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Investigation of halloysite 
nanotubes and Schiff base 
combination with deposited copper 
iodide nanoparticles as a novel 
heterogeneous catalytic system
Mansoureh Daraie, Donya Bagheri, Masoume Malmir & Majid M. Heravi*

The design, preparation and characterization of a novel composite based on functionalization of 
halloysite nanoclay with Schiff base followed by immobilization of copper iodide as nanoparticles is 
revealed. This novel nano composite was fully characterized by utilization of FTIR, SEM/EDX, TGA, 
XRD and BET techniques. This Cu(I) NPs immobilized onto halloysite was successfully examined 
as a heterogeneous, thus easily recoverable and reusable catalyst in one of classist organic name 
reaction so-called “Click Reaction”. That comprised a three component reaction of phenylacetylene, 
α-haloketone or alkyl halide and sodium azide in aqueous media to furnish 1,2,3‐triazoles in short 
reaction time and high yields. Remarkably, the examination of the reusability of the catalyst 
confirmed that the catalyst could be reused at least six reaction runs without appreciable loss of its 
catalytic activity.

Clay minerals are phyllosilicate, which believed, have been existed since the life began. They have particular 
morphologies, thus, enabling to interact with various molecules to generate nanocomposites with high molecu-
lar  diversity1,2. Among them, halloysite nanotubes (HNTs) are known as aluminosilicates, of the kaolin group. 
They mainly have hollow tubular morphology with chemical formula  Al2Si2O5(OH)4·nH2O. HNTs which are a 
dioctahedral 1:1 clay mineral found some in soils, particularly those collected from wet tropical and subtropical 
areas. These regions and weathered igneous and non-igneous rocks, are place chiefly in New Zealand, Mexico, 
Brazil USA, Australia and China. Depends on their changeable deposit, HNTs are existed in different hydra-
tion state, characteristic sizes, and purity status. Interesting to know that halloysite initially was discovered 
by the Belgian geologist Omalius d’Halloy in 1826. Among the mineralogist he is also known as M. Berthier. 
Nowadays, halloysite has received much attention of synthetic chemists and stirred up the interest the scientific 
 community3–5. Due to unique and elegant chemical and interesting physical properties Hal, has been extensively 
employed in both academic and industrial research, projects, for example leading to its practical use as nanocar-
rier, adsorbent, and  catalyst6–8.

From the structural points of view, naturally occurring HNTs comprises nanotubes similar to cylinders, 
self-installed of octahedral Al–OH sheet unites, on the inner surface,  SiO2 bonds on the outer surface, in which 
the cylinders are separated from each other by a layer of adsorbed  water9–11. Owing to this motivating structural 
features, and due to the presence of free hydroxyl groups on both its inner and outer surfaces, HNTs have been 
chemically modified. These modifications mostly have been devoted and focused on designing and preparation 
of effective and stable catalysts and suitable supports for being used as superior heterogeneous catalysts in dif-
ferent chemical  transformations12,13.

The Schiff bases are commonly prepared by condensation of different compounds bearing carbonyl moie-
ties with various amines. These bases can be reacted with various metals and oxo-metal cations to provide the 
corresponding stable metal  chelates14. As a matter of fact these kind of chelates have been found the most appli-
cable ones in coordination chemistry, which can be employed in the synthesis of the various agents as polymer 
stabilizer, and also dyes and pigments, as well as catalytic  systems15,16. Some Schiff bases prepared from carbonyl 
involving aromatic compounds due to their unique electronic and steric structures are widely used as biological 
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and metalloprotein models and asymmetric  catalysts17–19. Schiff bases are chelated with the most of metal cations, 
providing the corresponding complexes. Among these metals, copper as Cu-cations have been found the best 
since their reaction with different Schiff bases give complexes which has been proven to be most efficiently and 
practically applicable catalysts. Several complexes of Schiff bases as catalytic agents, have been found readily 
accessible, highly effective and more important very stable in a wide range of organic transformations. Due to 
their great stability, they are exceptionally useful the catalysts of choice, for the organic reactions, conducted at 
high temperature (> 100 °C), even under wet  conditions20–24.

Click chemistry as one of the most prevalent reactions, originally introduced by Sharpless and coworkers 
in 2001, is performed with high selectivity under mild conditions. This reaction has been used in a wide range 
of research areas such as, polymers, drug discovery and supramolecular  chemistry25–27. Among click reactions, 
Huisgen 1,3-dipolar cycloaddition is the most well-known example, in which organic azides and terminal alkynes 
are combined to provide 1,4-disubstituted 1,2,3-triazole derivatives. 1,2,3-triazoles compound is an significant 
heterocyclic category of organic compounds with extensive range of  applications28,29. More recently, novel meth-
ods have been used to promote click reaction, including the incorporation of Cu metal into some organic and 
inorganic materials for preparing heterogeneous or homogeneous catalytic  systems30–37. Despite all the achieve-
ments, some limitations such as high reaction temperature and duration, use of toxic solvents and high amount 
of the catalyst have been still unsolved. It is therefore necessary to promote efficient methods.

In continuation of interest on using of functionalized  HNTs for immobilizing catalytic active  species38–40 
and our continuous interest in click reaction from different points of  view41–45, herein, we wish to report the 
preparation of a novel Schiff base-halloysite hybrid system, as a catalytic support for immobilization of CuI 
nanoparticles and reveal our investigation on the aforementioned, hybrid catalyst, CuI@HNT-TSC-PC in one 
of the classist organic transformations so called “Click Reaction”.

Experimental
Materials and instruments. All materials and solvents, such as, Halloysite (Kaolin) CAS Number: 1332-
58-7; (3-chloropropyl)trimethoxysilane 97%; CAS Number: 2530-87-2; Thiosemicarbazide 98%; CAS Number 
79-19-6; Pyridine-2-carbaldehyde 99%; CAS Number: 1121-60-4; Triethylamine (TEA) 99%; CAS Number: 121-
44-8; CuI 99.5%; CAS Number: 7681-65-4; were purchased from Sigma-Aldrich. Toluene 99%; CAS Number 
108-88-3; and Ethanol 96%; CAS Number 64-17-5; were purchased from Merck Millipore and used as received, 
without any further purification. The click reaction was performed by using terminal alkynes including, Phenyl 
acetylene 98%; CAS Number: 536-74-3; 4-ethynyltoluene 97%; CAS Number: 766-97-2; Propargyl alcohol 99%; 
CAS Number: 107-19-7; 2-methyl-3-butyn-2-ol 98%; CAS Number: 115-19-5, and α-haloketones; Benzyl bro-
mide, 98%; CAS Number: 100-39-0; Benzyl chloride 99%; CAS Number: 100-44-7; Benzoyl bromide 97%; CAS 
Number: 618-32-6; 4-chlorobenzoyl chloride 99%; CAS Number: 122-01-0; 2-bromobenzoyl chloride 98%; CAS 
Number: 7154-66-7; 4-bromobenzoyl chloride 98%; CAS Number: 586-75-4; 4-methylbenzoyl bromide, 95%; 
CAS Number: 874-58-8; 4-methylbenzyl chloride 98%; CAS Number: 104-82-5; 4-chlorobenzyl chloride 95%; 
CAS Number: 104-83-6; 4-nitrobenzyl bromide 99%; CAS Number: 100-11-8; 4-methylbenzyl bromide 97%; 
CAS Number: 104-81-4; Iodomethane; CAS Number: 74-88-4 and Sodium azide ≥ 99%; CAS Number: 26628-
22-8 purchased from Sigma-Aldrich and Merck Millipore.

The new prepared nano composite, CuI@HNT-TSC-PC was fully characterized by employing different tech-
niques such as FTIR, SEM, EDX, XRD, TGA, and ICP-AES. Bruker Tensor 27 instrument was used for recording 
the FTIR spectra between 4000 and 400  cm−1 and the KBr pellet technique was employed: about 1 mg of the 
sample and 300 mg of KBr were used to prepare the pellets. SEM/EDS images were recorded by a TESCAN, 
VEGA 3 SEM instrument and all samples had been coated with a thin gold layer by evaporation. X-ray diffrac-
tion patterns of CuI@HNT-TSC-PC, CuI and halloysite were recorded at room temperature by using a Siemens, 
D5000 diffractometer with Ni-filtered Cu Kα radiation, working at 40 kV and 30 mA, at a scanning speed of 
2°/min in the scan range from 5° to 80° 2θ. Thermogravimetric (TG) and differential thermal (DTA) analyses 
were conducted in a NETZSCH TG 209 F1 Iris thermo gravimetric analysis apparatus from 25 to 600 °C, under 
nitrogen atmosphere, at a heating rate of 15 °C/min. The BET analysis of the CuI@HNT-TSC-PC was performed 
using a fully automated BET surface area analyzer (Brunauer–Emmett–Teller, model: Belsorp-mini II) instru-
ment at − 196 °C; 0.2 g of the sample was used. A Perkin-Elmer Optima 3100XL axial viewing ICP-AES equipped 
with a cyclonic spray chamber and a GemTip cross-flow nebulizer was used for the determination of the trace 
Cu elements. The CuI@HNT-TSC-PC were introduced into the ICP-AES system at a flow rate of 1.0 mL  min−1. 
All products were known and identified by comparison of their physical and spectroscopic data with those of 
authentic compounds reported previously and found being identical and also several of products were identified 
by NMR analysis.

Preparation of nano composite. Preparation of Cl‑functionalized halloysite: HNT‑Cl. To functionalize 
HNTs, initially, HNTs (1.5 g) was dispersed in 40 ml dry toluene and then CPTES (4 ml) was added dropwise 
to the mixture. The resulting suspension was refluxed at 110 °C for 24 h. At the end of the process, the resulting 
precipitate was separated by simple filtering, washed and dried at 80 °C overnight.

Synthesis of Schiff base: TSC‑PC. Schiff base was prepared according to the previously reported  procedure46. 
Briefly, pyridine-2-carbaldehyde (10 mmol, 1.05 ml) and thiosemicarbazide (10 mmol, 0.94 g) were dissolved in 
water (10 ml) and heated at 75 °C for 6 h. Upon completion of the reaction, the yellow precipitate was filtered off, 
and washed with EtOH (10 ml) and dried at 70 °C.
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Synthesis of HNT‑TSC‑PC. Conjugation of HNT-Cl and Schiff base was accomplished through the following 
procedure: first, HNT-Cl (1.5 g) was well-dispersed in dry toluene by using ultrasonic irradiation for 20 min. 
then, Schiff base (TSC-PC) (1.5 g) and TEA (0.1 ml) were added and the resulting mixture refluxed overnight. At 
the end of the reaction, the obtained product was filtered off, washed with toluene and dried in oven.

Immobilization of CuI NPs on the HNT‑TSC‑PC: Synthesis of CuI@HNT‑TSC‑PC. HNT-TSC-PC (1  g) was 
dispersed in toluene and a solution of CuI (0.095 g, 0.5 mmol) in  CH3CN was then added into the suspension 
and the obtained mixture was stirred under  N2 atmosphere for 10 h. Finally, the product was collected, washed 
with toluene and dried at 70 °C for 12 h (Fig. 1).

Regioselective synthesis, of 1,4‑disubstituted 1,2,3‑triazoles via click reaction: general procedure. Alkyne (1 mmol) 
and α-haloketone or alkyl halide (1.0 mmol) and sodium azide (1.3 mmol) were mixed in 5.0 ml water:ethanol 
(1:1) mixture in the presence of CuI@HNT-TSC-PC (0.03 g) and the resulting mixture was refluxed for appro-
priate time. Upon completion of the reaction (monitored by TLC), the mixture was filtered off, and the filtrated 
was washed with deionized water and purified by recrystallization with hot ethanol. The residue catalyst was 
washed and dried at 80 °C for the next reaction runs.

Result and discussion
Catalyst characterization. First, to study the structure of CuI@HNT-TSC-PC and to confirm the appro-
priate progress of each stage of catalyst synthesis, the FTIR spectra of HNTs and the product of each step of 
catalyst synthesis (TSC-PC, HNT-Cl, HNT-TSC-PC, CuI@HNT-TSC-PC) were recorded (Fig.  2). The FTIR 
spectra of HNTs showed the characteristic bands at 1649  cm−1 (Si–O stretching, 539  cm−1 (Al–O–Si vibration), 
and 3621–3696  cm−1 (inner –OH groups)47. The similarity between FTIR spectrum of HNT-Cl and pure HNTs, 
indicates the stability of the halloysite structure after functionalization with organosilane. The FTIR spectrum of 
the HNT-TSC-PC showed the characteristic bands of HNTs included, 1649, 539 and 3621–3696  cm−1 as well as 
two additional band at 1326  cm−1, which is representative of C=S stretching and the strong absorption peaks of 
the C=N band at 1627  cm−1 confirms the successful formation of Schiff base (Fig. 2c, TSC-PC). Moreover, in the 
FTIR spectrum of the catalyst not only all characteristic bands were observed, but also two bands at around 1415 

Figure 1.  Preparation of CuI@HNT-TSC-PC.
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and 1627  cm−1 of Schiff base were shifted slightly to right (1359 and 1617  cm−1), indicates successful interaction 
between Cu and C=N and C=S groups.

The morphology of the catalyst was investigated by SEM/EDS techniques (Fig. 3). The SEM images of CuI@
HNT-TSC-PC are shown in Fig. 3B and C. As depicted, the short tubes of HNTs closed together to form aggre-
gates. Compared to the tubular morphology of pure HNTs (Fig. 3A), CuI@HNT-TSC-PC exhibited a distin-
guished morphology, which is more compact than pure HNTs. This observation can be attributed to the presence 
of Schiff base on the surface of HNTs and the possibility of electrostatic interactions among the tubes. This may 
bring the tubes closer and facilitate formation of aggregates. As depicted in the SEM image, the average diameter 
size of synthesized CuI@HNT-TSC-PC was 27 nm. The EDS analysis of the catalyst is presented in Fig. 3D. The 
observation and concentration of Si (2.81%), Al (2.98%) and O (26.83%) in the EDS of CuI@HNT-TSC-PC can 
indicate HNTs structure. The presence of C (27.96%), N (28.35%) and S (7.66%) atoms can confirm the incor-
poration of Schiff base that the high concentration observed in C and O atoms may be related to the holder. 
Additionally, the presence of Cu (1.48%) and I (1.93%) can be representative of CuI in the structure of the catalyst.

Subsequently, the catalyst was also characterized by using XRD analysis, Fig. 4. The obtained XRD pattern 
was compared with that of pure CuI and HNTs, Fig. 4. Comparing all XRD patterns, it can be concluded that 
the XRD pattern of CuI@HNT-TSC-PC exhibits the characteristic bands of pure HNTs, the peaks observed 
at 2θ = 8°, 14°, 24°, 28°, 32°, 56° and 65° (JCPDS No. 29-1487, labeled as H)48,49, after CuI incorporation, the 
structure of HNTs did not collapse Clearly, a sharp diffraction peak is located at 24.9, corresponding to the (111) 
crystal planes of CuI, which shows that the CuI have good crystal structures. Comparing two XRD patterns, 
pure CuI and catalyst, seven peaks located at 30°, 42.9°, 46.3°, 50.9°, 52.2°, 60.2°, 67.1°, 69.0° and 76.9°, labeled 
as C, corresponding (200), (220), (311), (222), (400), (331), (420) and (422) crystal planes of CuI, which match 
well with JCPDS card (no. 01-076-0207)30.

Moreover, the pure HNTs show a diffraction peak at 2θ = 12.25° (001), which is related to its tubular morphol-
ogy, high degree of disorder, small crystal size, and interstratifications of layer with various hydration states. In 
the XRD pattern of the catalyst, this peak is shifted to a lower 2θ value. The d-spacing of catalyst is 0.716 nm at 
a 2θ of 12.18°. The evidence of intercalation between Schiff base and the HNTs is strongly supported by the 2θ 
reductions of the increases in the basal spacing of the HNTs in catalyst, which confirms the formation of CuI@
HNT-TSC-PC. In relation to the two additional diffraction peaks displayed in the XRD pattern for pure HNTs 
at 2θ of 20.06° (020) and 24.94° (002), the subsequent XRD patterns for the catalyst revealed that the pure HNTs 
peak at 2θ at around 20.06°, for the catalyst, had shifted markedly lower, and the peak at 2θ at around 24.94°, for 
the catalyst, had almost completely vanished. These results support the existence of intercalation of the organic 
linker into the structure of the HNTs.

To further characterization of the catalyst, the thermal stability of pure HNTs, HNT-Cl and CuI@HNT-TSC-
PC were studied using TGA (Fig. 5). As shown, pure HNTs exhibited two weight losses, the first one, around 
150 °C, is because of losing water and the second one, around 500 °C, is due to the dehydroxylation of the HNTs 

Figure 2.  The FTIR spectra of (a) pure HNTs, (b) HNT-Cl, (c) TSC-PC, (d) HNT-TSC-PC and (e) CuI@HNT-
TSC-PC.
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 matrix50. To estimate the content of the organosilan, Cl, on the surface of HNTs, the thermogram of HNT-Cl was 
obtained and compared with that of pure HNTs, Fig. 5a and b. The results showed that the content of organosi-
lan was about 4 w/w%. Next, the thermograms (TG and DTG analyses) of catalyst were recorded. According to 
Fig. 5c, three steps weight losses were exhibited, which are attributed to the loss of water (130 °C), decomposi-
tion of organic groups (270 °C) and dehydroxylation of Hal (480 °C). Moreover, to estimate the content of Schiff 
base and CuI on the catalyst, the thermogram of CuI@HNT-TSC-PC was considered and compered with that of 
HNT-Cl. The comparison of the thermograms of HNT-Cl and CuI@HNT-TSC-PC, showed that incorporation 
of Schiff base and CuI can alter the thermogram obviously, that this can be due to degradation of copper iodide. 
The calculation showed that the content of Schiff base was about 34.2 wt%.

Finally, BET analysis was performed to confirm that ligand and copper nanoparticles were located on the 
surface of Hal and examined the textural of the catalyst. The CuI@HNT-TSC-PC nitrogen adsorption–desorp-
tion isotherm is illustrated in Fig. 6 and Table 1. As shown, the recorded isotherm of type II isotherms is similar 
to pure  HNTs51. As shown, the recorded isotherm is a type II isotherm and is similar to the pure HNTs sample. 
Using BET, the specific surface area of CuI@HNT-TSC-PC was measured 8.48  m2  g−1, which is much lower than 
the pristine Hal (51  m2  g−1). These observations indicate that ligand and CuI nanoparticles are located on the 
outer surface of the Hal.

Cu loading of CuI@HNT-TSC-PC was measured by ICP-AES analysis. Sample was prepared for ICP analysis 
as follow: CuI@HNT-TSC-PC (0.02 g) was digested in a mixture (1:3) of concentrated nitric acid and hydrochlo-
ric acid by continuous stirring for 24 h. The extract was then analyzed by ICP-AES. The Cu content of catalyst 
was measured at about 3.6 wt%.

Figure 3.  SEM images of (A) pure HNTs and (B, C) CuI@HNT-TSC-PC and (D) EDS analysis of CuI@HNT-
TSC-PC.
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Catalytic activity. Due to the importance of 1,2,3‐triazoles for the synthesis of biologically active com-
pounds, the catalytic activity of CuI@HNT-TSC-PC was investigated to promote click reaction. Initially, the 
reaction of phenylacetylene, benzyl bromide and sodium azide was selected as a model reaction and performed 
in the presence of various solvents as well as under solvent‐free conditions (40 mg). Pleasantly, by comparing 
the results obtained from running the model reaction in different solvents, it is concluded that water as a green 
solvent gave the product with the highest yield. Subsequently, other reaction variables, including the reaction 
heat and the amount of catalyst were optimized by changing the catalyst amount under various temperatures 

Figure 4.  XRD patterns of (a) CuI@HNT-TSC-PC, (b) pure HNTs and (c) pure CuI.

Figure 5.  The TG analyses of (a) pure HNTs, (b) HNT-Cl, (c) CuI@HNT-TSC-PC and (d) DTGA spectra of 
CuI@HNT-TSC-PC.
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(Table S1). The results indicated that the highest yield of the model product was achieved at room temperature 
in the presence of 40 mg catalyst.

The generality of these conditions was then examined Using different raw materials to produce different 
1,2,3-Triazoles (Table 2). The results confirm that CuI@HNT-TSC-PC can catalyze the click reaction of all sub-
strates to achieve the corresponding 1,2,3-triazole compounds within short reaction times and in high yields.

Catalyst recyclability. To achieve a comprehensive study, the recyclability and copper leaching of this cata-
lyst were surveyed (Fig. S1). The importance of such determinations is because of clarifying the heterogeneous 
nature of the catalyst and its potential to be used in scale-up processe in industries. Therefore, the yield of the 
model reaction was determined in the presence of both fresh CuI@HNT-TSC-PC and the recycled ones. It was 
found that the catalyst can be used up to 6 cycles giving the product with no significant drop of yield. It proves 
high recyclability of CuI@HNT-TSC-PC.

Conclusion
In summary, a novel heterogeneous nano composite, CuI@HNT-TSC-PC, was designed and prepared through 
Cl-functionalization of HNTs followed by reaction with Schiff base and formation of imine functionality and 
incorporation of CuI. The catalyst was successfully used for promoting Click reaction of α-haloketone or alkyl 
halide, terminal alkyne and sodium azide in aqueous media and mild reaction condition for the synthesis of 
1,2,3-triazoles. Notably, the results of recyclability of the catalyst confirmed its good recyclability and low leaching 
of Cu species. Moreover, the above-mentioned catalyst was reused up to 6 cycles with slight descent of product 
yield and Cu leaching.

Figure 6.  The  N2 adsorption–desorption isotherm of CuI@HNT-TSC-PC. ADS adsorption, DES desorption.

Table 1.  Textural property of CuI@HNT-TSC-PC catalyst.

SBET  (m2  g−1) Vm (cm3(STP)  g−1) C Total pore volume  (cm3  g−1) Mean pore diameter (nm) Slope Intercept

8.4806 1.9485 23.68 0.052189 24.615 0.5382 0.0216
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Table 2.  Synthesis of triazole derivatives in the presence of CuI@HNT-TSC-PC41–43.

4c, X = Cl, M. P.= 108-1104b, X = Br, M. P.= 159-1624a, X = Br, M. P.= 169-171

4f, X = Br, M. P.= 110-1124e, X = Cl, M. P.= 189-1914d, X = Cl, M. P.= 117-118

4i, X = Br, M. P.= 165-1684h, X = Cl, M. P.= 152-1544g, X = Br, M. P.= 181-184

4l, X = Cl,M. P.= 147-1504k, X= Br, M. P.= 126-1284j, X = Cl, M. P.= 127-129

4o, X = Cl, M. P.= 143-1464n, X = Cl, M. P.= 105-1074m, X= Br, M. P.= 146-147

412-3I, M. P.= 1234r, CH4q, X = Br, M. P.= 151-1544p, X = Br, M. P.= 104-105



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23658  | https://doi.org/10.1038/s41598-021-02991-9

www.nature.com/scientificreports/

Data availability
The raw/processed data that supports the findings of this study is available from the corresponding author upon 
reasonable request.
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