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Phenol‑rich alternatives for Rosa 
x damascena Mill. Efficient 
phytochemical profiling using 
different extraction methods 
and colorimetric assays
Zuzanna Piotrowicz, Łukasz Tabisz*, Marta Waligórska, Radosław Pankiewicz & 
Bogusława Łęska

Damask rose is a well‑established, abundant source of phytochemicals, as well as economically 
important essential oil—however, its cultivation is demanding and costly. In this paper, extracts 
from four raw plant materials—Salvia officinalis, Sambucus nigra, Matricaria chamomilla, Calendula 
officinalis, known to be rich in phenolic compounds, but also far easier to cultivate—were directly 
compared to those obtained from Rosa × damascena Mill. By combining diverse extraction 
methodologies (in a Soxhlet apparatus, ultrawave‑assisted and microwave‑assisted, using 
supercritical  CO2) and complementary in vitro assays (radical scavenging, iron reducing, Folin–
Ciocalteau and  Al3+ complexation), it was possible to conveniently approximate and compare the 
phytochemical portfolios of those diverse plants. By factoring in the crop yields of different species, 
economically important conclusions can be reached—with pot marigold (C. officinalis) seemingly the 
most viable substitute for damask rose as a source of phenolics. Fatty acid and microelement analyses 
were also performed, to further enrich the chemical profiles of plant extracts. The paper also aims 
to collate and redesign multiple colorimetric assays frequently used while studying plant extracts 
in vitro, but criticized for their lack of correlation to in vivo activity. We show that they remain a viable 
tool for direct comparison of extraction methodologies, while highlighting their shortcomings.

Abbreviations
RD  Dried damask rose petals
MC  Dried chamomile flower heads
CO  Dried calendula flowers
SN  Dried elderberry flowers
SO  Dried and cut whole sage herb
SOX  Soxhlet extraction
UAE  Ultrasound-assisted solvent extraction
MAE  Microwave-assisted solvent extraction
SFE  Supercritical carbon dioxide extraction
RD-SOX  Extract obtained from dried damask rose petals, using Soxhlet apparatus extraction
ABTS  Radical scavenging assay, based on the reaction with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sul-

fonic acid) diammonium salt
FRAP  Ferric ion reducing antioxidant parameter, based on reaction with 2,4,6-tris(2-pyridyl)-s-triazine
FC  Folin–Ciocalteau assay, total phenolic content determining colorimetric method
FL-Al  Complexometric method with  Al3+ ions, selective for flavonoids, and specificially flavonols

Damask rose (Rosa × damascena Mill., RD) is one of the best known and most popular sources of phytochemicals. 
Studies agree that rose extracts have very strong free radical scavenging properties (compared to other plants), 
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which are correlated with the content of phenolic  compounds1. To date, gallic acid, syryngic acid, quercetin, 
kaempferol and epicatechin have been identified in damask rose  petals2,3. They also contain terpenes, glycosides 
and anthocyanins, carboxylic acids, vitamin C, tannins, and lipid compounds, including polyunsaturated fatty 
acids (PUFAs) and essential  oils4,5. Phenolic compounds present in damask rose (e.g., epicatechin) have antioxi-
dant and anticollagenase  activity6,7. It is also reported that phenolic fraction extracted from damask rose shows 
a potent anti-hyperpigmentation  effect8.

Damask rose is a cultivated plant. It is grown mainly on the Mediterranean coast, although most of the crops 
are located in the Rose Valley, Bulgaria. This species requires high air humidity, moderate temperatures and is 
fairly demanding in terms of soil quality and  water9. Petals are usually hand-picked due to their extraordinary 
delicacy. All this makes the damask rose a demanding and difficult plant to cultivate, and therefore rose-derived 
products remain expensive. For this reason, the aim of this study was to find an alternative source of phenolics 
and other bioactive compounds among common species of herbaceous plants (in Europe and worldwide), which 
would be more easily available and cheaper to grow. While specific, standard-based methods are crucial in 
determining small differences in individual chemicals present in closely related plant species, and even between 
 cultivars10, more general approach was deemed necessary to screen diverse raw materials for appreciable quanti-
ties of specific phenolic groups and other useful phytochemicals. Plants studied in this work were selected not 
only for their prevalence, but also for their common use as herbs, spices and flavoring agents, as well as in some 
nutraceuticals.

Elderberry (Sambucus nigra, SN) is a shrub commonly found throughout Europe, Central Asia, both Ameri-
cas and North Africa. It grows wild, but it is also possible to find cultivars of this  species11. Elderberry is one of 
the oldest plants used in medicine, as evidenced by Stone Age excavations, indicating early use of flowers and 
fruit for therapeutic  purposes12. Flowers contain large amounts of flavonoids, such as kaempferol, astragaline, 
quercetin, quercetin-3-O-glucoside, rutin, isoquercetin and  hyperoside13, and phenolic acids, i.e., ferulic, gallic, 
chlorogenic, syryngic and p-coumaric  acids14,15. The other secondary metabolites are mainly triterpenes (e.g., α- 
and β-amirin, ursolic and oleanic acid), and sterols, such as campesterol, β-sitosterol and sigmasterol. Elderberry 
flowers contain pectins, tannins and minute amounts of essential oil, which includes ketones, alcohols, esters, 
oxides and  terpenes13. Polyphenols obtained from this raw material show the ability to absorb UV radiation, 
reducing its penetration into deeper layers of the skin, thus preventing sunburn and DNA  damage16.

Pot marigold (Calendula officinalis, CO) probably comes from the Mediterranean, where it is still found in 
natural  habitats17. It is cultivated in many countries around the world, and sometimes also found in its feral form 
(ephemerophyte). Although it was used for therapeutic purposes already in antiquity, it is still used in modern 
herbal medicine, mainly in the case of burns, varicose veins, ulcers, jaundice and skin  problems18,19. Among the 
most abundant compounds in pot marigold one can find phenolic compounds (including p-hydroxybenzoic, 
salicylic, caffeic and gallic acids, as well as acylated flavonoids, O-glycosides and methoxylated flavonoids) and 
 saponins20. Marigold also contains carotenoids and triterpene alcohols, both in their free and esterified form, 
and PUFAs, such as calendic  acid17, and proteins, amino acids, alkaloids, tannins, saturated hydrocarbons, high 
molecular weight polysaccharides, vitamin C, and  minerals20,21. C. officinalis can also be a source of essential oil, 
of which approximately 25% is α-cadinol22.

Calendula officinalis flower extracts can be used in the treatment of inflammation and skin wounds due to its 
strong antimicrobial properties and antifungal  activity23,24. Studies also suggest that pot marigold extracts can 
be beneficial for skin healing and procollagen  synthesis25.

Chamomile (Matricaria chamomilla, MC) grows wild almost throughout the northern hemisphere (Europe, 
North America, and Asia), and even in  Australia26; it also found as a cultivated plant. Chamomile was used in folk 
medicine since antiquity: to treat wounds, bruises, burns, migraines and also to alleviate nightmares, insomnia 
and as a mild  sedative27. For therapeutic purposes, flower heads are collected. In chamomile flowers, over 120 
chemical components have been identified as secondary metabolites, including terpenoids, flavonoids and other 
compounds with potential pharmacological  activity28. These include: ferulic, caffeic, vanillic, protocatechuic, 
p-coumarinic, o-coumarinic and chlorogenic  acids29. In turn, the following flavonoids are dominant: apigenin, 
quercetin, patuletin, luteolin and their  glycosides30. Chamomile heads are also a source of essential oil, which 
contains a characteristic blue compound, chamazulene, which is synthetized from colorless sesquiterpene pre-
cursor,  matricin31,32. Chamomile is one of the richest natural sources of apigenin, which influences a number of 
cellular processes, including cytokine production and the inflammatory  response33.

Common sage (Salvia officinalis, SO) is a subshrub native to the Mediterranean, but it is currently grown 
all over Europe, including northern countries, such as Norway and Finland; sage plantations are also found in 
North America and  Africa34–36. It is a valuable raw material in herbal medicine, foodstuffs and cosmetics. Sage 
was a symbol of health and longevity already in antiquity and is widely used as a medicinal plant, recommended 
for ailments related to pharyngitis, tonsillitis and gingivitis, as well as for other inflammatory conditions within 
the oral  cavity37–39.

Various types of extracts rich in diterpenes (carnosol, carnosic acid, triterpenes (e.g. ursolic acid, oleanic 
acid), flavonoids (e.g. methyl derivatives of apigenin and luteolin) and phenolic acids are obtained from  sage40. 
Common sage contains large amounts of rosmarinic acid (which, along with carnosol and carnosic acid, has 
the strongest antioxidant properties among all chemicals identified in plants of the genus Salvia)41,42. As for the 
other phenolic acids commonly found in herbaceous plants, such as gallic acid and ferulic acid, sage contains 
only small  amounts39. Sage also contains vitamins—in particular vitamin  C43—and essential  oil44.

Rosmarinic acid protects against the harmful effects of UV radiation and ROS, shows antioxidant, anti-
inflammatory, antiproliferative, antibacterial and even antiviral activity in vitro45,46. Carnosol is responsible 
for antioxidant and anti-inflammatory properties of sage extracts. In turn, carnosic acid has antimicrobial and 
antiobesity  effects42.
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This paper explores the similarities, differences and commercial viability of plants presented above as sources 
of phytochemical-rich extracts. For that purpose, four semi-qualitative, spectrophotometric assays, frequently 
used separately while studying plant extracts’ activities in vitro, were used in conjunction with four popular 
extraction methodologies: Soxhlet extraction (SOX), ultrasound- (UAE) and microwave-assisted extraction 
(MAE), as well as supercritical  CO2 extraction (SFE). Despite the recent criticisms aimed at the so-called “in 
vitro antioxidant assays”—as they correlate poorly with in vivo activity—when combined together, they allowed 
for robust chemical profiling of selected plants. Redesigned in such a way, they can become a viable, efficient tool 
for determining the best extraction protocol for any given aim or phytochemical group—even when a diverse 
range of biomass samples is to be analyzed. Our research was further supplemented with microelement and fatty 
acid analyses of obtained extracts, to provide a more comprehensive outlook on studied species as sources of 
important chemicals for food, cosmetic and even pharmaceutical industries.

Results and discussion
Extraction methods and efficiency. Four commonly encountered plant biomass extraction methods 
were chosen for the study, and their yields compared (Fig. 1). Each was used in a manner suited to their particu-
lar strengths. The longest, energy-intensive extraction with a boiling solvent in a Soxhlet apparatus, lasting 24 h 
(SOX) can be treated as a point of reference for other methods, theoretically milder and/or faster. It was possible 
to isolate virtually all extractable compounds (soluble in ethanol) during the set timeframe: from 44% of sample 
mass in case of RD to 13% for SO.

Ultrawave-assisted (UAE) and microwave-assisted extractions (MAE) are both methods that should ensure 
better penetration of the solvent into the extracted material, in theory shortening the induction period and 
therefore the whole  process47. With a quarter of SOX extraction time (i.e., 3 h), the yields were extremely similar 
for both methods, varying from 27% for RD-MAE to 7% with SO-UAE. As the drops in yields were universally 
much lower than drops in extraction times, it can be concluded that both UAE and MAE present viable, quicker 
alternatives to traditional, time-consuming extraction methods.

Supercritical fluid extraction (SFE) has been gaining more and more popularity, as it fits best the rising trend 
of green  chemistry48. Especially  CO2 as a solvent offers huge advantages, as it is cheap, non-toxic, and easy to 
recycle. However, the strictly nonpolar nature of  CO2 limits the contents of SFE extracts, unless a co-solvent is 
used. Even then, the method’s flexibility is hindered, as shown by the low yields obtained: from 10% for RD to 
only 2% for MC (after 1 h). It can be therefore concluded that plant species selected for this study contain mostly 
polar or moderately polar extractable components, which can be successfully isolated using ethanol, but not 
supercritical  CO2 (with the possible exception of SO, as discussed later).

The universally low extraction yields obtained for sage can be explained by the nature of the raw material 
itself—in this instance, biomass came from the entire plant, i.e. both the leaves and the stems. The latter espe-
cially contain high amounts of lignocellulose, which increases the weight of the raw material, while at the same 
time reducing the amount of extractable, active compounds. This poor performance is offsetted later, when the 
economical viability of SO crops is discussed.

Figure 1.  Yields of extracts prepared using different methodologies, given as (a) percent of dry plant material 
used and (b) fraction of extraction efficiency obtained for damask rose petals, when using the same extraction 
conditions. Error bars represent one standard deviation (extractions performed in triplicate).
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Redox‑active compounds and phytochemical profiles of plant extracts. Apart from the quantita-
tive results of extraction of different plant materials, when searching for phytochemical-rich biomass sources, 
the quality of extracts needs to be assessed as well. In the initial stage, where a wide variety of plants and extrac-
tion protocols are analyzed, the very time- and cost-intensive methods like chromatography can be unneces-
sary; the same is also true when a plant material is well-documented, but process optimization is underway. The 
so-called “in vitro antioxidant assays”, like the ABTS, FRAP, Folin–Ciocalteau (FC) and flavonol-Al3+ (FL-Al) 
methods, while  popular49, have recently raised concerns—due to some authors claiming a correlation (now 
mostly disproven) between their results and in vivo  activity50. Used together, however, they form an efficient tool 
for approximating the phytochemical profile of plant extracts. This battery of simple, fast, spectrophotometric 
determinations allowed us to draw broad conclusions concerning the relative amounts of different redox-active 
compounds—such as polyphenols, vitamins, and carotenoids.

The assays increase in selectivity in the order they were mentioned, which is fairly in line with numerically 
decreasing results that were obtained for most samples (Fig. 2). While ABTS and FRAP methods are commonly 
used interchangeably—in theory being both able to measure the ability of a compound to scavenge free radicals 
in vitro by any chemical means—their mechanisms differ, with the second one’s based on the reduction of  Fe3+ 
ions. Determinations performed for the purposes of this study reveal some important deviations, especially 
when comparing results for C. officinalis extracts obtained by SOX and SFE methods (compare Figs. 2 and 3). 
In the latter case, the measured FRAP reducing activity is negligible, which contradicts the results from ABTS 
method. This leads to the conclusion that FRAP method is far less sensitive to the presence of retinoids, which 
are present in high concentration in CO, and can be expected to be especially abundant in CO-SFE. In the case 
of sage extracts, no significant differences were observed between those two extracts, which means that the non-
polar radical scavenging compounds present in SO do not belong to the group of retinoids.

The details and rationale behind phytochemical profiling of plant materials and their extracts is outlined 
below, separately for each of the species.

The damask rose extracts, as expected, contained the highest concentration of redox-active compounds 
(results obtained from the most general ABTS and FRAP assays) in extracts obtained by all methods, except for 
SFE (Fig. 2). This suggests that damask rose contains the highest amount of polar or moderately polar in vitro 
antioxidants (which can be extracted using ethanol) and at the same time only relatively few non-polar com-
pounds capable of radical scavenging, such as vitamin E and retinoids. The determination of phenol content using 
the FC method shows that they indeed comprise a very large part of extractable phytochemicals contained in the 
damask rose (rose extracts again exhibited the highest activities, among all of the examined extracts), which is 
consistent with the  literature2. However, this material contains relatively few flavonols—or they exist in highly 
saccharified forms, which show lower activity in FL-Al assay (they are also more polar, yet still visible using 
the ABTS method). While the yield of RD-SFE was 2–5 times higher when compared to other SFE extracts, in 
combination with its assay activities and fatty acid content both being low (Fig. 4a), this indicates a substantial 
essential oil content (which is, likewise, well-documented in the literature)4.

Elderberry flowers contain high amounts of phenolic compounds (the activity of extracts in FC assay is 
second only to damask rose in most cases, and even highest in the case of MAE extracts—see Fig. 2), of which 
flavonoids are present in moderate amount (which can be concluded after comparing the results of FL-Al and 
FC assays)—which also stays in line with  expectations13. These flavonoids are easily extracted, however, as can be 

Figure 2.  Comparison of activities of different extracts in all colorimetric assays, shown as milligram-
equivalents of appropriate standard per gram of (a) pure extract or (b) raw plant material (see “Materials and 
methods” and Supplementary material for details). Error bars are omitted for clarity. All results (triplicate for 
each extract) were within ± 5% of each other.
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seen by the results obtained for SN-UAE and SN-SFE. The low total yield of the SN-SFE, together with its high 
fatty acid and flavonoid content, leaves little room for essential oil, which is also supported by the  literature13. 
Apart from that, data suggest a similar phenolic profile to that observed for damask rose; while elderberry extracts 
contain less total phenolics, they remain in strong second position overall.

On the other hand, the assay results and the efficiency of C. officinalis extraction suggest that the content 
of retinoids in this plant material is appreciably high. Comparable in vitro radical scavenging activities of CO-
SOX and CO-SFE indicate that a significant amount of redox-active compounds contained in calendula are 

Figure 3.  Correlation between FRAP and ABTS assays, showing a strong, but evidently non-linear 
interdependence. Additionally, FRAP assay appears to be far less sensitive to retinoid-type compounds, as 
evidenced by vastly out-of-trend position held by lipid-rich SFE extract obtained from Calendula officinalis 
(prepared using supercritical  CO2).

Figure 4.  Additional information concerning the chemical composition of plant extracts obtained using 
different methods. (a) Amount of saturated and unsaturated fatty acids. (b) Amount of microelements. Error 
bars are omitted for clarity. All results (triplicate for each extract) were within ± 5% of each other. Precise, 
tabularized data are available in the Supplementary material.
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non-polar. Comparing this knowledge with the results of FRAP determinations, it can be safely stated that these 
compounds are mostly retinoids and similar polyunsaturated  derivatives51. Attention should also be paid to the 
results obtained for CO from ABTS test. While ethanol extracts from pot marigold do not possess exceptional 
scavenging activity, CO-SFE actually shows similar activity to CO-SOX. It can be therefore concluded that most of 
the redox-active compounds found in this plant are indeed low-polarity compounds. Apart from them, calendic 
acid present in pot marigold (a fatty acid that exhibits antioxidant properties)17 also adds to the high activity 
of CO-SFE. Furthermore, on the basis of high yield of SFE extraction and measured fatty acid content, a large 
fraction of lipid compounds in calendula is also evident. In the case of polar in vitro antioxidants, there are pro-
portionally few of these: phenolic compounds with a significant proportion of flavonoids comprise the majority 
of this group. Attention should be also paid to the results of the determination of the content of flavonoids by 
FL-Al method. When considered together with the results obtained using the Folin–Ciocalteau’s method, CO can 
be viewed as a particularly rich source of flavonols. All these observations are consistent with literature  data21.

Among all of the studied plants, only MC-SOX was obtained with a yield approaching that of RD-SOX 
(Fig. 1b). The former showed lower activities in ABTS and FRAP assays (although higher than C. officinalis and 
S. officinalis) with phenolics constituting a significant amount of extractables—which can be concluded on the 
basis of the results of FC assay, and which is again consistent with  literature52. Flavonols constitute a fairly small 
group among phenolic compounds in chamomile, and the literature data show that apigenin (which performs 
poorly in FL-Al assay) is the most abundant flavonoid in  chamomile30. Based on the low yield of MC-SFE and 
the results of colorimetric assay activities shown by it, it can be concluded that the content of non-polar redox-
active compounds in chamomile is fairly low. The main components of SFE extracts are fatty acids (Fig. 4a) and 
essential oil, of which one particularly interesting constituent, chamazulene, may be responsible for some activity 
shown in the ABTS method.

Ethanol extracts from sage were obtained with lowest yields among all of the tested raw materials, while SO-
SFE extract was obtained with the second highest, after RD-SFE. The results of ABTS and FRAP determinations 
for SO-SOX were one of the lowest, while in the case of SO-SFE they were actually the highest. No significant 
differences were observed between results of these two assays, which means that the non-polar radical scaveng-
ing compounds present in SO do not belong to the group of retinoids. In this case, the results of the FC assay 
suggest that phenolic compounds constituted a large part of the phytochemicals, and were actually dominant in 
the SO-SFE. All of these data (as well as the results of fatty acid determinations) suggest that sage contains a lot 
of non-polar, mostly phenolic redox-active compounds. This is again strongly validated by the existing literature, 
which indicates a very high content of carnosol, as well as carnolic and rosmarinic acids in sage  extracts41. These 
compounds can occur in the plant as aglycones, which makes them easily extractable with a non-polar solvent, 
such as supercritical  CO2. Additionally, based on the results of complexometric method with  Al3+, it can be safely 
assumed that sage has a relatively high content of flavonoids (flavonols), which represent a large proportion of 
the above-mentioned phenolic compounds—despite their lower overall SO-SOX concentration.

Microelements in selected herbaceous plant extracts. In order to flesh out the chemical profile of 
plant extracts, the concentration of five elements (sodium, zinc, iron, copper, and chromium) was also deter-
mined (Fig. 4b). It should be noted that, while low in concentration, those metal ions could only appear in etha-
nolic extracts as organic complexes and other lipophilic conjugates, which are known for their high transdermal 
mobility and  bioavailability53.

Calendula and chamomile extracts turned out to be the richest in sodium (~ 0.05 and ~ 0.03 mg/g, respec-
tively). Sodium is essential for maintaining the membrane potential and the volume of body cells  (Na+/K+-
ATPase, so-called sodium–potassium pump), stimulating the nerves and muscles, and the correct osmotic pres-
sure of body  fluids54.

Damask rose, on the other hand, turned out to be a good source of iron (> 0.05 mg/g of extract). Calendula 
extracts also contained significant amounts of iron (~ 0.024 mg/g), and slightly smaller amounts of this element 
were present in sage and chamomile extracts (~ 0.01 mg/g). The iron-containing heme acts as a cofactor of 
hemoglobin and myoglobin proteins, both of which play the roles of oxygen carriers in the  body55.

The remaining microelements were present in the tested plants in negligible amounts. The exact results of 
the determinations can be found in the Supplementary material.

Cultivating selected plants as sources of phenolic compounds: economic aspect. Based on 
available literature  data28,31,56–64, an attempt was made to convert the reported crop yields of selected plants into 
amount of different phytochemicals/in vitro activities that could be obtained per hectare. The authors want to 
stress that the values given (Fig. 5)   should be treated as rough approximations, due to large differences in the 
reported yields of crops from different parts of the world. Nevertheless, some important and interesting conclu-
sions can be drawn from the data.

Taking into account the total content of all in vitro radical scavengers, the greatest amount can be obtained 
from one hectare of damask rose cultivation. Surprisingly, however, the second place is taken by sage (25–40% 
of total scavenging activity supplied by RD-SOX obtained from the same cultivation area). It is also worth noting 
that in terms of producing SFE extracts, S. officinalis crops offer yields up to 60 times higher than those obtain-
able from other studied plants.

When considering selected plant materials as potential sources of phenolic compounds alone (FC assay), 
C. officinalis is the most productive crop; the same is the case when only flavonoids/flavonols are taken into 
account. In terms of obtaining these compounds, the cultivation of chamomile and sage may also turn out to be a 
worthwhile investment (flavonoids in pot marigold extracts amount to about 30% of those from calendula, when 
calculated per hectare). Also worth mentioning is the high amount of fatty acids in the inflorescences and seeds 
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of calendula and  chamomile17, when calculated per hectare. Although elderberry extracts showed high in vitro 
activities (second only to RD), their procurement from crops may not be as profitable. It is worth mentioning, 
however, that elderberry bushes are used to obtain both flowers (in spring) and fruit (in autumn). Although 
according to literature sources the latter have a lower content of phenolic compounds, they are a valuable source 
of vitamin C and  anthocyanins14,65. SN is also undemanding and easy to grow, and flowers can also be obtained 
from plants growing commonly in the wild, even on an industrial scale.

Conclusion
Herbaceous plants are a rich and varied source of phytochemicals, including phenolics and other redox-active 
compounds, which are in high demand in both food, nutraceutical and cosmetic industries. To balance indus-
trial, economical and ecological needs, new plant sources must be analyzed for their potential to supply those 
phytochemicals, and the processing of well-known species’ biomass has to be optimized. For this purpose, a 
battery of well-known, spectrophotometric, semi-quantitative assays was compiled and redesigned as an efficient 
tool for screening and profiling of plant materials and their extracts. Combined with yields obtained with four 
extraction methodologies, as well as data from plantation studies, a new approach for comparing diverse crops 
(and their optimal processing methods) was established.

Unequivocally, the highest extraction yields and in vitro assay results were obtained for damask rose extracts. 
However, if we take into account the cultivation of tested plants in terms of phenolic compounds obtained, 
pot marigold crops actually become the most valuable. This species additionally contains significant amounts 
of important fatty acids and retinoids. Slightly less efficient would be the cultivation of chamomile (which is, 
however, a valuable source of apigenin) and sage (extremely rich in rosmarinic acid)—the latter being the most 
economical option for production of “green” supercritical  CO2 extracts. In fact, due to the technological advances 
and incentives for removal of atmospheric carbon dioxide, this type of extraction is on track to become the most 
scalable and efficient in the near future. Of the five studied plants, the least productive, in terms of kilograms of 
phenolic compounds obtained per hectare, seems to be the cultivation of elderberry—although extracts obtained 
from this raw material showed the second highest (after the damask rose) activity in all of the performed assays. 
It is worth remembering, however, that crops from elderberry bushes can be obtained twice a year—in spring 
(flowers) and in autumn (fruit); this plant is also very easy to grow and common in the wild.

In summary, while rose remains the richest source of phenolic compounds and redox-active molecules, tak-
ing into account the efficiency and economic aspects of its cultivation, there are indeed less demanding, cheaper 
to grow, more accessible crops available as viable replacements. Salvia officinalis, Sambucus nigra, Matricaria 
chamomilla and Calendula officinalis can all be seen as valuable sources of bioactive extracts for food and cos-
metic industries, and in some aspects—or when obtained under specific conditions—can even outshine the “gold 
standard” set by the damask rose. Despite the mounting criticism of “in vitro antioxidant assays”, they remain a 
valuable tool for discerning phytochemical profiles and optimization of biomass processing. Instead of discarding 
them, their shortcomings should be better studied, and methods themselves further developed—so their place 
in plant sciences can be fully realized, while not being overstated.

Materials and methods
Materials and reagents. Plant material. Five types of plant material were studied: dried damask rose 
petals (RD), dried chamomile flower heads (MC), dried calendula flowers (CO), dried elderberry flowers (SN) 
and dried and cut whole sage herb (SO). All raw materials were purchased from local qualified suppliers (Po-
land), with the exception of damask rose (imported from Rose Valley, Bulgaria). The study complies with local 
and national guidelines.

Figure 5.  Potential yields of bioactive compounds, given as kilogram-equivalents of appropriate standard (see 
“Materials and methods” for details), per hectare of a given crop. The vertical bars denote the range of possible 
returns, as calculated using literature-reported crop yields of the five tested plants.
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Reagents. Ethanol was used as the extraction solvent (96%, special purity, Avantor). Other solvents were of 
analytical or higher grade (Merck). In addition, the following reagents were used in colorimetric assays: Folin–
Ciocalteau’s reagent (analytical grade; Merck), sodium carbonate (> 99%; Avantor), potassium persulfate (> 99%; 
Merck),  2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt  (ABTS; > 98%; Merck), 
2,4,6-tris(2-pyridyl)-s-triazine (> 98%; Merck), Al(NO3)3 ·  9H2O (> 99.9%; Merck) and as reference standards: 
gallic acid (> 99%; Merck), quercetin (≥ 95% by HPLC; Merck) and 6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid ("Trolox"; > 97%; Merck). For the determination of fatty acids and elemental analysis, the fol-
lowing reagents were used: t-butyl methyl ether (> 99.8%), trimethylsulfonium hydroxide (0.25 M in methanol), 
methyl undecanoate (99%), Certified Reference Material Fatty Acid Methyl Ester (FAME) Standard, hydrochlo-
ric acid (37%), nitric acid (70%), and element standards (potassium, calcium, magnesium, sodium, chromium, 
iron, zinc, copper, silver, cobalt). All reagents were purchased from Merck.

Extraction methodology. Soxhlet extraction (SOX). About 20 g (in case of sage and elderberry) or about 
10 g (in case of calendula, chamomile and damask rose) of non-comminuted, dry plant material were used in the 
extraction. The process was carried out for 24 h in a cellulose thimble, in a 250 mL apparatus using 300 mL of 
ethanol. Extracts were filtered hot and evaporated to constant weight under reduced pressure.

Ultrasound‑assisted extraction (UAE). To perform the ultrasound-assisted extraction, 20 g of dried sage and 
elderberry flowers, and 10 g of calendula, chamomile and damask rose flowers were weighed. The plant material 
was transferred to separate round bottom flasks and covered with 300 mL of ethanol. Extraction was performed 
in an ultrasonic bath (Sonic 10, Polsonic, Poland) at 40–45 °C for 3 h. The alcoholic extracts were filtered and 
evaporated to constant weight under reduced pressure.

Microwave‑assisted solvent extraction (MAE). In order to perform the extraction, about 2 g of dried sage and 
elderberry, and about 1 g of dried damask rose, chamomile and calendula were weighed. The samples were trans-
ferred into Teflon bombs, to which 30 mL of ethanol were added. The extraction procedure was carried out in a 
microwave oven (MARSXpress, CEM, USA) at a temperature of 40 °C (with a power of 400 W) for 180 min. The 
extracts were filtered and evaporated to constant weight.

Supercritical carbon dioxide extraction (SFE). To perform the extraction, about 4 g of dried elderberry, 1.2 g 
of dried calendula, 1.3 g of dried damask rose, 2 g of dried chamomile, and 3.2 g of dried sage were weighed. 
The weighed raw materials were transferred to extraction thimbles, which were placed in a supercritical fluid 
extraction apparatus (MV-10 ASFE, Waters, USA). The starting parameters for the process were 50  °C and 
200 bar. Extraction was carried out under these conditions for 60 min. The flows of  CO2 and co-solvent (ethanol) 
were 8 mL/min and 0.8 mL/min, respectively. The obtained extracts were evaporated to constant weight under 
reduced pressure.

Semi‑quantitative colorimetric assays. In all cases, known and commonly used methods were modi-
fied in order to better adapt them to the specificity of research carried out, equipment, as well as to enhance their 
 reproducibility66–69. All analyses were performed at least in triplicate.

Typically, a 10 mg/mL solution of a given dry plant extract in methanol was used. In cases where the absorb-
ance of any of the samples was higher than 1 A.U. (or lower than 0.15 A.U. in the case of ABTS assay), the deter-
minations were repeated using a tenfold diluted plant extract solution (i.e. 1 mg/mL, 0.1 mg/mL).

Blanks for each determination were performed in parallel to the samples, using pure methanol instead of the 
plant extract. For colored samples, the background absorbance was measured in a similar manner, replacing the 
appropriate reagent with water.

Additionally, in the case of calendula and chamomile extracts, due to the high content of lipophilic com-
pounds, tetrahydrofuran (THF) was used as a solvent instead of methanol. Non-activity of THF in all of the 
assays was checked beforehand.

All determinations were performed on a Jenway 7415 spectrophotometer (Cole-Parmer, UK).

Determination of  in vitro anti‑radical properties (ABTS method). The assay reagent was prepared by mixing 
1.5 mL of pre-prepared ABTS solution (14 mM in  H2O, i.e., 38.4 mg in 5 mL) and 1.5 mL of potassium persulfate 
solution (7 mM in  H2O, i.e., 33.8 mg in 25 mL) in a closed, screw-cap vial and left in the dark at room tempera-
ture for 14–20 h. At the end of this time, the assay reagent was diluted to a volume of 200 mL. The absorbance 
of solution should be in the range of 0.775 ± 0.025 AU. The determinations were made by mixing 3 mL of the 
reagent and 100 μL of methanolic solutions of dry plant extracts. After that, the mixture was left in the dark for 
exactly 6 min, followed by an absorbance measurement at 734 nm. The obtained absorbance values   should fit 
in the range of 0.15—0.70 AU. The free radical scavenging ability of the sample is calculated from the following 
formula:

Where: %I—inhibition percentage, A0—blank sample absorbance, As—sample absorbance.
A standard curve was prepared by replacing the extract solution with a methanolic solution of Trolox in 

variable concentration (0.15, 0.12, 0.09, 0.06, 0.03 mg/mL).

%I = [(A0−As)/A0] ∗ 100.
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Ferric ion reducing antioxidant parameter (FRAP). To prepare the reagent, a 300 mM acetate buffer (3.0 g of 
 CH3COONa and 4.1 mL of conc.  CH3COOH for 250 mL), a 10 mM solution of tripyridyltriazine (TPTZ) in HCl 
(75 mg of TPTZ and 86 uL of 36% HCl for 25 mL), and a 20 mM solution of  FeCl3·6H2O (135 mg for 25 mL) 
were prepared. On the day of analysis, the acetate buffer, TPTZ and  FeCl3 solutions were combined in a 10:1:1 
(v/v/v) ratio to obtain the FRAP reagent, which was placed in a heating bath (37 °C) for about 10–15 min prior to 
use. For the determination, 3.2 mL of warm reagent, 200 μL of methanol and 100 μL of methanolic plant extract 
solution were mixed and left for 4 min in a closed screw-cap vial. After this time, the absorbance of the samples 
was measured at 593 nm (the color is more stable than in the case of ABTS assay).

Different volumes (20, 40, 60, 80, 100, 120, 140 μL) of an aqueous solution of  FeSO4·7H2O (1 mM, 27.2 mg 
in 100 mL  H2O) and methanol (adding up to the total volume of 300 μL added to 3.2 mL of FRAP reagent) were 
used to prepare the standard curve.

Determination of total phenolic compounds (Folin–Ciocalteau method, FC). Determinations were performed 
by mixing 2.5 mL of a tenfold diluted Folin–Ciocalteau’s standard reagent and 100 µL of a methanolic plant 
extract solution in a 4 mL screw-cap vial. After 30 s, 0.5 mL of 20% aqueous  Na2CO3 was added to the solution, 
and it was left for 2 h in the dark, after which the absorbance was measured at 760 nm. The standard curve was 
prepared using gallic acid (0.20, 0.16, 0.12, 0.08, 0.04, 0.02 mg/mL in methanol).

Flavonoid content determination (complexometric method with  Al3+ ions, FL‑Al). The reagent used for deter-
minations was an aqueous solution of Al(NO3)3·9H2O (57 mg/mL). Samples for measurements were prepared 
by mixing 900 µL of methanol, 100 µL of methanolic solutions of plant extracts and 1 mL of reagent solution, 
shaken and left for 5 min. Absorbance measurements were performed at 420 nm (the color is stable for 1–2 h; 
care should be taken that the absorbance fits in the range of 0.1–1.0 AU). Additionally, it should be noted that 
many plant extracts have an inherent, yellowish color, making background absorption measurements obligatory 
for this assay (despite the high dilutions used).

Quercetin was used as a standard (solutions with concentrations in the range of 0.015–0.150 mg/mL). The 
measurements were carried out in the same way as in the case of extract samples, except for replacing their 
methanolic solutions with different standard solutions.

Fatty acid analysis. Dry extract samples weighing 9–15 mg were used for the analysis. To the material 
samples, 0.5 mL of t-butyl methyl ether, 0.25 mL of trimethylsulfonium hydroxide solution (0.25 M in methanol) 
and 25 μL of internal standard (methyl undecanoate; 105 mg in 10 mL of t-butyl methyl ether) were added. The 
analyses were performed using a Varian 450-GC gas chromatograph (Agilent Technologies, USA).

The identification of fatty acid methyl esters (FAME) was performed by comparing the retention times of 
samples with the retention times of the standards. The fatty acid content was calculated as percentage of sample 
mass (detailed information is available in the Supplementary material).

Elemental analysis (ICP‑OES). The analysis of important micro- and macroelements (potassium, cal-
cium, magnesium, sodium, chromium, iron, zinc, copper, silver, cobalt) in dry plant extracts was performed 
using inductively coupled plasma optical emission spectrometry (Quantima Sequential apparatus, GBC, Aus-
tralia), after prior mineralization of samples using a mixture of hydrochloric and nitric acids (microwave min-
eralizer Magnum II, ERTEC, Poland).

The calibration curve was prepared by measuring the emission of standard solutions of elements in the fol-
lowing concentrations: 1 mg/L, 2 mg/L and 5 mg/L, and the blank sample.

Details of the analysis can be found in the Supplementary material.
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