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Identification of flux trade‑offs 
in metabolic networks
Seirana Hashemi1, Zahra Razaghi‑Moghadam1,2 & Zoran Nikoloski1,2*

Trade‑offs are inherent to biochemical networks governing diverse cellular functions, from gene 
expression to metabolism. Yet, trade‑offs between fluxes of biochemical reactions in a metabolic 
network have not been formally studied. Here, we introduce the concept of absolute flux trade‑offs 
and devise a constraint‑based approach, termed FluTO, to identify and enumerate flux trade‑offs in 
a given genome‑scale metabolic network. By employing the metabolic networks of Escherichia coli 
and Saccharomyces cerevisiae, we demonstrate that the flux trade‑offs are specific to carbon sources 
provided but that reactions involved in the cofactor and prosthetic group biosynthesis are present 
in trade‑offs across all carbon sources supporting growth. We also show that absolute flux trade‑offs 
depend on the biomass reaction used to model the growth of Arabidopsis thaliana under different 
carbon and nitrogen conditions. The identified flux trade‑offs reflect the tight coupling between 
nitrogen, carbon, and sulphur metabolisms in leaves of  C3 plants. Altogether, FluTO provides the 
means to explore the space of alternative metabolic routes reflecting the constraints imposed by 
inherent flux trade‑offs in large‑scale metabolic networks.

The expression of many traits in biological systems cannot be increased at the cost of decreasing others, pointing 
at trade-offs1. For example, the trade-off between the rate and yield of adenosine triphosphate (ATP) production 
has been used to explain why evolution may work to select a less efficient pathway when cells compete for a shared 
 resource2. This question is an instance of the more general trade-off between enzyme efficiency and substrate 
efficiency in metabolism at the core of the trade-off between growth rate and yield observed in  microbes3. The 
growth rate-yield trade-off has been studied by using different modelling approaches, including: (i) elementary 
flux modes, combined with enzyme-cost  estimations3, (ii) fine-grained genome-scale models of metabolism and 
gene  expression4, and (iii) constraint-allocation flux balance  analysis5, combining mass balance and proteomic 
constraints. In addition, by using fluxes from multiple experiments in E. coli and constraint-based modelling, it 
has been shown that flux states arise due to the trade-off between optimality under a given condition and minimal 
adjustments between  conditions6. Indeed, a recent study has uncovered a universal trade-off between growth rate 
and adaptability in E. coli, Bacillus subtilis, and Saccharomyces cerevisiae7. These examples indicate that trade-offs 
between multiple traits often arise due to the optimization of multiple objectives; these traits may be recovered by 
considering the extreme points of a convex hull in a principal component space containing observed  phenotypes1.

A simple way to explain trade-offs between traits is the resource acquisition-allocation  model8,9, referred 
to as the Y-model10. The Y-model postulates that two traits, X1 and X2 taking non-negative values, are shaped 
by the allocation of resources from a common pool, T , determined by the acquisition. As a result, it holds that 
X1 + X2 = T which implies that at a fixed acquisition (i.e., T held constant), the allocation of some proportion 
of the acquired resource to X1 , restricts the value of X2 and leads to a negative correlation between the traits in 
trade-offs. In contrast, if the acquisition, T , is allowed to vary, the Y-model explains that two traits can be in a 
trade-off but may also show positive  correlations10. The Y-model indicates that the traits can be considered to be 
in trade-off if: (i) they show some level of phenotypic plasticity, i.e., different expressions under different envi-
ronments, and (ii) if there exists a non-negative linear combination that corresponds to a resource. We refer to 
a trade-off as absolute if the resource is robust, in the sense that it exhibits no phenotypic plasticity over a range 
of environments (i.e., T is held constant); otherwise, we refer to the trade-off as relative.

Fluxes in a metabolic network can be readily studied in the framework provided by the Y-model. The flux of 
a reaction is determined by the interplay between metabolites acting as substrates and/or regulators of enzymes 
that catalyse the reaction. Since metabolites participate in multiple reactions and enzymes can catalyse several 
 reactions11, the fluxes in a metabolic network may be shaped by trade-offs that arise due to competition for 
these molecular resources. One way to determine fluxes in trade-off is to use flux sampling by imposing realistic 
constraints on growth and nutrient  uptake12,13. Negative correlations can then reveal trade-offs between pairs 
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of fluxes; however, this approach cannot be easily expanded to larger subsets of fluxes. Furthermore, there is no 
constraint-based approach that utilizes constraints from a given metabolic network structure with additional 
constraints on nutrient uptake to determine trade-offs between metabolic fluxes.

Here, we devise a two-step constraint-based approach, termed FluTO, that identifies and enumerates all 
absolute trade-offs between reaction fluxes, given certain constraints on input fluxes. We apply the approach in 
different scenarios with the large-scale networks of E. coli, S. cerevisiae, and Arabidopsis thaliana and demonstrate 
that absolute trade-offs between reaction fluxes are condition-specific. Our results indicate that there are inherent 
properties of the metabolic network structure that, together with realistic constraints, lead to the appearance of 
absolute flux trade-offs that limit flux routing through alternative metabolic pathways.

Methods
Metabolic network models and constraints. We apply our approach to stoichiometric metabolic mod-
els of three model organisms: the bacterium E. coli, the unicellular eukaryote S. cerevisiae and the model plant 
A. thaliana. We analysed the genome-scale metabolic model iJO1366 of E. coli str. K-12 substr. MG1655. This 
network consists of 1805 metabolites, 2583 reactions, and 1366  genes14. The model has the “core” and “wild-
type” biomass reactions. The “wild-type” biomass reaction contains the precursors to all the typical wild-type 
cellular components of E. coli. In contrast, the “core” biomass reaction contains the precursors only to essential 
 components14. We optimize the “wild type” biomass reaction and remove the “core” reaction from the model. We 
analysed 29 different growth conditions (11 different active carbon sources with a fixed growth rate)15. Apply-
ing flux variability analysis (FVA)16,17 with the model under the constraints from the aforementioned growth 
conditions resulted in fixed, fixed-sign variable, and sign-variable reactions (Supplementary Table 1). FVA did 
not result in fixed reactions for three growth conditions, so we determined trade-offs for 26 different conditions.

In a second case study, we used the same metabolic network model of E. coli with the wild type biomass 
reaction. We assigned a fixed value of -10 mmol/gDW/h for the active carbon source (one of 61 exchange car-
bon  sources18, see Supplementary Table 2). We also set a fixed value of -0.9476 mmol/gDW/h for Phosphate 
exchange reaction, 3.15 mmol/gDW/h for ATP maintenance requirement reaction, 0.0931 mmol/gDW/h for 
ATP phosphoribosyltransferase reaction and 12.612 mmol/gDW/h for ATP synthase (four protons for one 
ATP) (periplasm) reaction. These values are obtained by rounds of FBA and FVA, as described in the results. 
Supplementary Table 2 shows the flux of reactions and reaction types.

We also investigated the genome-scale metabolic network, yeastGEM_v8.3.3, of S. cerevisiae with 2691 metab-
olites and 3963  reactions19. Like in the case of E. coli, above, we activated one carbon source among the 14 carbon 
sources and fixed its value to − 10 mmol/gDW/h (see Supplementary Table 3). We set the value of ATP syn-
thase reaction to 39 mmol/gDW/h and the four O2 transport reactions to 8 mmol/gDW/h, 11.2 mmol/gDW/h, 
19.9 mmol/gDW/h, and 0.9 mmol/gDW/h (see Supplementary Table 4 for reaction ratios and their types).

We used the AraCore model as representative metabolic network of A. thaliana, with 407 metabolites and 549 
 reactions20. The model has three different active biomass reactions: ‘Carbon limiting biomass’, ‘Nitrogen limit-
ing biomass’, and ‘Light limiting biomass’. At three steps, we activated one of these three reactions and blocked 
the two others. The constraints that we added to the model include: allowing the ratio of sucrose to starch to be 
between 2.5 and 4 and the carboxylation/oxygenation ratio is between 1.5 and  421. Under limiting carbon condi-
tion, we fixed the flux of ‘ATP’ reaction to 104.7678 mmol/gDW/h, and ‘Export O2’ to 88.2809 mmol/gDW/h; 
under nitrogen limiting conditions, we fixed the ‘ATP’ flux to 107.1427 mmol/gDW/h and ‘Export O2’ fixed to 
87.5137 mmol/gDW/h. Finally, under light limiting conditions, the ATP’ flux was set to 107.1427 mmol/gDW/h 
and the ’Export O2’ to 84.1163 mmol/gDW/h (see Supplementary Table 5).

Implementation. The proposed approach, FluTO, is implemented in MATLAB and is fully available at 
https:// github. com/ seira na/ FluTo.

Results and discussion
Formulation and illustration of FluTO. We study a metabolic network, represented by a stoichiometric 
matrix, N , with m metabolites and r reactions, corresponding to the rows and columns of N . For instance, the 
network in Fig. 1A consists of eight metabolites and twelve reactions, of which reactions R3 , R5 , R6 , R7 , and R8 
are internal, and the remaining are exchange reactions. We assume that the network is at a steady-state, whereby 
Nv = 0 . In addition, we impose fixed values for selected fluxes based on measured growth, nutrient uptake, and/
or biochemically reasonable assumptions (see Methods). For instance, for the network in Fig. 1A, the lower and 
upper bounds of all reactions except for R5 are set to 0 and 10 (arbitrary units), respectively, while reaction R5 has 
a fixed flux of value 5 (a.u.). Together with the set of irreversible reactions, this results in a set of feasible steady-
state fluxes F = {v|Nv = 0 ∧ vmin ≤ v ≤ vmax } in which we aim to identify fluxes in an absolute trade-off. To 
this end, we devise a two-step approach, termed FluTO, that includes: (1) categorizing of metabolic reactions 
as blocked, fixed, and variable, and (2) finding a linear combination of rows that satisfy the constraints of the 
Y-model, namely that there exists a non-negative linear combination of reactions with variable fluxes which 
amounts to a constant.

To categorize the reactions based on the variability in the set of feasible steady-state flux distributions, F , we 
rely on FVA. A reaction is considered blocked if it does not carry flux in any flux distribution in F . A reaction 
is considered fixed if its flux takes a non-zero value with the same overall flux distributions in F . A reaction is 
considered a fixed-sign variable over the distributions in F if it takes multiple values which are either non-negative 
or non-positive. We can consider that all fixed-sign variable reactions carry non-negative fluxes since, in the 
opposite case, the signs of the entries in the corresponding reaction vector in N  can be flipped. We refer to a 
reaction that is not blocked, fixed, or fixed-sign variable as a sign-variable. For instance, in Fig. 1A, reaction R5 is 

https://github.com/seirana/FluTo
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fixed (to a value of 5), and all remaining reactions are fixed-sign variable (see Table 1). A sign-variable reaction 
is, by definition, reversible; it can be split into two irreversible reactions which can take any value in the applied 
lower and upper flux boundaries. As a result, splitting of sign-variable reactions into irreversible reactions has 
no effect of the identified absolute flux trade-offs, and their exclusion in FluTO is justified.

In the second step, given a set of feasible steady-state flux distributions, F , we aim to find a non-negative linear 
combination of sign-fixed variable reactions. According to the Y-model, trade-offs are possible only between 
fluxes of fixed-sign variable reactions since increasing the flux of one is compensated by a change in fluxes of the 
other reactions. In contrast, fluxes of sign-variable reactions cannot appear in any trade-offs since their change 
may not be accounted by compensatory change of flux in the other reactions.

Let the linear combination of fluxes over F be determined by a vector k , such that kN = b . To enumerate all 
trade-offs, one can minimize the number of non-zero entries (i.e. the support) of kN that correspond to fixed-
sign variable reactions in F, denoted by RFS−var,F , and at least one fixed reaction in F (from the set of reactions 
denoted by Rfixed,F ). Since minimizing the support is an NP-hard  problem22,23, we approximated it by minimizing 
the first norm of kN , i.e. ||kN ||1 , resulting in the following convex optimization problem:

Clearly, then, case in which the applied network constraints do not result in fixed reactions yield no trade-offs, 
since the Y-model specification cannot be applied. Since we aim to enumerate all trade-offs, the formulation 
above is modified to exclude all previously found solutions (i.e., trade-offs); this is achieved by using integer 

min�kN�1

s.t.

Nv = 0

kN = b
∑

bi ≥ 1, if vi ∈ Rfixed, F

bi ≤ 0, if vi ∈ RFS−var,F

bi = 0, if vi /∈ RFS−var,F .

Figure 1.  Illustration of flux trade-offs on a paradigmatic network. The toy network is composed of eight 
metabolites (green nodes) and 12 reactions (blue hyperedges) shown on panel (A). Under the constraints 
that reaction 5 has a flux fixed to 5 (a.u.) and the lower and upper boundaries for the fluxes of the remaining 
reactions are 0 and 10 (a.u.), there are ten trade-offs (orange edges), each involving two reactions (blue nodes), 
shown on panel (B).

Table 1.  The result of FVA on the reactions in the metabolic model of Fig. 1A. The minimum and the 
maximum range of each reaction flux are shown for the metabolic model in Fig. 1A.

LB UB

v1 0 10

v2 0 10

v3 0 10

v4 0 10

v5 5 5

v6 2.5 5

v7 0 1.25

v8 0 1.25

v9 0 5

v10 0 1.25

v11 0 1.25

v12 0 1.25
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 cuts24. The objective function uses the absolute value function, which can be readily cast as a linear programming 
(LP)  problem25, resulting in the implemented mixed-integer LP (MILP) formulation (see Supplementary Note).

To illustrate trade-offs identified by FluTO, we use the metabolic network in Fig. 1A along with its constraints. 
We identified ten trade-offs, each including only two reactions, as shown in Fig. 1B. For instance, by taking the 
linear combination of the third, fifth, and eighth row of N  , i.e. N3· + N5· − N8· we obtain v5 − v6 − 2v8 = 0 . 
Therefore, v5 = v6 + 2v8  that corresponds to a two-reaction trade-off since v5 is constant in F . By inspecting the 
graph representation of the trade-offs (Fig. 1B), we conclude that reactions R6 and R9 participate in the largest 
number of trade-offs, and changes in their steady-state fluxes are propagated in the rest of the network via the 
trade-off relations.

Flux trade‑offs in E. coli using growth and nutrient uptake constraints. To determine flux trade-
offs in E. coli, we applied FluTO with the genome-scale metabolic network model  iJO136614 of E. coli using data 
from 29 experiments proving different growth and nutrient uptake  constraints26–28 . To this end, for each experi-
ment, we first determined the set F of feasible steady-state flux distributions using FVA. We did not identify any 
fixed reactions with the measured growth rates for three carbon sources, namely acetate, pyruvate, and xylose, 
precluding us from applying FluTO. For the remaining 26 conditions, we observed that the number of fixed 
reactions ranged from 101, for three conditions (growth on glucose between 0.11 and 0.2 h−1), to 103, for the 
remaining conditions; the number of fixed-sign variable reactions ranged from 1455 for growth rate of 0.11 h−1 
with glucose as a carbon source, to 1462 for growth rate of 0.66 h−1 with the same carbon source (see Fig. 2A).

Due to the small variability in these numbers over the different carbon sources, we hypothesized that there 
exist small differences in the determined trade-offs. However, we identified that this was not the case—the small-
est number of trade-offs (26) was identified for growth with fructose, galactose, mannose, and glucosamine as 
carbon sources. At the same time, the largest number of trade-offs (72) was found for a growth rate between 
0.21 and 0.31 h−1 with glucose as a carbon source (Fig. 2B). Thus, we did not identify an association between the 
growth rate and the number of trade-offs with glucose as a carbon source. However, the growth conditions with 
the smallest number of trade-offs (i.e., 26 and 32) showed a larger number of pairs of reactions in trade-off than 
the conditions with the larger total number of trade-offs (i.e., 49 and 72 dominated by trade-offs including three 
reactions) (see Supplementary Table 6).

We next inspected the reactions that were participating in the identified flux trade-offs. We found that reac-
tions in trade-offs over all considered conditions were involved in cofactor and prosthetic group biosynthesis, 
namely the ISC and SUF machineries as well as ISC and SUF cysteine desulfuration. The remaining reactions 
were present in trade-offs in a condition-specific fashion, and included anaplerotic reactions, glycerophospholipid 
metabolism, glycolysis/gluconeogenesis, and transport/inner membrane metabolic systems (see Supplementary 
Table 7). These results indicated that FluTO could provide insights into trade-offs that shape the alternative flux 
routes in the flux space compatible with growth and nutrient uptake constraints.

Flux trade‑offs in E. coli and S. cerevisiae are specific to carbon sources. The previous analysis 
aimed to identify trade-offs under fixed uptake and growth rate constraints, which precludes: (i) analysis of the 
extent to which modeled growth, via the biomass reaction, participates in trade-offs and (ii) tackling the issue 
of whether trade-offs differ across different carbon  sources14. To facilitate this analysis, we next determined the 
flux trade-offs in E. coli by using the iJO1366 metabolic model with 61 carbon sources known to support growth 

Figure 2.  Reaction types based on variability and trade-offs types in E. coli under 26 growth conditions. (A) 
Box plots of the four reaction types across the 26 growth conditions. (B) Numbers of trade-offs involving 
different numbers of reactions, two, three, four and seven, for the 26 growth conditions group in four categories, 
sharing the same numbers.
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in this organism 18,29 . To constrain the set of feasible steady-state flux distributions, we fix glucose uptake to 
10 mmol.gDW-1 h-1 and determine the maximum flux supported by the ATP synthase phoshphoribosyl trans-
ferase, and maintenance reactions using FVA. By fixing the rates of these reactions to the calculated respective 
maxima, we then determined the maximum rate of phosphate uptake (0.9476 mmol gDW-1 h-1), for which we 
used a final fixed constraint.

The imposed constraints did not result in fixed reactions for eight carbon sources, so we determined trade-
offs for the remaining 53 different carbon sources (Supplementary Table 8). We observed that the number of 
fixed reactions ranged from 14 (0.5%), for glucose, to 25 (0.9%), for Phenylacetaldehyd (see Fig. 3A). Unlike the 
previously analyzed case, here the number of fixed-sign variable reactions differs substantially between carbon 
sources, with the smallest number of 1488 (57.6%) reactions for Uridine and Inosine, and the largest number 
of 1520 (58.8%) reactions for Octadecenoate (n-C18:1) as a carbon source (Fig. 3A). Therefore, we hypothesize 
that the flux trade-offs differ substantially between the investigated carbon sources. We found that growth under 
D-Galactose, N-Acetyl-D-mannosamine, and D-Glucuronate resulted in the smallest number of flux trade-offs. 
At the same time, usage D-Galacturonate, D-Galactose, and N-Acetyl-D-glucosamine led to the largest number 
of flux trade-offs (Fig. 3B). Interestingly, the carbon sources could be divided into three groups associated with 
a small, moderate, and a large number of flux trade-offs; in addition, we could not identify a particular trend in 
the contribution of trade-offs of different sizes (determined by the number of participating reactions) (Fig. 3B, 
Supplementary Figs. 1–3).

Growth, modeled by the flux through the biomass reaction, was found to be in trade-off with a variable 
number of reactions over the different carbon sources (see Supplementary Table 9). For instance, under glucose 
(and applied constraints), growth participated in 16 trade-offs, each including three reactions. These reactions 
belong to the non-mevalonate (MEP) pathway for isoprenoid biosynthesis and also comprise 1-deoxy-D-xylulose 
5-phosphate synthase, 1-deoxy-D-xylulose reductoisomerase, Quinolinate synthase, L-Histidine exchange, and 
transport via diffusion. Interestingly, histidine-requiring E. coli strain encountering histidine-rich and starved 
conditions lost growth fitness under rich  conditions30. These reactions, along with magnesium, potassium, and 
calcium exchange, also appeared to be in trade-off with growth for the other carbon sources (see Supplementary 
Table 10). Altogether, reactions involved in cofactor and cofactor group biosynthesis are involved in trade-offs 
appearing overall conditions, while those involved in the usage of particular carbon sources are involved in 
trade-offs under the respective growth scenario (see Supplementary Table 10).

We then applied FluTO to determine flux trade-offs in S. cerevisiae by using the yeast genome-scale metabolic 
model yeastGEMv8.3.319 with 14 carbon sources known to support growth in this  organism18,29 . To constrain the 
set of feasible steady-state flux distributions, we fixed the uptake of each carbon source to 10 mmol  gDW−1  h−1 
and determined the maximum flux supported by the ATP synthase using FVA. By fixing its rates to the calculated 
maximum, we then determined the maximum oxygen uptake rate, which we used as a final constraint.

For one carbon source (i.e., L-arabinose), the imposed constraints did not result in fixed reactions, so we 
determined trade-offs for the remaining 13 carbon sources (Supplementary Table 11 and 12). We observed that 

Figure 3.  Reaction types based on variability and trade-offs types in E. coli grown under different carbon 
sources. (A) Box plots showing the percentage of the four reaction types across the 53 carbon sources. (B) 
Numbers of trade-offs involving a different number of reactions for the 53 growth conditions group in three 
categories, group 1: (S)-Propane-1,2-diol, N-Acetyl-D-mannosamine, Butyrate (n-C4:0), D-Galactose, 
D-Glucuronate, Maltose, L-Rhamnose, N-Acetylneuraminate, D-Alanine, L-Asparagine, L-Alanine, 
Octadecenoate (n-C18:1), Melibiose. group 2: Dihydroxyacetone, L-Fucose ,Acetoacetate, Adenosine, 
2-Oxoglutarate, Fumarate, Galactitol, L-Glutamine, L-Lyxose, D-Malate, Maltotriose, D-Mannose, Pyruvate, 
Succinate, Trehalose, L-Aspartate, L-Glutamate, Inosine. group 3: 5-Dehydro-D-gluconate, L-Arabinose, 
D-Gluconate, L-Lactate, L-Malate, D-Ribose, D-Sorbitol, N-Acetyl-D-glucosamine, D-Allose, Deoxyadenosine, 
D-Fructose, D-Galactarate, D-Galacturonate, D-Glucose, D-Glucarate, Glycerol, Lactose, Phenylacetaldehyde, 
L-tartrate, Thymidine, Uridine, D-Xylose.
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the number of fixed reactions ranged from 18 (0.4%), for glucose and fructose, to 26 (0.6%), for xylose (see Sup-
plementary Fig. 4). Unlike the E. coli case discussed above, the number of fixed-sign variable reactions was quite 
similar among carbon sources, with exception of arabinose, ribose, and xylose. However, the flux trade-offs differ 
substantially between the investigated carbon sources (Supplementary Fig. 5): While the number of flux trade-
offs is the smallest for growth under xylose, maltose, and fructose, in line with the smallest number of fixed-sign 
variable reactions, we found that the carbon sources can be divided into three groups based on the number of 
flux trade-offs, as in the case of E. coli (Supplementary Figs. 1–3). The majority of the reactions participating in 
trade-offs overall conditions were involved in oxidoreductive processes. Unlike in E. coli, growth in S. cerevisiae 
was not involved in any of the determined trade-offs. The reason for this finding is the set of constraints applied 
to the network, which result in a small range of flux values supported by the biomass reactions, whereby it is 
excluded from consideration in the flux trade-offs.

Flux trade‑offs in Arabidopsis thaliana depend on the availability of key nutrients. We also 
inspected the extent to which flux trade-offs are affected by using different biomass functions modeling restric-
tions on the availability of key nutrients. To this end, we employed the AraCore mode of A. thaliana, with bio-
mass reactions for optimal nitrogen (light-limiting), limiting nitrogen, and limiting carbon growth  conditions20. 
By applying similar constraints for the other approaches (see Methods), we found that the number of flux trade-
offs was largely unaffected by the biomass function used (see Supplementary Table 13 and 14). These findings 
point that the trade-offs are due to metabolites that do not directly participate in the biomass reactions. The 
majority of the trade-offs can be grouped into two classes; the first involving: light reactions, nitrate assimilation, 
glutamate synthesis, and sulfur assimilation, and the second comprising: photorespiration, glycine synthesis, 
oxidative phosphorylation, and transport (see Fig. 4). The former highlight the seemingly tight interrelation 
between nitrogen and sulfur metabolism in  plants31, while the latter recap the well-established coupling between 
processes connecting carbon and nitrogen  metabolisms32; these results were obtained only by using the structure 
of the metabolic network along with biochemically meaningful constraints, which further highlights the impor-
tance of the identified absolute flux trade-offs.

Participation of multiple metabolic subsystems in selected trade‑offs. To get better understand-
ing of the identified flux trade-offs in the analyzed metabolic networks, we next focused on identifying which 
trade-offs include reactions that participate in multiple metabolic subsystems, as defined in the models. Trade-
offs that include reactions from multiple metabolic subsystems pinpoint mechanisms by which large-scale effects 
of flux changes can be achieved while respecting network constraints and fulfilling of different tasks.

To visualize selected trade-offs, we took a metabolite-centric view and showed all metabolites whose cor-
responding rows of the stoichiometric matrix are used in the derivation of the trade-off; two metabolites are 
then connected by an edge if they participate in the same reaction. Such a graph representation allowed us to 
superimpose information about reaction participating in different metabolic subsystems (Figs. 5, 6, and 7). Here 
we note that each reaction in the metabolic models of E. coli participate in only one metabolic subsystem, while 

Figure 4.  Relation between pathways based on shared trade-offs. A weighted graph shows the number of 
trade-offs that pathways share with biomass reactions for limiting carbon growth conditions in the model of A. 
thaliana. Here, nodes represent the pathways and the weighted edge between the two nodes shows the number 
of shared trade-offs between two pathways, determined by the number of reactions from two pathways that 
participate in the same trade-offs.
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this is not the case for the other two models (rendering the analysis more challenging). For this reason, selected 
trade-offs are visualized only for the models of E. coli and A. thaliana.

Almost one third of the identified trade-offs in the E. coli model include reactions from only one metabolic 
subsystem. For instance, all trade-offs of size three include reactions from the Cofactor and Prosthetic Group 
Biosynthesis metabolic subsystem; moreover, all trade-offs with length nine with glutamine as a carbon source 
include reactions from the Cofactor and Prosthetic Group Biosynthesis and Transport, Outer Membrane Porin 
metabolic subsystem . Further, all reactions that are in a trade-off with biomass reaction in the E.coli model 
with glucose as a carbon source also belong to Cofactor and Prosthetic Group Biosynthesis and Transport, 
Outer Membrane Porin pathways (see Fig. 5), indicating the relevance of these pathways in flux re-distribution. 
Interestingly, we also found that trade-offs of size four in this model are very similar across the different carbon 
sources (e.g. for thymidine, L-arabinose, and deoxyadenosine, see Fig. 6).

We observed that the maximum number of metabolic subsystems participating in trade-offs was four in the 
E. coli and three for the A. thaliana model. For instance, such a trade-off in the model of A. thaliana includes 
photorespiration, glycine synthesis, and transport (Fig. 7), which is present across the three scenarios with dif-
ferent biomass reactions used, documenting the tight relation between carbon and nitrogen metabolism in this 
model plant.

Conclusions
Trade-offs are widely present across different levels of biological organization; yet, trade-offs between fluxes 
have not been studied. Since fluxes are the ultimate phenotype from transcriptional and (post)translational 
regulation, it is important to understand how trade-offs between them reflect the optimization of one or more 
cellular objectives. Here, we employ the acquisition-allocation Y-model to develop a two-step constraint-based 
approach, termed FluTO, that allows enumerating all absolute flux trade-offs in a given set of feasible steady-state 
flux distributions (defined by imposing biochemically meaningful constraints). The idea of FluTO is to determine 
reactions whose fluxes vary and can be cast as a non-negative linear combination of reactions of fixed flux values 
in the specific set of flux distributions. In such a way, an increase of one of the fluxes in the non-negative linear 
combination will impose a decrease in at least one of the others—in line with the concept of trade-offs. This is 

Figure 5.  Trade-offs that include the biomass reaction in the model of E. coli with glucose as a carbon source. 
The following reactions are depicted (1) 4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol kinase, (2) 
1-deoxy-D-xylulose reductoisomerase, (3) 1-deoxy-D-xylulose 5-phosphate synthase, (4) L-histidine transport 
via diffusion (extracellular to periplasm), (5) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, (6) 
2C-methyl-D-erythritol 2,4 cyclodiphosphate dehydratase, (7) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate 
synthase, (8) Nicotinate-nucleotide diphosphorylase (carboxylating), and (9) Quinolinate synthase. Nodes 
correspond to the following metabolites, adp: adenosine diphosphate, 2me4p: 2-C-methyl-D-erythritol 
4-phosphate, 2mecdp: 2-C-methyl-D-erythritol 2,4-cyclodiphosphate, 4c2me: 4-(cytidine 5’-diphospho)-
2-C-methyl-D-erythritol, 2p4c2me: 2-phospho-4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol, ctp: 
C9H12N3O14P3, atp: adenosine triphosphate, flxr: Flavodoxin reduced, flxso: Flavodoxin semi oxidized, g3p: 
Glyceraldehyde 3-phosphate, dhap: Dihydroxyacetone phosphate, cmp: cytidine monophosphate, co2: CO2, 
dxyl5p: 1-deoxy-D-xylulose 5-phosphate, h: H + , h2mb4p: 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, 
h2o:water, iasp: Iminoaspartate, nadp: Nicotinamide adenine dinucleotide phosphate, nadph: Nicotinamide 
adenine dinucleotide phosphate-reduced, nicrnt: Nicotinate D-ribonucleotide, pi: Phosphate, ppi: Diphosphate, 
prpp: 5-Phospho-alpha-D-ribose 1-diphosphate, pyr: Pyruvate, quln: Quinolinate, his__L: L-Histidine, [c] 
corresponds to cytoplasm, [p]: periplasm, and [e]: extracellular.
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Figure 6.  Trade-offs with four reactions in the model of E. coli under different carbon sources. The trade-offs 
with four reactions with thymidine are also present in the trade-offs with L-Arabinose as a carbon source. The 
following reactions are included (1) 4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol kinase, (2) Cob(1)
alamin transport via ABC system (periplasm), (3) Glycolaldehyde dehydrogenase, and (4) L-histidine transport 
via diffusion (extracellular to periplasm). Nodes correspond to the following metabolites, Adp: ADP, 4c2me: 
4-(cytidine 5’-diphospho)-2-C-methyl-D-erythritol, 2p4c2me: 2-phospho-4-(cytidine 5’-diphospho)-2-C-
methyl-D-erythritol, atp: ATP, cbl1:Cob(I)alamin, gcald: Glycolaldehyde, glyclt: Glycolate, h:H + , h2o: water, 
nad: Nicotinamide adenine dinucleotide, nadh: Nicotinamide adenine dinucleotide-reduced, pi :Phosphate, 
his_L: L-Histidine. [c] corresponds to cytoplasm, and [p] corresponds to periplasm.

Figure 7.  Flux trade-off in the model of A. thaliana. The selected trade-off includes reactions from three 
metabolic subsystems, represented in different colours. The figure shows a trade-off between five reactions. 
The following reactions are included: (1) Glu:GLX aminotransferase, (2) GCEA kinase, (3) GCA oxidase, (4) 
Glu:GLX oxidase, aminotransferase and (5) O2 diffusion reaction. The considered metabolites include H: H + /
proton, O2: oxygen, ADP: Adenosine diphosphate, ATP: Adenosine triphosphate, PGA: 3-Phosphoglycerate, 
GCA: Glycolate, GLX: Glyoxylate, Glu: Glutamate, Gly: Glycine, KG: alpha-Ketoglutarate, 2-Oxoglutarate, 
GCEA: Glycerate, KG: alpha-Ketoglutarate, 2-Oxoglutarate, H2O2: Hydrogen peroxide.[c] corresponds to 
cytoplasm, [p] :periplasm, and [h]: chloroplast.
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achieved by using FVA together with a mixed-integer linear program that is used to enumerate all combinations 
satisfying the imposed criteria.

We used FluTO with constraints on growth and carbon source uptake in E. coli to show that flux trade-offs 
are condition-specific. However, few reactions involved in cofactor and prosthetic group biosynthesis are present 
in trade-offs across all conditions. To get a better view of growth, modeled by the biomass reaction, is involved 
in trade-offs with intracellular fluxes in E. coli, we used constraints on nutrient uptake and synthesis of ATP. 
Our results pointed that the flux trade-offs are condition-specific, with growth in trade-offs with the availability 
of micronutrients, like magnesium, calcium, and potassium. The condition dependence of trade-offs was also 
found in a similar modeling scenario using S. cerevisiae. However, we also found that trade-offs involving the 
growth, modeled via the biomass reaction, may not be present depending on the constraints applied to the 
network in the first step of FluTO. Finally, to examine the dependence of trade-offs on the biomass functions 
used, we investigated three modeling scenarios with a metabolic model of A. thaliana to show that the network 
structure together with the imposed constraints suffices to recover the tight observed couplings between carbon, 
nitrogen, and sulfur metabolisms.

The proposed formulation of FluTO is rooted in the inter-relation between phenotypic  plasticity33, 
 robustness34, and trade-offs10 as seminal network properties. While FluTO currently allows identifying absolute 
flux trade-offs, the findings depend on the imposed constraints to identify fixed and fixed-sign variable reac-
tions. Although this is biochemically justified by inspecting different growth scenarios, it would also interest to 
enumerate all relative flux trade-offs. These will allow for a more unbiased exploration of trade-offs in a set of 
feasible steady-state flux distributions. In addition, future work can aim to establish a connection between trade-
offs at the level of reaction fluxes and trade-offs between enzyme concentrations by extending the application of 
FluTO to enzyme-constrained metabolic  models35,36.
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