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Rib fracture detection system 
based on deep learning
Liding Yao1,3, Xiaojun Guan1,3, Xiaowei Song1, Yanbin Tan1, Chun Wang2, Chaohui Jin2, 
Ming Chen2, Huogen Wang2* & Minming Zhang1*

Rib fracture detection is time-consuming and demanding work for radiologists. This study aimed to 
introduce a novel rib fracture detection system based on deep learning which can help radiologists 
to diagnose rib fractures in chest computer tomography (CT) images conveniently and accurately. 
A total of 1707 patients were included in this study from a single center. We developed a novel rib 
fracture detection system on chest CT using a three-step algorithm. According to the examination 
time, 1507, 100 and 100 patients were allocated to the training set, the validation set and the 
testing set, respectively. Free Response ROC analysis was performed to evaluate the sensitivity and 
false positivity of the deep learning algorithm. Precision, recall, F1-score, negative predictive value 
(NPV) and detection and diagnosis were selected as evaluation metrics to compare the diagnostic 
efficiency of this system with radiologists. The radiologist-only study was used as a benchmark and the 
radiologist-model collaboration study was evaluated to assess the model’s clinical applicability. A total 
of 50,170,399 blocks (fracture blocks, 91,574; normal blocks, 50,078,825) were labelled for training. 
The F1-score of the Rib Fracture Detection System was 0.890 and the precision, recall and NPV values 
were 0.869, 0.913 and 0.969, respectively. By interacting with this detection system, the F1-score 
of the junior and the experienced radiologists had improved from 0.796 to 0.925 and 0.889 to 0.970, 
respectively; the recall scores had increased from 0.693 to 0.920 and 0.853 to 0.972, respectively. On 
average, the diagnosis time of radiologist assisted with this detection system was reduced by 65.3 s. 
The constructed Rib Fracture Detection System has a comparable performance with the experienced 
radiologist and is readily available to automatically detect rib fracture in the clinical setting with high 
efficacy, which could reduce diagnosis time and radiologists’ workload in the clinical practice.

Rib fractures are the most common consequences of traumatic chest  injury1, most commonly caused by motor 
vehicle accidents, sport, falls etc. A recent study that included 4,168 patients with thoracic trauma in East China 
showed that 66.8% of the patients sustained rib  fractures2. Rib fracture is also an important indicator of trauma 
severity, and patients with rib fractures have a higher admission rate and mortality than those  without3. Many 
studies have highlighted that there is a high morbidity and mortality rate with even a single rib fracture, and as 
the number of rib fractures increases, patient’s morbidity and mortality rates  increase1,4. In addition, accurate 
detection of rib fracture can have medical-legal  relevance5. Therefore, it is essential to accurately diagnose the 
location and the number of rib fractures in the clinical setting.

Plain X-ray and computed tomography (CT) are the most common imaging modalities used for rib frac-
ture detection. In comparison to CT, the plain X-ray is convenient and fast, but the detection rate is relatively 
poor with more than 50% of rib fractures  missed1,6. CT is the main imaging modality used to evaluate thoracic 
trauma for rib fractures and associated  complications1. With chest CT, a large number of imaging sections and 
series are generated which consist of 12 pairs of ribs with heterogeneous shapes. All images must be evaluated 
sequentially, rib-by-rib and side-by-side, which is time-consuming and  demanding5. Despite the best human 
effort, a misdiagnosis rate between 19.2 to 26.8% was reported with chest CT for rib  fractures7,8, some of which 
may potentially lead to serious  consequences9. Therefore, it is essential to develop an assistant machine learning 
detection system for rib fractures to minimize misdiagnosis.

Deep learning allows raw data to be fed into computer models and automatically processed with multiple 
pattern extraction and weighting  levels10. Deep learning has been widely acknowledged for its great potential 
in complex pattern recognition and learning images with spatial hierarchy in multiple medical fields such as 
dermatology, radiology, ophthalmology, and  pathology11, as well as in various fracture detections such as radial 
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and ulnar  fracture12, wrist  fracture13, and thoracolumbar fracture etc.14. Therefore, it would also be feasible to con-
struct a rib fracture detection system based on a deep learning model. Recently, Zhou et al.15, Weikert et al.16 and 
Jin et al.17 constructed several deep learning models for rib fracture detection with a high diagnostic sensitivity 
and specificity, in particular, such models have the advantage of dramatically reducing the diagnosis time. Since 
the performance of a deep learning model is highly dependent on the characteristics of the trained data, such as 
imaging resolution and fracture extent, the model’s generalizability remains a constant issue. In general, existing 
deep learning models often require localized data input and refinement for validation before clinical translation.

From the deep learning perspective, rib fracture diagnosis is defined as an object detection problem, and a 
number of methods, for example, Faster-RCNN18,  SSD19, YOLO-v320, have been previously proposed. Because 
the rib fracture region is relatively small and imperceptible within many chest CT images, such detection system 
is more difficult compared to other fracture detection systems. Therefore, in order to construct a deep-learning 
model specific for rib fracture, this study had developed a three-step method to detect rib fracture in a patient 
population with mild to severe rib fractures: (1) a semantic segmentation model was trained and used to extract 
all bony features from chest CT; (2) a rib location model was trained to extract ribs and remove vertebrae, 
scapulae and sternum; (3) a classification model was trained to identify the fracture in the extracted ribs, and 
the performance was further tested using an independent dataset. Finally, the performance of radiologist-model 
collaboration was evaluated after the completion of deep-learning model.

Materials and methods
Data collecting. This study was approved by the Ethics Committee of the Second Affiliated Hospital of Zhe-
jiang University with the informed consent waived. All the methods were carried out in accordance with relevant 
guidelines and regulations. A total of 1707 patients from the Second Affiliated Hospital of Zhejiang University 
were enrolled in this study. All chest CT scans were collected using keyword searches in Picture Archiving and 
Communication Systems (PACS) between January 1, 2016 and March 31, 2019. The inclusion criteria were: (a) 
slice thickness after image reconstruction less than 2 mm, (b) at least 1 rib fracture present, (c) no significant 
artifact in the images. Finally, a total of 1707 patients with chest CT images were included in this study. To ensure 
that all data was analyzed at the same windowing level, the window center and window width parameters of all 
CT scans were set to 400 and 1600, respectively.

Data annotation and pretreatment. All CT images were annotated by three experienced radiologists 
(all with over 10 years of experience in CT diagnosis) and checked by two senior radiologists (both with more 
than 15 years of experience in CT diagnosis) as the ground truth for both the training, validation and testing 
sets of rib fracture detection model. In the situation where the annotation result of data was inconsistent, all five 
radiologists were invited to participate in a discussion, and a consensus decision was made. All CT images were 
annotated on a medical image processing and navigation software, 3D  Slicer21, by drawing a mask around the 
bone region and a rectangular bounding box surrounding the rib fracture.

As shown in Fig. 1, patients were allocated into the training set (1507 cases, 581,701 slices, and 7362 fractures), 
the validation set (100 cases, 36,697 slices, and 473 fractures) and the testing set (100 cases, 37,183 slices, and 436 
fractures) according to the examination time. The deep learning model for rib fracture detection was developed 
and trained on the training set. The hyper-parameters of the deep learning system were finetuned using the 
validation set. The diagnostic efficiency of the deep learning model was assessed on the testing dataset, together 
with the evaluation of the efficacy of the deep-learning model alone, radiologist alone and radiologist-model 
collaboration. These 100 cases for testing were composed of 62 male and 38 female subjects with a mean age of 
56.7 ± 12.8 years (range from 23–88 years). The overview of dataset was descripted in Table 1.

Model construction. The extents of rib fractures were highly varied and sometimes only a few abnormal 
pixels can be observed in very small fractures, which make them more difficult to detect. As illustrated in Fig. 2, 
we divided the fracture detection model into three-step algorithms, including bone segmentation, rib location, 
and rib fracture classification.

(a) Bone segmentation: U-Net22 was implemented and trained for bone segmentation. U-Net is an encoder-
decoder architecture. The encoder was a typical Convolutional Neural Network (CNN) applied to extract 
semantic features from basic patterns to complex spatial patterns. In the decoder, a feature map resolution 
was gradually restored through a series of transposed convolution operations. Features from the encoder 
were reprocessed through feature cascade from levels of the encoder and decoder.

(b) Rib location: Because ribs were difficult to distinguish from scapulae, sternum, and vertebrae when per-
forming bone segmentation, we removed vertebrae and scapulae based on their characteristic shapes and 
locations as a critical preprocessing step.

(c) Rib fracture classification: 3D DenseNet was employed for rib fracture classification, which was an exten-
sion of  DenseNet23 by extending 2D Convolution and 2D pooling into 3D. It connected each layer to every 
other layer in a feed-forward fashion, which alleviated the problem of gradient dissipation, facilitated the 
propagation and the reuse of features. An inception  structure24 was introduced to make the network learn 
features in different scales of receptive fields. Focal loss  function25 was calculated as the loss function during 
training, which enhanced the generalization ability of the model by minimizing the difference between the 
ground truth and training outcome, especially on hard cases.

The details of the procedures mentioned above were described in the Supplementary Materials.
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Model training. 

(a) The training of U-Net: U-Net was trained on a training set consisting of 4496 rib CT images. An input 
image of size 512× 512 was randomly cropped from a CT image. During training, each batch contained 
8 samples. Data augmentation, such as flipping, contrast adjustment and random noise, was manipulated 
to avoid  overfitting26. The optimization objective function was computed by the dice-loss27 function, and 
the calculation formula of the dice loss function was:

Ldice = 1−
2
∑N

i=1 pi ∗ gi + ǫ

∑N
i=1 pi +

∑N
i=1 gi + ǫ

Figure 1.  Flow chart showing overall study process.

Table 1.  The overview of dataset.

Cohorts No. Patients No. CT slices No. Fractures

Training 1507 581,701 7362

Validation 100 36,697 473

Testing 100 37,183 436
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 where N was the number of pixels in an input image, pi was the predicted value, and gi was the ground truth. A 
small constant ε was also inserted to avoid the situation where the denominator was zero. The U-Net was trained 
using Adam optimizer with a warm-up strategy. The learning rate was set to 0.01 and then linearly decreased 
to 0.001 in 100 epochs.

(b) The training of 3D DenseNet: A total of 91,574 fracture blocks and 50,078,825 normal blocks were extracted 
from the training set. One case contained a series of images which could be regarded as H×W× D volume 
data. Let h and w be the height and width of minimum circumscribed rectangles of all ribs on each image in 
the series, and a (h+ 6)× (w+ 6)× 5 3D data block was sampled, and then the block was normalized into 
48× 48× 5 in non-deformation way. To normalize the 3D data block in non-deformation way, a minimum 
circumscribed square of each 3D data block was firstly drawn. Then, the margin in the square was padded 
with pure black pixels to generate a new 3D data block. Finally, the new 3D data block was resized into 
48× 48× 5 . During training, we adopted a sampling strategy to alleviate the imbalance between positive 
and negative samples by allowing each batch to contain 4 positive samples and 4 negative samples. Data 
augmentation, such as flipping, contrast adjustment and random noise, was applied to avoid overfitting. 
The optimization objective function was computed by focal loss function. The 3D DenseNet was further 
trained again using Adam optimizer with a warm-up strategy and the learning rate was initially set to 0.01 
then decreased to 0.001 in 100 epochs.

Model evaluation and statistical analysis. 

(a) Bone Segmentation: for bone segmentation model, the average IOU (intersection over union) and the Dice 
 coefficient28 were used for the evaluation of U-Net. IOU is a good metric for measuring overlap between 
two masks, and it can be defined as follows:

The Dice Similarity Coefficient (DSC) is a statistic used to evaluate the similarity of two masks. The DSC is 
defined as

IOU =
|A ∩ B|

|A ∪ B|

DSC =
2|A ∩ B|

|A| + |B|

Figure 2.  The pipeline for detecting rib fractures from CT scans. The fracture detection task was divided 
into three stages, including bone segmentation, rib location, and rib fracture classification (a). (b) bone 
segmentation; (c) rib location; (d) rib fracture classification.
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 where A is a set of rib regions annotated by the radiologists, and B is a set of segmented rib regions by the 
algorithm.

(b) Rib fracture classification: to compare the efficiency of the trained deep learning model with that of radiolo-
gists in diagnosing rib fracture, we proposed three testing groups in our study, including the deep learning 
model alone, radiologist alone, and radiologist-model collaboration. Two radiologists (radiologist A with 
3 years of experience in CT diagnosis; radiologist B with 8 years of experience in CT diagnosis) who were 
blind to patient information and imaging annotation were invited to participate in the study. Both radi-
ologists were informed of the gold standard criteria for rib fracture classification before the test, and their 
detected fracture location and diagnosis time were recorded. After three months, both radiologists were 
invited to diagnose the same set of chest CT images with the assistance of the constructed detection model 
and same parameters were taken. Two sample t-test was calculated to compare the detection or diagnosis 
time required for deep learning model alone, radiologist alone, and radiologist-model collaboration.

Precision (positive predictive value, PPV)29,  recall29, F1-score30 and negative predictive value (NPV)29 were 
selected as evaluation metrics for three testing groups. Precision was defined as the ratio of correctly predicted 
positive observations to the total predicted positive observations. Recall was the ratio of correctly predicted 
positive observations to the all observations in actual class. F1- score was the weighted average of Precision and 
Recall. NPV was the ratio of correctly predicted negative observations to the total predicted negative observa-
tions. These metrics can be formulated as follows:

where “TP” were these ribs classified by the algorithm as rib fractures and also by the radiologists, “FP” were 
these ribs classified by the algorithm as rib fractures but not by the radiologists, “TN” were corresponding to 
these ribs classified as not belonging to rib fractures both by the algorithm and the radiologists, and “FN” were 
these ribs classified as not belonging to rib fractures but they were corresponding to rib fractures bones accord-
ing to the annotation of the radiologists.

Finally, the sensitivity and average number of the false positives (FPs) per patient were analyzed using a free-
response ROC (FROC)  curve31, because FROC was a tool for characterizing the performance at all thresholds 
simultaneously. The diagnosis and detection time were recorded.

Results
Due to the heavy workload of bone annotation, only 4496, 3145 and 3568 CT images were annotated for the 
training, validation and testing of U-Net in bone segmentation, respectively. The average IOU in the test dataset 
was 0.8462, and the DSC was 0.9167. It was worth mentioning that the edge of a bone was ambiguous and dif-
ficult to label accurately, so it was very hard to objectively evaluate the performance of bone segmentation. And 
the bone segmentation with elongated shape tended to be associated with low segmentation metrics. Despite 
the low IOU, U-Net could effectively remove the factors that interfere with the classification of rib fractures.

For the training of rib fracture classification, we recreated a new dataset. The overview of this dataset was 
shown in Table 2. For the testing of the Rib Fracture Detection System, a total of 100 cases were examined, includ-
ing 436 rib fractures, with an average of 4.36 rib fractures in one case (Fractured ribs varied from 1 to 15). The 
result of rib fracture detection from Rib Fracture Detection System was represented in 3D view as shown in Fig. 3.

To evaluate the performance of the Rib Fracture Detection System, the results of the validation set and the 
testing set were both reported. In the validation set, the F1- score of the Rib Fracture Detection System was 0.888 
and the precision and recall were 0.864 and 0.914 respectively in the 100 cases tested with an FROC cutoff value 
of 0.89 (FROC curve was shown in Fig. 4). On the testing set, the F1-score of the Rib Fracture Detection System 
was 0.890 and the precision, recall and NPV were 0.869, 0.913 and 0.969 respectively in the 100 cases tested with 
the same cutoff value of the FROC threshold of 0.89.

precision =
TP

TP+ FP

recall =
TP

TP+ FN

F1− score = 2×
precision× recall

precision+ recall

NPV =
TN

TN+ FN

Table 2.  The overview of dataset for the training of U-Net and 3D DenseNet.

Cohorts

U-Net 3D DenseNet

No. CT images No. Fracture blocks No. Normal blocks

Training 4496 91,574 50,078,825

Validation 3145 5981 3,323,151

Testing 3568 5992 3,452,162
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The F1-score of radiologist A was 0.796 and the precision, recall and NPV were 0.935, 0.693 and 0.989, respec-
tively. The F1-score of radiologist B was 0.889 and the precision, recall and NPV were 0.928, 0.853 and 0.985, 
respectively. Therefore, it was concluded that the Rib Fracture Detection System had a comparable performance to 
radiologists, but with higher recall. In addition, we tested the radiologist-model collaboration performance, and 
observed that, for both radiologists, their diagnostic performance were improved and their workload (diagnosis 
time) was significantly reduced (Table 3).

This Rib Fracture Detection System detected 458 suspected fractures and 398 true fractured ribs from these 
cases. An average of 4.58 suspected fractures and 3.98 ground truth annotated were detected in an average of 
372 images in one case with our model, which meant if applying to the clinical setting, a radiologist only needs 
to review a small number of images containing suspected fractures using this model. The results demonstrated 
that this model had a NPV of 0.969. This emphasized the possibility of model triage, as a total of 80.9% of images 
were predicted as negative with 96.9% true-negatives, this left the other 19.1% images as high-risk images with a 
potential rib fracture. Therefore, radiologists could focus on these rib images to improve accuracy and workflow 

Figure 3.  Rib 3D view. The red rectangular box was the selected fracture lesion, and the green parts were the 
other suspected fracture lesions detected by our Rib Fracture Detection System.

Figure 4.  Free-response ROC (FROC) curve for our model.
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and finally reduce workload. A schematic diagram was shown in Fig. 5 to illustrate how the Rib Fracture Detec-
tion System worked and reduced the workload.

Table 3.  The comparison of the performance between the model, radiologist and radiologist-model 
collaboration. NPV negative predictive value. *Indicated the p value of the comparison between model and 
radiologists was < 0.001. a Indicated the p value of the comparison before and after using the model was < 0.001.

Group Model Radiologist A Radiologist B Radiologist A-model collaboration
Radiologist B-model 
collaboration

F1-score 0.890 0.796 0.889 0.925 0.970

Recall 0.913 0.693 0.853 0.920 0.972

Precision 0.869 0.935 0.928 0.930 0.968

NPV 0.969 0.989 0.985 0.985 0.993

Time (seconds) 20 ± 5.8 242.6 ± 83.0* 153.6 ± 34.2* 207.0 ± 47.9a 58.6 ± 31.4a

Figure 5.  Impact of the Rib Fracture Detection System in clinical practice for patients with suspicion of rib 
fracture in the Department of Radiology. In a cohort of patients with suspected rib fractures who underwent 
chest CT investigation, radiologists should pay close attention to all of the ribs without the help of our model in 
order to look for 18.2% of the fractured ribs. Since 80.9% of the ribs were diagnosed as non-fracture ribs by this 
model with a 96.9% true-negative rate, it demonstrated high accuracy in identifying true non-fractured ribs by 
the constructed model. As a result, with the assistance of this deep learning model, radiologists only had to pay 
more attention to 19.1% of the ribs that were categorized as high-risk for fracture, which significantly reduced 
their workload in detecting rib fracture.
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Discussion
This study constructed a deep-learning Rib Fracture Detection System and its performance was assessed in 
comparison to radiologists. It was concluded that this deep-learning model had the ability to detect rib fractures 
with high precision and recall (precision: 0.869, recall: 0.913), which had a comparable diagnostic precision with 
both the junior and the experienced radiologists and was superior in term of recall ability. This indicated that 
this detection model would not only reduce the workload but also minimize misdiagnosis. Moreover, for both 
radiologists in the study, with the assistance of this detection model, their diagnostic effectiveness was signifi-
cantly improved with decreased diagnosis time and increased recall.

Rib fracture detection is crucial for thoracic trauma evaluation in identifying associated injury, preventing 
complication, obviating potential medico legal issues, and helping patient pain  management32. Thin-slice CT 
is the main imaging modality used to evaluate thoracic trauma, generating hundreds of images waiting to be 
analyzed. Consequently, radiologists have a high workload, and missed diagnosis becomes an inevitable issue, 
which is more apparent for junior  radiologists13. To address this clinical challenge, this study suggested a Rib 
Fracture Detection System based on the deep learning model, which allowed to have superior recall and similar 
diagnostic precision to the radiologists. By using this detection system, diagnostic performance was significantly 
improved for both the experienced and the junior radiologists, and the workload was dramatically reduced, 
suggesting that such a detection system had a high potential for clinical translation.

Although several studies had recently reported the usefulness of deep-learning models in detecting rib frac-
tures, each deep learning model required clinically suitable larger local data input with a balanced sample of mild 
to severe rib fractures. In some difficult mild fractures, only a few abnormal pixels could be observed, which 
could be easily missed. Therefore, in the present study, we performed a three-step model construction, including 
bone segmentation, rib location, and rib fracture classification. For rib fracture classification, 3D DenseNet was 
utilized as it was sensitive to even small fracture lesions with only a few abnormal  pixels23. For rib location, the 
spine and scapulae removal could help eliminate the interference of the spine and scapulae. Based on our evalu-
ation, 87 blocks in spine and scapulae were recognized as rib fractures in the rib fracture classification without 
the spine and scapulae removal. The sampling strategy and focal loss function were further applied to alleviate 
the imbalance between positive and negative samples. Focal loss is an improved version of Cross-Entropy Loss 
that tries to handle the imbalance between positive and negative samples by assigning more weights to hard 
examples. In addition, we adapted an annotation-checking-discussion workflow to ensure each sample was read 
by five radiologists and high accuracy of the ground truth. With these characteristics, this Rib Fracture Detection 
System achieved high precision and recall in rib fracture detection and improved radiologist work efficiency.

To further demonstrate the effectiveness of our proposed algorithm, we compared our algorithm with several 
state-of-the-art algorithms. We evaluated the performance of  FracNet17, Fast  RCNN16, Faster  RCNN15,  YOLOv315 
on the testing set of our collected dataset. The comparison between our Rib Fracture Detection System with these 
approaches was listed in Table 4. These results demonstrated that the performance of our Rib Fracture Detection 
System outperformed FracNet, Fast RCNN, Faster RCNN, and YOLOv3.

Although the system performed well in most cases, this study still had several limitations. First, the deep 
learning model was developed and trained on CT data from a single large academic institution and the test set 
is relatively small, lacking multi-center or external data validation. Future research is required to determine if 
the same model trained can achieve high performance on larger or multi-institutional datasets. Second, this 
was a retrospective study and we would hope to include prospective data in the future with more radiologists as 
well as more chest CT cases. Third, without accurate masks for rib segmentation in the dataset, the quantitative 
evaluation of the precision of the spine and scapulae removal was not performed. Fourth, false positive rate is 
still high compared with the performance of radiologists and we hope we can reduce the false positive rate by 
collecting more dataset and introducing novel deep learning methods. And finally, this model could only detect 
rib fracture but cannot identify fracture degree and classify acute and healed rib fractures, which may be useful 
information to clinicians. Therefore, future studies were warranted to complete these tasks with this Rib Fracture 
Detection System.

Conclusions
This study developed a Rib Fracture Detection System that achieved high performance in rib fracture detection 
on chest CT images based on the deep learning algorithm. By radiologist-model collaboration, radiologists can 
significantly reduce their workload, and minimize misdiagnosis. This Rib Fracture Detection System is readily 
available in the clinical setting.

Table 4.  The comparison of the performance between our Rib Fracture Detection System with Fast RCNN, 
Faster RCNN, YOLOv3.

Group Model Fast RCNN Faster RCNN YOLOv3

F1-score 0.890 0.863 0.870 0.877

Recall 0.913 0.874 0.889 0.894

Precision 0.869 0.853 0.852 0.861

NPV 0.969 0.925 0.932 0.942
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