. Tissue was then 
permeabilized for 10 min with gentle rotating in PBS with 0.2% Triton X-100, and then blocked for 2 h at room 
temperature with blocking buffer. Primary antibody was applied in blocking buffer overnight at 4 °C, on a rota-
tor, washed 3× in PBS, then phalloidin and secondary antibody were applied for 4–5 h at room temperature in 
blocking buffer. We used Alexa-488 secondary antibodies at 1:1000, and phalloidin-568 at 1:500 to stain actin. 
After washing 3× in PBS, we mounted the tissue in (mounting solution). The tectorial membrane was removed 
from cochlea while mounting, and utricle mounting used a spacer.

Data availability
Figure source data generated during the current study are available from the corresponding author on reason-
able request.

Received: 16 September 2021; Accepted: 1 December 2021
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