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Superspreading quantified 
from bursty epidemic trajectories
Julius B. Kirkegaard* & Kim Sneppen

The quantification of spreading heterogeneity in the COVID-19 epidemic is crucial as it affects the 
choice of efficient mitigating strategies irrespective of whether its origin is biological or social. We 
present a method to deduce temporal and individual variations in the basic reproduction number 
directly from epidemic trajectories at a community level. Using epidemic data from the 98 districts 
in Denmark we estimate an overdispersion factor k for COVID-19 to be about 0.11 (95% confidence 
interval 0.08–0.18), implying that 10 % of the infected cause between 70 % and 87 % of all infections.

In controlling epidemics, a deep understanding of the dynamics that underlie the spread of a disease is critical 
for choosing which interventions are most efficient to mitigate its continued spread. Epidemiological models 
of disease  spreading1,2 depend on parameters that capture effects both of the pathogen–host  biology3 and the 
behaviour of the population in which the disease  propagates4. Population-level data allow the estimation of 
the average basic reproduction number R, denoting the average number of people an infectious individual will 
transmit the disease to. Hidden in the average value of R are both temporal variations and variations between 
infectious  individuals5. Variations in time stem both from the fact that social behaviour can change during an 
epidemic due to e.g. interventions being put in place, and because as the epidemic progresses the susceptible 
fraction of the population decreases. Variations from person to person can results both from biological differ-
ences or social behaviour.

A popular tale for some diseases is the 20/80-rule stating that 20 % of infectious individuals are responsi-
ble for 80 % of all infections. This was for example seen in recent epidemics such as the 2003 Asia outbreak of 
 SARS5 and the 2014 Africa outbreak of  Ebola6. Numerous of studies of COVID-19 suggest even more extreme 
statistics for this  disease7–11. These effects have collectively become known as superspreading, and while it is 
simple to define theoretically, measuring them typically requires data at the level of individuals. Viral genome 
sequences can be used to inform the  analysis12,13, and when contact tracing data is  available14–16 the analysis may 
be performed directly. More indirectly, the number of imported versus local cases has also been shown to inform 
the  dispersion17. Focusing exclusively on the early evolution of the epidemic, recent  work18 has shown that the 
variation in infection rate between regions can be used to estimate the dispersion.

In this report, we derive a Bayesian model for local epidemic outbursts to address the inverse problem of 
estimating temporal variations and individual infection heterogeneity from aggregate data. In other words, we 
demonstrate how to estimate this heterogeneity using data that only contain the total counts of the number of 
infected (and tested) per day. Our method relies on the fact that the epidemic trajectories of case numbers are 
bursty on a regional level, reflecting a mixture of simple Poisson randomness, varying testing frequencies, and 
individual infection heterogeneity. We model these fluctuations and sample for the statistics of the duration 
between reported cases as illustrated in Fig. 1). Using regional data allows us to bypass the averaging on the larger 
scales and permits the estimation of the underlying heterogeneity. Our method simultaneously samples across 
many regions, and thus naturally separates local outbursts from the large scale variation in average reproduc-
tion number.

We apply our approach on data for Denmark, which has a number of features that permit the analysis: 
Denmark, with a population of 5.8 million, makes available daily data for all of its 98 municipalities, which all 
coordinate their testing identically. As shown in Fig. 2(a–f), the number of cases in these municipalties vary 
significantly. In the capital region of Copenhagen, daily cases number in the hundreds, whereas in more rural 
Vesterhimmerlands the daily rate is less than ten. Finally, the population of Denmark is fairly uniform and thus 
slow, temporal variations in R can be assumed to affect all regions.

Model
Following the seminal paper of Lloyd-Smith et al.5, we assign each person an infectivity ν sampled from a gamma 
distribution Ŵ(R(t), k) with mean R(t) and dispersion parameter k. Small k correspond to a disease driven mainly 
by superspreading as illustrated in Fig. 1(a). The mean basic reproduction number is taken to be time-dependent 
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to include changes due to policy, behavior and immunity. Accounting for subsequent independent stochastic 
infections, the offspring distribution is negative binomial NB(R(t), k)5. Our objective is to estimate R(t) and k. 
These parameters can be deduced directly if contact tracing data is available. Using only aggregate data, however, 
we need to instead build a probabilistic augmentation of the missing contact information.

In aggregate data, the duration between the infections of an infector-infectee pair being reported �τ is 
stochastic. This distribution can be calculated if the distribution of infection-to-infection p(τi) (generation 
time) and infection-to-reporting p(τd) are known. As illustrated in Fig. 1(c), the time between reporting obey 
the random variable relation �τ = −τd + τi + τd , where the first τd refers to the random time of reporting for 
the infector and the latter τd the time of reporting for the infectee. These do not affect the mean value of �τ 
but do increase its variance. The resulting distribution is shown in Fig. 1(d) using estimates from the literature 
of p(τi) ∼ Ŵ(5.0± 0.75, 10± 1.5) and p(τd) ∼ Ŵ(4.5± 0.75, 5.0± 1.0)19,20. With these distributions in place 
it is straightforward to simulate an epidemic if R(t) and k are known. Fig. 2(g) shows two such examples for 
k = ∞ and k = 0.1 . For k = 0.1 there will be superspreading, but because of the distribution of �τ these will 
be distributed over a number of days rendering visual distinction difficult and thus makes statistical analysis 
crucial for its discovery.

To tackle the inverse problem of the simulation we define a self-consistent model of the data. For simplic-
ity let us first assume that all infectious individuals are found and postpone the discussion of under-reporting. 
Figure 1(b) illustrates our approach: we define the likelihood of the data by calculating the probability of the 
observed time-series for each municipality. In practice, this can only be calculated in a reasonable amount of time 
because of a few key features of the negative-binomial distribution. These are derived in the methods section, 
but can be summarised as follows: If the offspring distribution from a single individual is the negative binomial 
NB(R, k) , then the offspring distribution from M people, where each individual is found on one specific day with 
probability p is exactly NB(pMR,Mk) . The total likelihood of a single day is then found by convolving these 
distributions using p(�τ) for the daily probability of reporting. The precise formulae are presented in the SI.

To complete our model, we need to adjust for correlations that are present in the data as shown in Fig. 3. 
Naturally, a municipality with a large population will have a larger number of cases per day than a municipality 
with a small population. This is because there will be more imported cases in large regions (there may also be 
variations in R between cities and rural  areas21, but this is a second-order effect that we ignore). As most imported 
cases will come from other municipalities, we ignore effects of international travel. In fact, daily cases per popula-
tion of the municipalities will be strongly correlated as a function of time as demonstrated in Fig. 3(a), reflecting 

Figure 1.  Model definitions. (a) Illustration of a heterogeneous infection pattern (superspreading). Inset 
shows the probability density function and (one minus) the cumulative probability for the gamma distribution 
Ŵ(R = 1.0, k = 0.1) . (b) Likelihood model. The infected individuals whose infection was reported on some day 
(orange) will themselves infect a number of people. These are in turn detected on other days according to the 
distribution p(�τ) . (c) Time scale definitions. τd denotes the duration from being infected to being reported, 
and τi the duration between infections (generation time). Finally, �τ is the difference between the reported 
times of infector-infectee pairs. (d) The maximum likelihood of the distributions we employ for τd and τi , and 
the distribution thus implied for �τ . p(�τ) has support below zero as it is possible that the infector’s infection is 
reported after the infectee.
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the fact that Denmark is a small country with overall homogeneous development of the disease. To account for 
coupling between communities we introduce a crossing parameter c that corrects for the fraction of infections 
that occur across municipality borders. For the number of infectious individuals in municipality m we thus use 
Ncorrected
m = (1− c)Nm + cfmT , where Nm is the uncorrected number of infectious individuals in municipality 

m, fm is the population fraction of municipality m, and T is the total number of infectious individuals across 
all municipalities. With this simple formula it is ensured that municipalities will, on average, have a number of 
infections that is proportional to the population of the municipality.

Figure 3(b) shows that the testing frequency in each municipality is highly irregular, with e.g. fewer tests 
being done on weekends. Our method to detect variations in reproduction number depends on the deviations 
in cases in each municipality to be uncorrelated. The inset of Fig. 3(b) shows that there is a small correlation 
present. This is natural, since the number of tests is correlated across municipalities. We correct for this effect by 
scaling with the number of tests. This is incorporated into our model by re-scaling the distribution of reporting 
p(τd) in proportion to the daily number of tests (see SI for details).

Finally, we employ Hamiltonian Monte  Carlo22 to sample for R(t), k and c from the total likelihood function 
of all regions, aimed to reproduce the case counts at each day, given case counts on previous days. In particular, 
we run the NUTS  algorithm23 with gradients of the log likelihood calculated by automatic  differentiation24 on 
GPUs that allow for fast calculations of convolutions that make up our likelihood function (see methods). We 
restrict temporal variations of R(t) to be slow on the scale of weeks by parameterising the function using cubic 
Hermite splines. The Hamiltonian Monte Carlo chain is then run multiple times for sampled p(τi) and p(τd).

Results
Our results are shown in Fig. 4. The sampling reveals an R(t) [Fig. 3(a)] that slightly deviates from estimates 
obtained by single approximations using e.g. the SIR  model1,25. This is because we calculate an R(t) that best 
explain the statistics of each municipality and not the sum of these. Further, we have a large uncertainty on our 
estimates because our R(t) models the reproduction number under uncertain values of p(τi) and p(τd) (see Ref.26 
for details on precise estimation of R(t) alone). In other words, we calculate the true value of R(t) as defined by 
the average offspring count, and not as the value of R(t) that best makes a single model fit the evolving infection 
 statistics27.

Figure 3(b) shows that we cannot constrain c more than to say that by far most infections happen within 
municipality borders, as is expected. In contrast, the degree of superspreading as defined by the value of k is 

Figure 2.  Daily cases of COVID-19 in Denmark between 26 February and 17 November 2020, during which 
only PCR tests were employed. (a) The total number of cases in each of Denmark’s 98 municipalities. (b–f) 
Daily number of cases in five municipalities. (g) Simulations of an epidemic with dispersion parameter k = ∞ 
and k = 0.1 , respectively. Both simulations use R = 0.9 and a crossing parameter chosen such that on average 
an infectious person enters every fifth day. Map created from DAGI [“Danmarks Administrative Geografiske 
Inddeling”] data (2020) supplied by the Danish Agency for Data Supply and Efficiency.
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fairly constrained as shown in Fig. 4(c). We find k in the range 0.08 – 0.18 (95% confidence interval), with mean 
k = 0.11 , which compares well to estimated confidence intervals obtained from other  methods12,14,15,17,18 but 
smaller than k ∼ 0.4 reported by Ref.16. For R = 1.4 , for instance, our value range corresponds to an epidemic 
in which 10% of the infected individuals are responsible for 70% – 87% of all cases. In this case, the majority 
of infectious individuals will not infect anyone, in broad agreement with the fact that there are remarkably few 
transmissions within  households28,29. We note that the precise range of such statistics depends on the choice of 
probability distribution for infectiousness, for which we used the gamma distribution as has become  standard5. 

Figure 3.  Data correlations. (a) Cases per population of each municipality smoothed over one week. Thick line 
shows cases for all of Denmark. Inset shows the cross correlation between municipalities as a function of time. 
(b) Daily test frequency in each municipality. Inset shows the correlation of deviations of daily cases from a 
weekly running mean both with and without linear correction for the number of tests.

Figure 4.  Results. (a) Temporal variations of the basic reproduction number R(t). Background line shows 
total number of daily cases. Blue lines are realisations from the MCMC sampling, while orange line indicates 
average of all samples. Shaded background shows sections of the data that are not included in the likelihood. (b) 
Histogram of the crossing parameter c. (c) Histogram of the dispersion parameter k. Curves in (b–c) are log-
normal distributions with matching mean and variance.
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If, for instance, the distribution instead were fat-tailed4,9, then the quantification of the dispersion statistics would 
differ. This could be remedied by introducing an exponential cutoff, but then this extra parameter would also 
need to be sampled for. The value of the crossing parameter c only weakly affects k, which is instead affecting 
mainly by the mean value of τi and the widths of the distributions of τi and τd . In particular, in our model we 
assume that infectious individuals spread the disease over time. If, in contrast, the spread from individuals is 
driven mainly single events then our distribution for p(�τ) is too wide. To study the effect of this, we ran our 
model with both p(τi) and one of the two p(τd) that make up p(�τ) constrained to a single day. This leads to a 
k that is about 40% larger than the one estimated.

We have until now assumed that all infectious individuals were included in the data. This is of course not 
true. Focusing on estimating k we here consider the case where only a (time-independent) fraction f < 1 of 
all infectious are found. This leads our method to overestimate k. Most simply, if the incidence at each day is a 
factor 1/f larger than the measured data, fluctuations are amplified by 1/f and the true dispersion parameter k 
will be our measured k multiplied by f. Thus a value of k = 0.1 from Fig. 4c and an f ∼ 1/3 would correspond 
to a true k ∼ 0.03 . It is however more realistic to assume that each detected case is independently found with 
probability f. Using simulated data where a fraction f ∼ 1/3 of cases are independently detected we find that a 
measured k of 0.1 correspond to a true underlying k that is between 0.05 and 0.085, depending on the simulation 
(see SI). If, on the other hand, there is large correlations between the reporting present in the data, our method 
may underestimate k. This is harder to gauge precisely as it depends on the correlations.

These systematic uncertainties should be considered for our estimated value of k. The existence of large 
spreading events makes our model underestimate k, whereas uncorrelated under-reporting leads to overesti-
mation. The effects will tend to affect the value of k in opposite directions, but taken to the extreme could bring 
k to 0.04 – 0.28. We have furthermore tested our method on random subsets of all municipalities, and found 
that this did not have any significant impact on our estimates. Restricting to considered time interval to smaller 
subsections also did not affect the estimated value of k significantly.

Traditionally one characterises an epidemic with only one number, R0 , and even so there are remarkably few 
direct measurements of this average for known diseases. Here we ventured beyond such average measurements 
and proposed a new community level method to extract also variations in infectivity without having access to 
person sensitive data and contact tracing. Using our method we quantified the COVID-19 epidemic as one of 
the most extreme superspreader dominated diseases ever  recorded5. It has previously been demonstrated that 
such level of heterogeneity should make COVID-19 comparatively easy to mitigate with societal  restrictions10,11.

Methods
Negative binomial formulas. The offspring distribution from an individual with infectivity ν is Pois-
sonian:

When infectivty ν is distributed according to a Gamma distribution

the total offspring distribution becomes negative binomial

The negative binomial has probability generating function

The number of infections from M infectious people will then have generating function

If a person is only reported with probability p, corresponding to a Bernoulli random variable with generating 
function GB

(s) = ps + (1− p) , the generating function for the reported offspring distribution becomes

These formulas combined show that the reported offspring distribution from M people is NB(pMR,Mk).

Base likelihood model. We derive our likelihood model by calculating the probability to observe a given 
number of cases on a specific day given the previous days’ case counts. Define the variable z(d1, d2) as the num-
ber people reported on day d2 whose infector was reported on day d1 . Using the above results we have
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where c1 is the number of cases on day d1 , and p(�τ) is the distribution of the time between reporting.
The number of infections c2 on day d2 is given by

In other words: the number of infections reported on day d2 is the sum of those cases from the surrounding 
days ( {d1} ) that are reported on day d2 . We make the assumption that these are independent, although this is not 
strictly true. In this case c2 will be distributed as

where ⊛ denotes convolution.
The total log likelihood is then found by summing over all regions and days:

where ci is the number of cases on day di . We use PyTorch to evaluate this expression and its gradients on an 
Nvidia Geforce RTX 2080 Ti GPU. More details are given in the SI.
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