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Application of electrical resistivity 
tomography (ERT) for rock mass 
quality evaluation
Muhammad Hasan 1,2,3*, Yanjun Shang 1,2,3*, He Meng1,2,3, Peng Shao1,2,3 & Xuetao Yi1,2,3

Rock mass quality evaluation is a challenging task in geotechnical investigations given the natural 
heterogeneity and the limited data. These investigations mainly depend on the traditional drilling 
tests. However, such tests are expensive and time consuming, provide point measurements, and 
cannot be conducted in steep topographic areas, and thus cause uncertainties in the geological 
model. Conversely, geophysical methods such as electrical resistivity tomography (ERT) are non-
invasive, user-friendly, and fast. In this work, we establish empirical correlation between ERT and 
limited drilling data to obtain rock mass integrity coefficient (Kv). The estimated Kv provides 2D/3D 
imaging of the rock mass quality evaluation via weathered/unweathered rock and faults detection in 
order to cover the entire area even where no drilling test exists. Compared with the past geotechnical 
investigations, our work reduce the ambiguities caused by the inadequate well tests and provide 
more accurate geological model for infrastructures design. Our work proposes that, in case of sparse 
borehole data, the established empirical equations can be used to determine Kv along different 
geophysical profiles via 2D/3D insight of the subsurface. Our approach is applicable in any hard rock 
setting, and the established correlations can be used in areas even where no well test exists.

Rock mass quality evaluation is a challenging task all over the world. In hard rock terrains, successful construc-
tion of the engineered structures mainly relies on bearing capacity of the foundation  rocks1,2. The bearing strength 
of these rocks depends on various factors, such as type of rock, weathering degree, mineralogical composition, 
rock association, faults/fractures, rock deformation and water infiltration  etc3,4. The failure of engineering infra-
structures is mostly caused by the weak bearing capacity of foundation  rocks5. Thus, a thorough investigation 
of the subsurface rocks is essential to obtain an accurate geological model for the success of foundation design. 
The geotechnical sites are investigated for the evaluation of engineering rock quality and fractures/faults6–9.

Rock mass integrity coefficient (Kv), rock quality designation (RQD), volume joint number of rock mass (JV) 
and average joint spacing (dP) are the main geotechnical indices to determine general stability of the subsurface 
rock  mass10–15. These parameters are widely used to classify the bearing strength of the engineering rock  mass16. 
The rock mass quality parameters, however, are conventionally determined by the rock core samples obtained 
from the  boreholes1,5,7,14. The borehole tests provide limited coverage of the vertical measurements along some 
specific points only, cannot evaluate the subsurface laterally, and are hardly conducted in the steep topographic 
 areas2,17. Besides, such approaches are costly and time consuming, and require more  equipment18. In most cases, 
the drilling tests of large sites fail to meet the needs of  engineers19. Hence, the rock mechanical parameters are 
hard to obtain from the frequent boreholes. Using the traditional geotechnical approaches, it is a difficult task for 
the planners to obtain an accurate geological model for the engineering structure design. Therefore, a relievable 
approach is necessary which can determine the geotechnical parameters, reduce an extensive number of drilling 
tests, and bring a sigh of relief to the planners.

Many researchers have used geophysical methods in their geotechnical  investigations20–33. Unlike borehole 
approaches, geophysical methods evaluate the subsurface without any physical disturbance and provide volu-
metric  measurements34. Furthermore, such methods are economical, non invasive, rapid and user  friendly35. 
Seismic methods are the commonly used geophysical methods in the past geotechnical  studies4,5,36–41. The seismic 
detection is likely to be affected by the noise, and cannot delineate the low velocity layer under the high velocity 
layer and the shallow layer (less than 50 m)4. Besides, mostly, the seismic detection consists of 1D/2D probing 
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techniques and the 3D seismic method is still in the early research  level4. Thus, such methods cannot evaluate 
the subsurface accurately and leave uncertainties in the interpretation of geological models. However, compared 
with other geophysical methods, electrical resistivity tomography (ERT) has wide range of resistivity values, 
shows high correlation between electrical resistivity and lithology of the subsurface layers, provide the required 
depth of investigation, and evaluates the subsurface via 2D and 3D  imaging42. Therefore, at present, ERT is one 
of the leading geophysical methods in geotechnical research.

The correlation of geophysical parameters with aquifer or geotechnical parameters is well known. In the 
past, many authors established a relationship between geophysical and rock mass quality parameters, since both 
geophysical and geotechnical parameters are controlled by the same structural heterogeneity including type of 
lithology/rock, porosity and permeability of rock, weathering degree, water infiltration/saturation (amount of 
water), fractures/faults, rock association, rock deformation, water–rock interaction and alteration, temperature, 
and pressure  etc9,11,12,14,16,18,19,36,39,40,43–45. The correlation between geophysical and aquifer parameters has been 
widely used in groundwater studies to obtain hydraulic parameters (hydraulic conductivity and transmissivity). 
However, in geotechnical investigations, such correlation (between geophysical and rock mechanical param-
eters) has not yet been used to determine the rock mass quality parameters (Kv and RQD). In such studies, the 
relationship between geophysical and rock mechanical parameters was used to evaluate the subsurface layers 
(i.e., weathered and unweathered layers) only using specific values range of geophysical parameters (electrical 
resistivity and seismic velocity). Therefore, low coverage of Kv and RQD obtained from the limited boreholes 
cause uncertainties in the interpretation of subsurface geological model.

In this work, we have used the empirical proportions between geophysical and geotechnical parameters 
to obtain Kv and RQD for large coverage of area. In our approach, we propose that only the certain essential 
locations of the study area could be selected for drilling tests, while geophysical survey such as ERT would be 
performed to cover the entire project site. Via empirical correlations, geotechnical parameters (Kv and RQD) 
measured from the limited boreholes would be integrated with the inverted resistivity obtained from the selected 
ERT data points near the drilling tests. Then, the rock mass quality parameters would be estimated by the 
obtained empirical equations using the inverted resistivity of all ERT data points. By this way, the rock mechani-
cal parameters are obtained along the same ERT profiles. Thus, the subsurface is thoroughly evaluated via 2D 
and 3D imaging of Kv or RQD for different types of rocks such as the weathered/crushed rock and the integral 
or unweathered/fresh rock over the entire investigated area even where no drilling data exists.

This work is a rare contribution of the application of non invasive and economical ERT towards the geo-
technical investigation, which not only reduces number of drilling tests but also provides 2D and 3D imaging 
of geotechnical parameters in order to accurately obtain geological models for development of engineering 
structures. Moreover, Kv has not been estimated via empirical correlation between drilling tests and ERT. Our 
primary goals were: (1) to reduce the ambiguities in the subsurface geological models caused by natural hetero-
geneity and the limited data; (2) to bridge the gaps between the inadequate well data and the accurate geological 
model; (3) to assess the subsurface geological models for rock mass quality evaluation and faults detection via a 
thorough 2D/3D imaging of ERT and Kv models; (4) to introduce ERT (coupled with available boreholes) as the 
best alternative approach of the traditional techniques to obtain the rock mechanical parameters by reducing 
significant number of expensive drilling tests; and (5) to provide scientific basis for infrastructures design in the 
hard rock sites. Important steps of this work are shown by a flowchart in Fig. 1.

This investigation was carried out in South of Huizhou, Guangdong province, China for the successful devel-
opment of infrastructures (Fig. 2). Based on the stratigraphic setting, the project site is located in the South 
China Fold System and the South China Stratigraphic Area. Geomorphologically, the study area is divided into 
several units such as the East High Mountains, the Middle Green Hills and the Southwest Hills at the coast of 
South China Sea. Tuff rocks are the most dominant rocks in the investigated area, which belong to the magmatic 
rocks of Lower Jurassic and acidic volcanic rocks of Upper  Jurassic46. Based on highly heterogeneous setting of 
the study area, a detailed study of the subsurface is necessary prior to the construction of engineered structures.

Methods
ERT survey. In ERT surveys, electrical resistivity is measured (in Ωm), which is the inverse of electrical con-
ductivity. The basic principle of ERT is based on the varying electrical conductivity of the subsurface materials, 
which depends on many factors, such as rock type, porosity, permeability, connectivity of pores, temperature, 
salinity, cation exchange capacity, clay content, nature of the fluid/water, weathering degree, fractures/faults, 
rock association, rock deformation, water–rock interaction and alteration,  etc3,9,42. Generally, a wide range of 
electrical resistivity for most materials suggests the varying water content. In hard rock terrains, electrical resis-
tivity can vary over a large range depending on weathering degree, water saturation,  etc18. Electrical resistivity 
decreases with increasing the weathering degree and water content. Hence, a contrast in resistivity values of the 
saturated weathered/fractured rock and fresh/unweathered rock is clearly  observed9. 2D/3D ERT is a modern 
form of the conventional 1D VES (vertical electrical soundings) method, which provides high resolution imag-
ing of the subsurface both laterally and  vertically42. The modern electrical surveys are conducted using the most 
efficient and non destructive instruments, which can provide measurements of ERT, IP (induced polarization) 
and SP (self-potential). IP measures chargeability which is useful when there is little contrast in resistivity of the 
subsurface lithologies, such as resistivity shows low value for both water and clay content but IP suggests high 
value for clay than water. IP is the most commonly used electrical method in mineral exploration for sulfides 
detection. SP is useful to map groundwater flow path. However, compared with other electrical methods (IP and 
SP), ERT has an advantage of having a wide range of resistivity values and is the most widely used geophysical 
method to map more accurate geometry of weathered/fractured and unweathered/fresh rock. Therefore, ERT 
has been widely used as the most suitable electrical method to make the correlation of electrical resistivity with 
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other parameters (hydraulic and geotechnical parameters)9,18. ERT surveys are carried out by large number of 
apparent-resistivity  measurements47,48. The apparent resistivity data are acquired through the injection of electric 
current into the ground using two current electrodes, and another pair of potential electrodes is used to measure 
the resulting potential difference along a 2D profile. The investigation depth can be improved (increased) by 
increasing the electrodes spacing; however, this will reduce the resolution of subsurface  model49. ERT provides 
an image with the distribution of subsurface resistivity. Based on resistivities of different subsurface materials/
rocks, the resistivity image can be converted into the subsurface image having different lithologies/rocks18. The 
interpretation of resistivity results is called as  pseudosection50. ERT data acquisition is performed via various 
electrode arrays (e.g., Wenner, Schlumberger, dipole–dipole, pole–dipole and pole–pole). Different electrode 
arrays provide different investigation depths and subsurface resolution. The electrode array is selected based on 
many factors such as signal strength, resistivity sensitivity to lateral/vertical variations in the subsurface, depth 
of investigation, and the lateral coverage of resistivity  data51.

ERT survey was conducted by a Terrameter SAS 4000 (ABEM, Inc.). The apparent resistivity measurements 
were acquired using various electrodes (non-polarizing) connected to a multi-core cable. The multi-electrode 
imaging system (48 electrodes) uses a multi-function electrical instrument and a multi-electrode convertor. The 
same instrument (Terrameter SAS 4000) can be used to obtain measurements of three electrical methods (ERT, 
IP and SP) using different modes. In this investigation, the imaging system was turned into resistivity mode 
only to perform the apparent resistivity measurements. We used the pole–dipole array for ERT data acquisi-
tion since it provides higher signal strength, more sensitivity to the vertical structures and large investigation 
 depth52. Furthermore, it is less influenced by the remote-pole position, and is more suitable for the delineation 
of weathered/fractured  rock9. Asymmetrical effects of the pole–dipole were removed by integrating the forward 
and reverse measurements. The data quality was improved by enhancing signal strength using the stacking 

Figure 1.  A flowchart to summarize the efforts to obtain an accurate geological model using geophysical 
approach for infrastructures design.
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 procedure53. Roll-Along mode with different layouts was used to increases the profile length. ERT survey was 
performed along three profiles namely New1, New2 and New3 using a fixed electrode spacing of 5 m, a total of 
387 electrodes, and a total profile length of 1920 m. We performed profile New1 with a profile length of 1300 m 
for 261 electrodes, profile New2 using 65 electrodes and profile spread of 320 m long, and profile New3 for 61 
electrodes and 300 m profile length.

Figure 2.  Location of the investigated area, including 3 geophysical profiles New1, New2 and New3 (light blue 
lines), boreholes W1-4 (blue dots), and the traced faults (red dashed lines in different directions). The map was 
created on the basis of Google Earth (https:// earth. google. com/) by M. Hasan in the CorelDRAW 12.0 Graphic 
program.

https://earth.google.com/
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The apparent resistivity measured in the field assumes a homogeneous subsurface. Therefore, in order to 
obtain true resistivity of the subsurface materials, the apparent resistivity must be inverted using the inversion 
 software18. Therefore, the data sets of apparent resistivities obtained along each profile were processed via the 
algorithms and programming code of  RES2DINV54. This software uses the nonlinear optimization program 
to generate a 2D ERT pseudosection. The inversion software uses the smoothness-constrained least squares 
with L2-norm55. The data quality was enhanced via robust constraint. RES2DINV tries to minimize the RMS 
(root mean square error) by adjusting resistivities of the model blocks. RMS defines the difference between the 
measured and calculated apparent resistivities. Each 2D ERT model was generated for RMS below 5% after 8 
iterations. The inversion program was performed using the standard technique of Gauss Newton optimization. 
The data acquisition of ERT method is a 2D configuration process. The 2D ERT inversion was carried out along 
each profile using RES2DINV. Then, the 2D ERT data of three profiles were converted into 3D ERT inversion 
format using RES3DINV. Afterwards, for better comparison of geophysical and geotechnical parameters via 
similar mapping of ERT and Kv, ERT inversion data and the obtained Kv data were used by Geosoft or SKUA-
GOCAD software for further reconstruction of ERT/Kv  models56–59.

Rock mass integrity coefficient (Kv). Rock mass integrity coefficient (Kv) also known as the fracture 
coefficient of rock mass is one of the most efficient geotechnical indices used in rock mass quality  evaluation15. 
Conventionally, Kv is measured from the rock core samples of the boreholes. It is calculated by the square of the 
ratio of the acoustic P-wave velocity of the same rock mass to the P-wave velocity of the rock  block15,60. The fol-
lowing equation is used to measure Kv from the drilling data:

where Kv indicates the rock mass integrity index ranging between 0 and 1, Vpr is velocity of P-wave (in km/s) for 
the intact rock, and Vpm shows the acoustic velocity of P-wave (in km) for the rock mass. The acoustic velocity of 
P-wave (Vpm) is obtained by in-situ measurements, while the velocity of P-wave (Vpr) is acquired from the rock 
core samples of drilling tests. The rock mass acoustic P-wave velocity (Vpm) mainly depends on composition of 
rock, structural characteristics, discontinuities of rock mass, cementation of joints and groundwater occurrence. 
Rock mass integrity index  (KV), compared with other integrity coefficients such as rock quality designation 
(RQD), average joint spacing (dP) and volume joint number of rock mass (JV), is the most reliable geotechnical 
coefficient in rock engineering for rock mass quality  evaluation15.

Many authors suggest that useful correlations can be established between geophysical and geotechnical 
 parameters12,14,16,19,36,39,43. Firstly, Eq. (1) was used to measure Kv for the data obtained from 4 boreholes. From 
four well points, we acquire a total of 28 kV values at different depths. Then, we performed empirical correlation 
between the inverted resistivity values (obtained from the selected ERT data points near the well points) and the 
measured Kv (Fig. 3a) to obtain Kv for all ERT data points along three profiles over the entire study area even 
where no borehole existed. A total of seven Kv values at different depths (between 5–40 m) were acquired from 
each borehole. Hence, we get a total of 28 kV values from 4 wells for maximum depth of 40 m. We make the 
correlation of 4 drilling wells with four ERT data points (out of total 387) along three profiles, such as New1-41 
(41st ERT data point along profile New1) near borehole 1, New1-118 (118th ERT data point along profile New1) 
near borehole 2 (Fig. 3b), New1-212 (212nd ERT data point along profile New1) near borehole 3, and New2-15 
(15th ERT data point along profile New2) near borehole 4. By this way, the empirical correlations were established 
between 28 values of the inverted resistivity (obtained from 4 ERT data points at different depths correspond-
ing to the nearby drilling wells) and 28 kV values (measured from 4 wells at the same depths) (Fig. 3a). First of 
all, we obtained only a single empirical equation for both weathered and fresh rock. However, we observed that 
such equation provides error for the estimation of Kv especially for low and high resistivities, hence it causes 
ambiguities in rock mass quality evaluation. Such uncertainties in the subsurface geological model were reduced 
via empirical equation for each type of rock (Fig. 3a).

Equation (2) was used to evaluate the crushed/weathered rock for resistivity less than 1000 Ωm and Kv 
between 0–0.55.

Resistivity greater than 1000 Ωm was used in Eq. (3) to estimate Kv ranging from 0.55 to 1 for the integral/
fresh rock.

The above equations were used for resistivities of all ERT data points to obtain Kv for the rock mass quality 
evaluation over the entire area. One of the correlation points (e.g., between ERT point New1-118 and borehole 
2) is shown in Fig. 3b. Therefore, compared with 28 kV values (measured from 4 borehole points for maximum 
depth of 40 m), 7740 values of Kv [estimated along three profiles for a total of 387 ERT data points and 100 m 
depth using Eqs. (2) and (3)] provide far better insights into the subsurface for rock mass quality evaluation. 
The obtained empirical equations can be used for the estimation of Kv in the areas with similar setting where no 
drill data is available. Furthermore, the similar methodology can be followed to establish empirical equations 
for any specific area with any setting.

(1)Kv =

(

Vpm

Vpr

)2

(0 ≤ Kv ≤ 1)

(2)Kv = 0.1543ln (Res.)− 0.556

(3)Kv = 0.1881ln (Res.)− 0.7316
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Results
Correlation between geophysical and boreholes data. Correlation between the ERT data and the 
borehole information constrained the subsurface into a two layered model. Such calibration was carried out 
using the inverted resistivity values acquired from the selected four ERT data points near the boreholes, Kv 
measured from four drilling wells and the local geological knowledge (Table 1). The subsurface was evaluated 
by two discrete layers with overall resistivity varying from 0 to 1,025,000 Ωm and Kv from 0 to 1. Based on 
resistivity less than 1000 Ωm and Kv ranging from 0 to 0.55, the near-surface upper layer was interpreted as the 

Figure 3.  (a) Empirical correlations between the inverted electrical resistivity acquired from the selected ERT 
data points and the rock mass integrity coefficient (Kv) measured from the limited drilling test data. (b) An 
example of the correlation process between the selected ERT point NEW1-118 and Kv of borehole well 2.

Table 1.  Correlation between ERT and well data using the specific values range of resistivity and Kv for rock 
mass quality evaluation.

Resistivity (Ωm) Kv Rock mass quality Site suitability for infrastructures

< 1000 0–0.15 Weathered/crushed rock Unsuitable

> 1000 0.55–0.75 Fresh/integral rock Suitable
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weathered/crushed rock. The bottom layer, underlying the first layer of the weathered rock, was delineated as the 
integral/fresh rock having resistivity greater than 1000 Ωm and Kv between 0.55–1.00. The calibration results 
suggest that Kv increases with increasing resistivity from top surface to the bottom layer (e.g., with depth). The 
near-surface layer of the weathered/crushed rock was interpreted as the rock mass of poor quality, which sug-
gests unsuitable places for the development of infrastructures. The bottom layer of the fresh/integral rock was 
delineated as the rock mass of good quality, which offers the most appropriate locations for the engineered 
structures design in the project site. The 2D ERT models along profiles New1, New2 and New3 are shown in 
Fig. 4a. Based on the correlation between geophysical and well data, the 2D ERT profiles were interpreted for a 
two-layered model of the weathered and fresh rock (Fig. 4b). The 2D Kv models were obtained along the same 
ERT profiles via empirical correlations between the ERT and well data (Fig. 4c). The 2D Kv models interpreted 
for the weathered/crushed and integral/fresh rock are shown in Fig. 4d.

Rock mass quality imaging using ERT. A thorough imaging of the subsurface via the inverted resistivity 
of ERT along three profiles New1, New2 and New3 is shown in Figs. 5 and 6. The 2D ERT models were inter-
preted for the weathered/crushed rock and fractures/faults zones using low resistivity, and the integral/fresh rock 
for high resistivity (Figs. 7 and 8). The resistivity varies from 18 to 1,100,000 Ωm over the entire investigated site. 
The high resistivity values are found along profile New1, whereas profile New3 shows low resistivity values com-
pared with other profiles. The integrated 2D ERT models (Fig. 5a), including the resistivity imaging at different 
depths (e.g., 0 m, 25 m, 50 m, 75 m and 100 m) (Fig. 5b–f) provide clearer view of the subsurface, and reveal that 
mostly the low resistivity zones are located in the central parts, whereas the subsurface zones with high resistivity 
are dominant in the northwest and southeast of the study area. The 3D ERT mapping (Fig. 6) suggests that the 
resistivity value increases with depth. The bottom is dominant with the high resistivity (Fig. 6a), whereas mostly 
the ground surface is revealed with low resistivity (Fig. 6b). Figure 6c,d reveals that most of the low resistive 
zones are delineated up to 20 m depth, while the high resistive rocks are dominant below 20 m depth.   

Based on correlation between ERT and borehole data, the subsurface was interpreted for a two-layered model 
of the weathered/crushed rock (completely, relatively and poorly weathered/crushed) with resistivity less than 
1000 Ωm and integral/fresh rock (relatively and completely integral rock) for resistivity greater than 1000 Ωm 
(Figs. 7 and 8). The ERT profiles are mostly dominated by the fresh rock of good quality. However, some deep 
weathered zones are also delineated in the ERT models, i.e., two such zones along profile New1 at 250 m and 
850 m distance, one zone along profile New2 at 100 m distance, and another zone at 70 m distance along profile 
New3 (Figs. 4b and 7). The interface between the weathered and fresh rock is delineated at an average depth 
of 20 m along all profiles. The interpreted 2D and 3D ERT models suggest that mostly the weathered rock of 
poor quality is found near the ground and 25 m depth (Figs. 7a–c and 8b–d), whereas the fresh/integral rock is 
dominant at 50 m, 75 m and 100 m depths (Figs. 7a, d–f and 8a, c, d). Hence, the intensity of weathered/crushed 
rock decreases with an increase in depth. The weathered/fractured zones (poor rock mass quality) delineated by 
the interpreted ERT imaging should be avoided in the infrastructure design. However, the places other than the 

Figure 4.  (a) 2D ERT models along three profiles New1, New2 and New3 (resistivity increasing from dark 
blue to red white on a color scale). (b) Interpretation of a for the weathered/crushed rock (yellow color) and the 
fresh/integral rock (red color). (c) 2D Kv models along profiles New1, New2 and New3 (Kv increasing from red 
to blue on a color scale). (b) Interpretation of c for the weathered/crushed rock (yellow color) and the fresh/
integral rock (green color).
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weathered/crushed rock along the ERT profiles are suggested as the most suitable locations for the development 
of infrastructures.

Rock mass quality evaluation using Kv. First of all, we used the drilling test data to assess the rock mass 
quality vertically using Kv at four point locations up to the maximum depth of 40 m only. The evaluation of 
rock mass quality based on just four drilling tests does not provide accuracy in the interpretation of subsurface 
geological model, and thus leaves uncertainties prior to the infrastructures development. Afterwards, the quality 
and strength of subsurface rock mass was evaluated by 2D and 3D mapping of Kv along the same geophysi-
cal profiles for investigation depth of 100 m (Figs. 9 and 10). Therefore, a thorough imaging of Kv reduces the 
uncertainties caused by the limited borehole data and provides more accuracy in the interpretation of subsurface 
geological model. The subsurface was interpreted by a two layered model based on the specific values range of 
Kv, such as the weathered/crushed rock (completely, relatively and poorly weathered rock) near the surface with 
Kv ranging from 0 to 0.55, and the integral/unweathered rock (relatively and completely fresh rock) at the bot-
tom for Kv between 0.55–1.00 (Figs. 11 and 12).

The fresh rock along 2D Kv profile New1 is revealed below 20 m depth especially at 0–200 m, 300–870 m and 
900–1300 m distance, whereas two deep zones of poor rock mass quality are also identified along this profile 
i.e., one such zone of 100 m thickness at distance of 200–300 m, and another zone at distance of 870–900 m 
with 75 m thickness (Figs. 4d and 11a). Along Kv profile New2, the poor rock mass quality was identified with 
an average depth of 20 m from the ground surface, this profile detected a deep weathered zone at distance of 
90–110 m and depth of 100 m, high quality rock mass was revealed below 20 m depth at distance of 0–90 m and 
110–320 m (Figs. 4d and 11a). Similarly, Kv profile New3 evaluated rock mass of high quality below 20 m depth 
at the distance of 0–40 m and 90–300 m; this profile detected a weathered zone of about 100 m deep at 40–90 m 
distance, whereas the near-surface weathered layer of poor rock mass quality was delineated with 20 m thickness 
(Figs. 4d and 11a). The results suggest that, except the identified four deep weathered zones, the rock mass qual-
ity is generally good for infrastructures design below 20 m depth. For more detailed view of the subsurface rock 
mass quality, all 2D Kv models, interpreted for the weathered and fresh rock, were integrated to provide 3D Kv 

Figure 5.  Resistivity imaging (increasing from dark blue to red white on a color scale) for: (a) the integration of 
three ERT profiles; (b) ground surface including (a); (c) 25 m depth including (a); (d) 50 m depth including (a); 
(e) 75 m depth including (a); and (f) 100 m depth (bottom) including (a).
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imaging (Fig. 11a). The Kv imaging at different depths (e.g., 0 m, 25 m, 50 m, 75 m and 100 m depth) including 
the integrated 2D Kv maps is shown in Fig. 11b–f.

Another 3D view of Kv imaging is provided in Fig. 12. The Kv results of Figs. 11 and 12 reveal that the rock 
mass quality increases with depth. The top surface is almost entirely covered with the weathered/crushed rock 
of poor quality (Figs. 11b and 12b–d). At 25 m depth, half of the subsurface is still dominant by the weathered/
crushed rock especially at 700–1000 m distance along profile New1 and some zones along profiles New2 and 
New3 (Figs. 11c and 12c, d). However, at 50 m depth and below this depth, the fresh/unweathered rock is 
dominant which suggests high quality rock mass, and only few small zones of the weathered/crushed rock are 
identified along profile New3 in the southeast (Fig. 11d–f and 12c, d). Moreover, the Kv results (Figs. 9, 10, 11, 
12) are supported by the interpreted 2D/3D ERT maps (Figs. 7 and 8) for rock mass quality evaluation. Hence, 
a thorough imaging of the subsurface via 2D/3D Kv (Figs. 4b, 9, 10, 11, 12) reduces the uncertainties caused 
by the limited borehole data and provides more accurate geological model for the development of engineering 
infrastructures in the study area.

Faults detection. The fractures/faults provide the weakest foundation for the construction of engineered 
structures. Hence, detection of such zones is necessary in geotechnical engineering. Groundwater occurrence 
is mainly associated with the weathered/fractured zones in the hard rock terrains. The fractures/faults can be 
detected using different geophysical and rock mechanical parameters. Such zones can be detected more accu-
rately using two or more (geophysical/geotechnical)  parameters9. In this investigation, 2D/3D imaging of ERT 
and Kv was used for the identification of main faults. The weathered/fractured zones of poor rock mass quality 
are identified by low values of ERT and Kv. However, the deep weathered/crushed zones were interpreted as the 
faults/fractures in the project area. We identified several main faults in the study area via 2D and 3D mapping of 
geophysical (ERT) and geotechnical parameter (Kv) (Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12). Based on a careful observa-

Figure 6.  Resistivity imaging (increasing from dark blue to red white on a color scale) along three profiles (red 
lines) including faults (dashed red lines) for: (a) the inner view of 3D ERT, (b) the outer view of 3D ERT, (c) 
different depths from ground surface to 100 m with 3D ERT (inner view), and (d) different depths from ground 
surface to 100 m with 3D ERT (outer view).
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tion of all ERT and Kv models, the faults along the deep weathered/crushed zones were delineated by resistivity 
less than 1000 Ωm (Figs. 4a and 5, 6, 7, 8) and Kv less than 0.55 (Figs. 4b and 9, 10, 11, 12).

Along the deep weathered/crushed rock of the project site, four main faults/fractures were detected with 
different directions, depths and lengths. One fault of more than 200 m depth was revealed along profiles New1 
at 250 m distance, parallel to profiles New2 and New3 in northeast-southwest direction, this fault was detected 
in southeast part of the study area. The second fault along profile New1 was interpreted at 870 m distance and 
75 m depth in northwest and central part of the investigated area parallel to the other two profiles. Next fault 
of more than 100 m depth is delineated at 100 m distance along Kv profile New2 parallel to profile New1 in 
northwest-southeast, this fault is identified in southeast of the project site. The last such fault is revealed along 
profile New3 at 60 m distance parallel to profile New1 in northwest-southeast, this profile is revealed with more 
than 100 m depth in southeast part of the study area. The results suggest that most of the faults are detected in 
the southeast part of the investigated area mainly with more than 100 m depth. Therefore, the main faults and 
the places associated with the fractured zones, delineated by the ERT/Kv models, must be avoided in the devel-
opment of infrastructures in the project area.

Discussion
Rock mass quality evaluation is essential for successful construction of the engineering structures in the hard 
rock terrains. The bearing strength of foundation rocks is mainly determined by the rock mechanical indices. 
Rock mass integrity coefficient (Kv) and rock quality designation (RQD) are the main geotechnical parameters to 
evaluate rock mass strength of the subsurface structures prior to the engineering design. Kv is the most efficient 
rock mass quality index widely used in geotechnical engineering. However, the rock mass quality indices are 
traditionally determined by the drilling tests. Such tests are expensive, time consuming, cannot be conducted in 
steep topographic areas, provide low coverage of point measurements only, and thus cannot fulfill the require-
ments of the planners. On the other hand, geophysical methods are non invasive, economical, user friendly; 
provide volumetric measurements. Geophysical methods such as electrical resistivity tomography (ERT) have 
been used in many geotechnical  investigations20–30. However, the past studies evaluate the subsurface based on 

Figure 7.  Resistivity imaging interpreted by crushed/weathered rock (yellow color), integral/fresh rock (red 
color) and faults (dashed red lines) for: (a) the integration of three ERT profiles; (b) ground surface including 
(a); (c) 25 m depth including (a); (d) 50 m depth including (a); (e) 75 m depth including (a); and (f) 100 m 
depth (bottom) including (a).
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geophysical imaging only. In this contribution, we propose a novel approach which can determine the rock mass 
quality parameters over the entire area by reducing extensive number of borehole tests.

In this work, we make useful empirical correlations between inverted resistivities of the selected ERT data 
points and Kv values of the limited drilling data. Then, the obtained empirical equations are used to measure Kv 
for all ERT data points covering the entire area. We acquire two empirical equations for different types of rocks 
i.e., one equation for the weathered/crushed rock and another for the unweathered/fresh rock. In order to check 
accuracy of the obtained 2D/3D Kv models, we performed a comparison between the measured and estimated 
Kv (Table 2) which suggests acceptable accuracy of over 90% matching for most of the data points. The results 
reveal that ERT and Kv models do not match perfectly with each other, which suggests that Kv provides more 
accuracy than ERT for rock mass quality evaluation. The bearing strength of subsurface rock improves with an 
increase in Kv and ERT values mainly from surface to the bottom. The correlation between ERT and Kv reveals 
that Kv value of 1 (maximum value) remains constant for any value of resistivity over 10,000 Ωm, which sug-
gest that Kv cannot further classify the bearing capacity of fresh rock; however ERT has wide range of resistivity 
values and can further evaluate the strength of fresh rock. Therefore, ERT can reduce such uncertainty in the 
interpretation of subsurface geological model caused by narrow range of Kv. The weathered/crushed rock and 
faults were detected using low values of Kv and ERT. The main faults of the investigated area were interpreted 
along the deep weathered zones via low values of ERT and Kv. The interpretation of faults via ERT and Kv models 
reveal that compared with Kv, ERT delineates the faults more accurately, for example, fault detection at 100 m 
distance along ERT profile New2 is clearer than in Kv model.

Compared with the Kv models in Fig. 12, another Kv model in Fig. 13 provides more detailed view of rock 
mass quality evaluation. Based on our accurate geological Kv model, the construction design was modified for 
groundwater flow from the faults identified in our model. Further, during the site construction, the groundwa-
ter occurrence was found along the same zones as delineated by our faults and the weathered/crushed zones; 
besides, the groundwater flow from the delineated faults was mainly found towards the water channels of the 

Figure 8.  Resistivity imaging along three profiles (red lines) interpreted by the crushed/weathered rock (yellow 
color) and the integral/fresh rock (red color) and the faults (dashed red lines) for: (a) inner view of 3D ERT, (b) 
outer view of 3D ERT, (c) different depths including 3D ERT (inner view), (d) the outer view of 3D ERT with 
different depths.
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study area. Figure 14 provides a comprehensive comparison between the Kv results obtained by drilling data 
and ERT for a two-layered model of weathered and fresh rock. The well data based Kv imaging identifies no 
fault (deep weathered zone), and provides almost constant mapping of the subsurface layers with the fresh rock 
at an average depth of 20 m (Fig. 14a). However, the ERT based Kv models, compared with borehole based Kv 
imaging, reveals several faults and variable mapping of the subsurface distinct layers (Fig. 14b). At 25 m depth, 
the Kv models obtained by drilling data delineates the rock mass of poor quality along one borehole (W2) and 
the high quality rock mass along 3 boreholes (W1, W3, W4) (Fig. 14c). However, at the same depth of 25 m, the 
Kv models generated by ERT (Fig. 14d) provides more detailed mapping of the subsurface geological model, and 
reveals several weathered zones which are hidden in the drilling based Kv models. Therefore, compared with 
the inadequate drilling data of 4 boreholes with maximum depth of 40 m, ERT with hundreds of data points for 
100 m depth provides far better rock mass quality evaluation. The actual situation of the construction site veri-
fied our results obtained by ERT and Kv models. The proposed equations can be used in the areas with similar 
geological conditions. Using the same methodology, empirical equations can be obtained for areas of any setting.

Conclusions
In this contribution, we used a non invasive ERT method in geotechnical engineering for rock mass quality 
evaluation. Conventionally, the drilling approaches are used to obtain geotechnical parameters for the successful 
construction design of engineering structures. However, such techniques have many limitations and can hardly 

Figure 9.  Kv imaging (increasing from red to blue on a color scale) for: (a) the integration of three Kv profiles, 
(b) ground surface including (a); (c) 25 m depth including (a); (d) 50 m depth including (a); (e) 75 m depth 
including (a); and (f) 100 m depth (bottom) including (a).
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fulfill requirements of the planners. In order to reduce large number of drilling tests and to obtain thorough 
insights into the subsurface for rock mass quality evaluation, we introduce our novel approach to provide more 
accurate geological model of subsurface for infrastructure development. We use this approach to obtain empirical 
equations via correlations between the selected ERT data and the limited drilling data. Then, the obtained equa-
tions are used to obtain Kv imaging along the same ERT models. Thus, we get 2D/3D Kv maps which provide 
a thorough imaging of the subsurface for rock mass quality evaluation and cover the entire area even where no 
drilling data are available. The subsurface was evaluated using specific values range of Kv and resistivity, such as 
the weathered/crushed rock for resistivity less than 1000 Ωm and Kv between 0–0.55, and the unweathered/fresh 
rock for resistivity greater than 1000 Ωm and Kv ranging from 0.55 to 1.00. The results reveal that rock mass of 
good quality is found below 25 m depth. The deep weathered/crushed zones were identified as the main faults. 
The identified faults and the weathered rock were interpreted as the poor rock mass quality, and suggested as 
unsuitable locations for infrastructures development. The most suitable places of engineering structures were 
found along the unweathered/fresh rock. It is concluded that the use of geophysical methods, as in this study, 
can efficiently reduce the ambiguity in the geological model and fill the gaps between the limited data and the 
accurate geological models.

Figure 10.  Kv imaging (increasing from red to blue on a color scale) along three profiles (red lines) including 
faults (dashed red lines) for: (a) the inner view of 3D Kv, (b) the outer view of 3D Kv, (c) different depths from 
ground surface to 100 m with 3D Kv (inner view), and (d) different depths from ground surface to 100 m with 
3D Kv (outer view).
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Figure 11.  Kv imaging interpreted by crushed/weathered rock (yellow color), integral/fresh rock (green color) 
and faults (dashed red lines) for: (a) the integration of three Kv profiles, (b) ground surface including (a); (c) 
25 m depth including (a); (d) 50 m depth including (a); (e) 75 m depth including (a); and (f) 100 m depth 
(bottom) including (a).
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Figure 12.  Kv imaging along three profiles (red lines) interpreted by the crushed/weathered rock (yellow color), 
the integral/fresh rock (green color) and the faults (dashed red lines) for: (a) inner view of 3D Kv, (b) outer view 
of 3D Kv, (c) different depths including 3D Kv (inner view), (d) the outer view of 3D Kv with different depths.

Table 2.  Comparison between the measured and estimated Kv values for the selected data points.

ERT data (selected) Well data % Matching

ERT point Resistivity (Ωm) (selected value) Estimated Kv′ Depth (m) Well name Measured Kv Kv vs Kv′

New1-41 1008 0.57 25 W1 0.56 98

New1-118 8000 0.95 31 W2 0.97 97

New1-212 505 0.38 10 W3 0.39 97

New2-13 18 0.04 5 W4 0.02 50
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Figure 13.  (a) Kv imaging (increasing from red to blue on a color scale) along three profiles (red lines) in 
various dimensions including faults (dotted red lines), and (b) Interpretation of a for the weathered/crushed 
rock (yellow color) and integral/fresh rock (green color).
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