
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23763  | https://doi.org/10.1038/s41598-021-02982-w

www.nature.com/scientificreports

Estimation of COVID‑19 recovery 
and decease periods in Canada 
using delay model
Subhendu Paul1* & Emmanuel Lorin1,2

We derive a novel model escorted by large scale compartments, based on a set of coupled delay 
differential equations with extensive delays, in order to estimate the incubation, recovery and 
decease periods of COVID-19, and more generally any infectious disease. This is possible thanks to 
some optimization algorithms applied to publicly available database of confirmed corona cases, 
recovered cases and death toll. In this purpose, we separate (1) the total cases into 14 groups 
corresponding to 14 incubation periods, (2) the recovered cases into 406 groups corresponding to a 
combination of incubation and recovery periods, and (3) the death toll into 406 groups corresponding 
to a combination of incubation and decease periods. In this paper, we focus on recovery and decease 
periods and their correlation with the incubation period. The estimated mean recovery period we 
obtain is 22.14 days (95% Confidence Interval (CI) 22.00–22.27), and the 90th percentile is 28.91 days 
(95% CI 28.71–29.13), which is in agreement with statistical supported studies. The bimodal gamma 
distribution reveals that there are two groups of recovered individuals with a short recovery period, 
mean 21.02 days (95% CI 20.92–21.12), and a long recovery period, mean 38.88 days (95% CI 38.61–
39.15). Our study shows that the characteristic of the decease period and the recovery period are 
alike. From the bivariate analysis, we observe a high probability domain for recovered individuals with 
respect to incubation and recovery periods. A similar domain is obtained for deaths analyzing bivariate 
distribution of incubation and decease periods.

The outbreak of coronavirus disease 2019 (COVID-19), reported early in Wuhan (China)1 and spread around 
the world, is creating dramatic and daily changes with profound impacts worldwide. As a consequence the out-
break was declared a pandemic by the World Health Organization (WHO) in March 20202, and by the end of 
2020, COVID-19 has infected about 79.2 millions of people in the world, with an approximate cumulative global 
mortality of 3.2%2. To limit the impact of this deadly virus, a rapid and widespread vaccination of the population 
is now in place. However, it is established that vaccine are not 100% effective to stop the transmission or infec-
tion of COVID-19. In addition, huge numbers of global SARS-CoV-2 infections have led to the emergence of 
variants, notably Alpha (B.1.1.7 UK), Beta (B.1.351 S. Africa), Gamma (P.1 Brazil), Epsilon (B.1.429 California), 
Iota (B.1.526 New York), Delta and Kappa (B.1.617.2 and B.1.617.1 India) which make the situation more chal-
lenging. In this circumstance to get a complete feature of COVID-19, it is essential to fully understand the key 
(incubation, recovery and decease) periods.

We already successfully estimated the incubation period of COVID-19 in Canada3. The previous model3 
simply allowed for the calculation of the incubation period, while the current model allows for the calculation of 
all key periods, incubation, recovery and decease. In the present context, we focus on the recovery and decease 
periods and their correlation with the incubation period. In the current framework, we define the recovery 
period as the time from the contraction of the coronavirus to recovery, i.e., the incubation period plus the onset 
time from the symptom to recovery; the latter is the same as the viral shedding of SARS-CoV-2. We describe 
the decease period in the same way as the recovery period. Understanding the recovery period of disease is very 
useful information in the struggle against the disease. If the incidence of a disease is remarkably high and the 
recovery period of the disease is also high then the prevalence of the disease in the country is likely to increase 
which in turn puts extra health, economic and social burden on this country. Understanding the recovery period 
of the disease will help governments to plan proper strategies to counter the disease and to organize the require-
ments such as hospitals, doctors, medical staffs, medical equipment’s, etc. It will also help to implement different 
social and economic policies which will be essential to fight the disease.
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There are several statistical studies4–12, based on various samples of patients such as severe, non-severe, 
ICU, non-ICU, large size, small size, meta-analysis, estimated the recovery time of the current pandemic. In 
addition to those statistical approaches, there are numerous analytical and computational studies based on 
mathematical models, involving Ordinary Differential Equations (ODE)13–23 as well as Delay Differential Equa-
tions (DDE)24–29, to calculate the basic reproduction number R0 and understand the underlying dynamics of the 
epidemic. Researchers usually consider single-delay models, occasionally two delays.

To the best of our knowledge, we demonstrate for the first time a substantial compartment based model, with 
a total 830 partitions, in order to estimate the key (incubation, recovery, decease periods) periods of COVID-
19 as well as the bivariate distribution of incubation and recovery periods, and the bivariate distribution of 
incubation and decease periods. This will be achieved using publicly available database30 of the total number of 
corona-positive cases, recovery and death toll. There is no scope to verify the database which is the only limita-
tion of the present study. Using the novel model, demonstrated here, we divide the publicly available database 
into thousands of groups, and these separated classes are the key source for estimating all the key periods. This 
approach is free from any special type of samples in order to produce the distributions of those periods; it only 
involves large scale computations for estimating about thousand model parameters. After a single calculation of 
this method, we can generate the current distributions as well as previous distributions of those periods. In the 
statistical based approaches, it is usually difficult to consider large incubation, recovery and decease periods if the 
sample size is small. However, in our approach, we can go well beyond 14 days, the maximum incubation period 
that we have set in this paper, and beyond the interval 2 weeks to 6 weeks, the range of recovery as well as decease 
periods that we have considered in the current computations. As of May 23, 2021, the World Health Organiza-
tion (WHO) had confirmed a total of 1,359,180 cases of COVID-19 in Canada, including 25,231 deaths2. As of 
May 23, 2021 there are five provinces, out of eleven provinces where we observe significant effect of COVID-19, 
in Canada with death toll more than 1000 (Fig. 1a), and the recovery and death rates are respectively 96.1% and 
0.7% (Fig. 1c). During the first wave of COVID-19 in Canada, January 22, 2020 to July 16, 2020, the recovery and 
death rates were respectively 66.5% and 8.1% (Fig. 1b). Here, we assume that the recovery and decease periods of 
COVID-19 remain unchanged i.e., these periods during the first wave and the present time are almost identical, 
and under this assumption we merely consider the database of first wave, the period before vaccination, for the 
calculation. In the present context, we do not consider the patient’s gender or age due to lack of the required data.

There are various studies on recovery period, and no result is reported (to the best of our knowledge) on 
bivariate distributions as mentioned above. The key periods may depend on age31 (median-age/country), hard 
immunity, public health system, corona testing capacities, daily corona cases, etc. For a better estimation of the 
key periods for a particular region, we need to study local patients. Data collection is a bottleneck in studying 
those key periods for COVID-19 or other infectious diseases using clinical survey, and we need a sample of large 
size for bivariate analysis. However, key periods can easily be estimated using the approach we propose here, the 
publicly available database along with optimization algorithms.

Results
The proposed model assists us to generate new refined recovery and death toll database, Rik and Dik , by dividing 
the total recovered individuals and the total number of deaths as of July 16, 2020 into myriad of groups. The new 
database is the key source for studying all kinds of distributions, reported in the article.

Validation of the proposed model.  After estimating the model parameters with sufficiently small values 
of error functions, we obtain a good agreement (Fig. 1e–g) between the calculated values of the model variables 
such as total corona-positive cases, number of recovered individuals, etc. and the available data30. The population 
of the infected group gradually increased until end of April 2020, and thereafter slowed down (Fig. 1d).

Univariate distributions.  The groups of recovered individuals Rik , i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , 
corresponding to the incubation period (in days) τi , 1 ≤ τi ≤ 14 , and recovery period (in days) ζk , 14 ≤ ζk ≤ 42 
can be represented in a matrix form (Fig. 2a). We use the data set 

∑14
i=1 Rik for ζk = 14, 15, . . . , 42 to obtain 

the frequency distribution for recovery period and the corresponding fitted gamma distributions, unimodal 
(Fig.  2b) Ŵ(ζ ,Kr , θr) and bimodal (Fig.  2c) 0.9365Ŵ(ζ ,Kr1, θr1)+ 0.0635Ŵ(ζ ,Kr2, θr2) . Here, the variable ζ 
indicates the recovery period and the parameters Kr = 18.62067 , θr = 1.18892 , Kr1 = 34.55447 , θr1 = 0.60847 , 
Kr2 = 226.40545 and θr2 = 0.17171 with statistical p value less than 0.01. The mean recovery period we obtain 
using an unimodal gamma distribution is 22.14 days (95% CI 22.00–22.27); the median of the recovery period is 
21.74 days (95% CI 21.61–21.87); the 90th percentile is 28.91 days (95% CI 28.71–29.13); the 95th percentile is 
31.20 days (95% CI 30.95–31.45). For a better estimation, we use a bimodal distribution, a linear combination of 
Ŵ(ζ ,Kr1, θr1) and Ŵ(ζ ,Kr2, θr2) . The mean of Ŵ(ζ ,Kr1, θr1) and Ŵ(ζ ,Kr2, θr2) are 21.02 days (95% CI 20.92–21.12 
) and 38.88 days (95% CI 38.61–39.15), respectively. The percentile curves of unimodal and bimodal gamma 
distributions show (Fig. 2d) that the median of unimodal and bimodal are the same, although there are slight 
differences other than the median.

The death toll groups Dik , i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , and corresponding incubation period (in 
days)τi , 1 ≤ τi ≤ 14 , and decease period (in days) ηk , 14 ≤ ηk ≤ 42 can be represented as a matrix (Fig. 2e). 
We use the data set 

∑14
i=1 Dik for ηk = 14, 15, . . . , 42 to obtain the frequency distribution for decease period 

and corresponding fitted gamma distributions, unimodal (Fig.  2f ) Ŵ(η,Kd , θd) and bimodal (Fig.  2g) 
0.9508Ŵ(η,Kd1, θd1)+ 0.0492Ŵ(η,Kd2, θd2) . Here, the variable η indicates the decease period and the parameters 
Kd = 21.33660 , θd = 1.03174 , Kd1 = 35.00855 , θd1 = 0.60511 , Kd2 = 186.11379 and θd2 = 0.20636 with statisti-
cal p value less than 0.01 for Ŵ(η,Kd , θd) , Ŵ(η,Kd1, θd1) and equal to 0.18 for Ŵ(η,Kd2, θd2) . The mean decease 
period we obtain using an unimodal gamma distribution is 22.01 days (95% CI 21.64–22.39); the median of the 
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Figure 1.   COVID-19 pandemic in Canada: (a) As of May 23, 2021 Canadian out break at-a-glance; the 
purple, white and cyan digits are represented the number of recovered individuals, death toll and active cases, 
respectively. (b) Percentage of recovered (purple), deaths (white) and active cases (cyan) in Canada during the 
first wave, January 22, 2020 to July 16, 2020. (c) Percentage of recovered (purple), deaths (white) and active cases 
(cyan) in Canada as of May 23, 2021. The image has been generated using Microsoft Paint—Windows 10. Model 
calculation for Canada during the first wave, January 22, 2020 to July 16, 2020: (d) Estimation of the number of 
infected individuals. (e) Estimation of the total number of coronavirus cases compared to the available data30. (f) 
Estimation of the total number of recovered compared to the available data30. (g) Estimation of the total number 
of deaths compared to the available data30.
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decease period is 21.67 days (95% CI 21.31–22.04); the 90th percentile is 28.30 days (95% CI 27.72–28.89); the 
95th percentile is 30.39 days (95% CI 29.71–31.10). For better estimation, we use a bimodal distribution, a linear 
combination of Ŵ(η,Kd1, θd1) and Ŵ(η,Kd2, θd2) . The mean of Ŵ(η,Kd1, θd1) and Ŵ(η,Kd2, θd2) are 21.18 days 
(95% CI 20.90–21.47) and 38.41 days (95% CI 37.41–39.40), respectively. The percentile curves show (Fig. 2h) 
that the percentiles of unimodal and bimodal distributions are almost the same.

Bivariate distributions.  To analyze the bivariate distribution, we use the software Statgraphics32, based on 
the statistical package R. Using the elements Rik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , we obtain a bivariate 
histogram (Fig. 3a) for the incubation and recovery periods. There are two peaks at the points (3, 19), i.e., for 
τi = 3 and ζk = 19 , and (8, 20), i.e., for τi = 8 and ζk = 20 , corresponding to the high densities of recovered 
individuals. We estimate the histogram using a bivariate normal distribution N(m(r)

τ ,mζ , σ
(r)
τ , σζ , ρτζ ) (Fig. 3b) 

where the variables τ and ζ represent the incubation and recovery periods, respectively. The mean m(r)
τ  and stand-

ard deviation σ (r)
τ  of the incubation period are 6.43 (95% CI 6.27–6.59) and 3.06 (95% CI 2.96–3.18), respec-

tively; the mean mζ and standard deviation σζ of the recovery period are 21.91 (95% CI 21.63–22.18) and 5.33 
(95% CI 5.14–5.53), respectively; the correlation between incubation and recovery periods ρτζ is − 0.11. The two 
dimensional representation of the bivariate normal distribution (Fig. 3c) shows that the highly probable recov-
ery region (red in the figure) is a nested domain of τ = 6.43 and ζ = 21.91 . To precisely analyze the highly prob-
able region, we estimate the histogram (Fig. 3a) using a nonparametric density function with a width of 33%, low 
and high percentage give a more local and global estimation, respectively, and we obtain a distribution with two 
peaks (Fig. 3d). Two distinguishable peaks indicate that there are two separate highly probable regions surround-
ing the points τ = 3.49 , ζ = 20.52 and τ = 8.38 , ζ = 20.35 (Fig. 3e). The bivariate mixture distribution analysis 
shows that we can estimate the histogram of Rik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 using a combination of 
two bivariate normal distributions, 0.94N(m(r1)

τ ,m
(1)
ζ , σ (r1)

τ , σ
(1)
ζ , ρ

(1)
τζ )+ 0.06N(m(r2)

τ ,m
(2)
ζ , σ (r2)

τ , σ
(2)
ζ , ρ

(2)
τζ ) 

where the superscript 1 (resp. 2) represents the parameters for the first (resp. second) component. The param-
eters of the first component are m(r1)

τ = 6.43,m
(1)
ζ = 20.83, σ (r1)

τ = 3.05, σ
(1)
ζ = 3.36, ρ

(1)
τζ = −0.16 , and those 

of the second component are m(r2)
τ = 6.42,m

(2)
ζ = 37.83, σ (r2)

τ = 3.25, σ
(2)
ζ = 3.45, ρ

(2)
τζ = −0.47.

Using the elements Dik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , we obtain a bivariate histogram (Fig. 4a) for 
the incubation and decease periods. There are two peaks at the points (3, 22), i.e., for τi = 3 and ηk = 22 , and (9, 
23), i.e., for τi = 9 and ηk = 23 , corresponding to the high densities of deaths. We estimate the histogram using 
a bivariate normal distribution N(m(d)

τ ,mη , σ
(d)
τ , ση , ρτη ) (Fig. 4b) where the variables τ and η represent the 

incubation and decease periods, respectively. The mean m(d)
τ  and standard deviation σ (d)

τ  of the incubation period 
are 6.56 (95% CI 6.36–6.76) and 3.00 (95% CI 2.86–3.15), respectively; the mean mη and standard deviation ση 
of the decease period are 21.64 (95% CI 21.33–21.94) and 4.43 (95% CI 4.23–4.65), respectively; the correlation 
between incubation and decease periods ρτη is − 0.008. The two dimensional representation of the bivariate 
normal distribution (Fig. 4c) shows that the highly probable decease region (red in the figure) is a nested domain 
of τ = 6.56 and η = 21.64 . To precisely analyze the highly probable regions, we estimate the histogram (Fig. 4a) 
using a nonparametric density function with a width of 40%, low and high percentage give a more local and 
global estimation, respectively, and obtain a distribution with two peaks (Fig. 4d), one in the high probability 
region (red in figure) and another one in the second high probability region (yellow in figure). The highly prob-
able region is surrounding the point τ = 8.17 , η = 21.86 (Fig. 4e). The bivariate mixture distribution analysis 
shows that we can estimate the histogram of Dik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 using a combination of 
two bivariate normal distributions, 0.97N(m(d1)

τ ,m(1)
η , σ (d1)

τ , σ (1)
η , ρ(1)

τη )+ 0.03N(m(d2)
τ ,m(2)

η , σ (d2)
τ , σ (2)

η , ρ(2)
τη ) 

where the superscript 1 (resp. 2) represents the parameters for first (resp. second) component. The parameters 
of the first component are m(d1)

τ = 6.58,m(1)
η = 21.19, σ (d1)

τ = 2.98, σ (1)
η = 3.49, ρ(1)

τη = 0.03 , and those of the 
second component are m(d2)

τ = 5.81,m(2)
η = 38.61, σ (d2)

τ = 3.33, σ (2)
η = 2.15, ρ(2)

τη = −0.29.

Onset time from symptom to recovery.  Using the fact that τ + θ = ζ and the property of expecta-
tion E(T +�) = E(T)+ E(�) , we calculate the mean Onset Time from Symptom to Recovery (OTSR) E(�) 
(Table  1), where θ is the variable corresponding to θik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 ; T and � are 
the random variables corresponding the incubation period and OTSR, respectively. There is a good agreement 
between the calculated values, mean of OTSR, short OTSR and long OTSR, with the reported works (Table 1) 
of earlier studies. However, these calculated values do not show excellent concordance with some other studies, 
because we consider all recovery cases, mild to moderate, severe, hospitalized (ICU, non-ICU), non hospitalized, 
in Canada. For example, Voinsky et al.4 reported a study with a sample of 5769 patients, not including severe 
COVID-19 cases. In fact, they mentioned that severe cases were reported to be discharged from the hospital on 
average 8 days longer than mild to moderate patients requiring hospitalization.

Discussion
In the present context, we estimate the recovery as well as decease periods using a novel compartment based 
model and publicly available database. Here, we consider a maximum length of the incubation period of 14 days, 
and the ranges of the recovery and decease periods are from 2 to 6 weeks. However, in our method, we can go 
well beyond all those ranges; the longer ranges simply require a long computational time. Notice that our method 
could apply the proposed model to estimate key periods for any infectious disease, as along as similar data are 
available. The proposed model is not a prediction model, and hence does not depend on any database. The 
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subsection ‘Validation of the proposed model’ in the ‘Results’ section is presented only to justify the validation 
of our model with COVID-19 database of Canada. Calculating the incubation and recovery periods for other 
counties is naturally possible using the proposed model.

The multi-group database Rik , i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , generated from the model, is the key 
source to compute all types of distribution of the recovery period, univariate, bimodal and bivariate. The bimodal 
gamma distribution of the recovery period, 0.9365Ŵ(ζ ,Kr1, θr1)+ 0.0635Ŵ(ζ ,Kr2, θr2) , demonstrates that the 
recovery period of 93.65% recovered individuals obeys the distribution Ŵ(ζ ,Kr1, θr1) , and that of 6.35% recovered 
individuals obeys the distribution Ŵ(ζ ,Kr2, θr2) . Thus, there are two groups of recovered individuals with short 
recovery period, 21.02 days (on average), and long recovery period, 38.88 days (on average). The characteristics 
of those two groups may depend on age, underlying health condition, immunity, etc. The database of numerous 
groups Dik , i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 , generated from the model, is the key source to compute all types 
of distribution of the decease period, univariate, bimodal and bivariate. The bimodal gamma distribution of the 
decease period, 0.9508Ŵ(ζ ,Kd1, θd1)+ 0.0492Ŵ(ζ ,Kd2, θd2) , demonstrates that the decease period of 95.08% 
deaths obeys the distribution Ŵ(ζ ,Kd1, θd1) , and that of 4.92% deaths obeys the distribution Ŵ(ζ ,Kd2, θd2) . Thus, 
there are two groups of deaths with short decease period, 21.18 days (on average), and long decease period, 
38.41 days (on average). The characteristics of those two groups may depend on age, underlying health condi-
tion, immunity, etc. The calculated results employing the proposed model show that the recovery and decease 
periods are the same. It seems that the survival period of the coronavirus is the same as that of human, in the 
form of immunity.

The bivariate normal distribution of incubation and recovery periods indicates a recovery window of 
4.82 ≤ τ ≤ 8.49 and 19.27 ≤ ζ ≤ 25.72 as the highly probable domain for recovery. The bivariate normal distri-
bution of incubation and decease periods indicates a decease window of 4.55 ≤ τ ≤ 8.45 and 19.35 ≤ η ≤ 24.85 
as the highly probable domain of deaths. The study shows that the recovery and decease windows almost coincide 
within these key periods. To determine precisely the recovery as well as the decease windows, we use nonpara-
metric distributions. Under the nonparametric analysis we identify two recovery windows, 2.27 ≤ τ ≤ 4.38 , 
18.41 ≤ ζ ≤ 22.79 and 6.42 ≤ τ ≤ 9.63 , 17.81 ≤ ζ ≤ 23.93 , and one decease window, 6.34 ≤ τ ≤ 9.41 , 
20.17 ≤ η ≤ 23.69 . Nonparametric analysis provides some discrepancy between the recovery and decease 
windows.

The bivariate mixed distribution, 0.94N(m(r1)
τ ,m

(1)
ζ , σ (r1)

τ , σ
(1)
ζ , ρ

(1)
τζ )+ 0.06N(m(r2)

τ ,m
(2)
ζ , σ (r2)

τ , σ
(2)
ζ , ρ

(2)
τζ ) , 

of  the incubation and recover y periods demonstrates  that  94% recovered individu-
als obey N(m(r1)

τ ,m
(1)
ζ , σ (r1)

τ , σ
(1)
ζ , ρ

(1)
τζ ) , the bivariate normal distribution, with recovery win-

dow m(r1)
τ − σ (r1)

τ ≤ τ ≤ m(r1)
τ + σ (r1)

τ  ,  m
(1)
ζ − σ

(1)
ζ ≤ ζ ≤ m

(1)
ζ + σ

(1)
ζ  and  6% recovere d  indi-
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window m(r2)
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τ + σ (r2)
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(2)
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(2)
ζ  . The bivariate mixed distribution, 

0.97N(m(d1)
τ ,m(1)
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τ , σ (1)

η , ρ(1)
τη )+ 0.03N(m(d2)

τ ,m(2)
η , σ (d2)
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τη ) , of the incubation and decease periods 
demonstrates that 97% deaths obey the bivariate normal distribution N(m(d1)

τ ,m(1)
η , σ (d1)

τ , σ (1)
η , ρ(1)

τη ) with decease 
window m(d1)

τ − σ (d1)
τ ≤ τ ≤ m(d1)

τ + σ (d1)
τ  , m(1)

η − σ (1)
η ≤ η ≤ m(1)

η + σ (1)
η  and 3% deaths obey the bivariate 

normal distribution N(m(d2)
τ ,m(2)

η , σ (d2)
τ , σ (2)

η , ρ(2)
τη ) with decease window m(d2)

τ − σ (d2)
τ ≤ τ ≤ m(d2)

τ + σ (d2)
τ  , 

m(2)
η − σ (2)

η ≤ η ≤ m(2)
η + σ (2)

η .

Table 1.   Comparison of several studies (including the present work) for infectious period along with sample 
size, mean/median and ranges. Here SD and IQR stand for standard deviation and interquartile range, 
respectively.

Author Location Data size Parameter (days) Reported Variation (days) Comment

Present work Canada 72,680

15.40

Mean

95% CI 14.87–15.92 Onset time from symptom to
recovery (OTSR)

14.28 95% CI 13.79–14.77 Short OTSR

32.14 95% CI 31.48–32.80 Long OTSR

Voinsky et al.4 Israeli 5769 Mean 13.24–14.81 Days from first positive to
first negative COVID test

Barman et al.5 India 221
21

Mean
95% CI 12.82–29.32 Days of hospitalization

Age < 60 years

25 95% CI 17.22–32.78 Days of hospitalization
Age > 60 years

Cai et al.6 China 298 14 Median 9–19 (IQR) Days of treatment within
hospital setting

Fang et al.7 China 24 15.7 Mean 6.7 (SD) Days of hospitalization,
non-ICU

Wu et al.8 China 74 16.1

Mean

6.7 (SD) Days of hospitalization,
severe and non-severe

Bi et al.9 China 391 21 95% CI 20–22 Median time to recovery

Alinaghi et al.10 Iran 478 13.5 IQR: 9 Median time to recovery
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Conclusions
We have developed a novel compartment based model to divide the publicly available database of total con-
firmed cases, recovered cases, and number of deaths into numerous subgroups to obtain the distributions of 
the recovered and decease periods. The outcomes of this study can be divided into three categories; these are 
univariate, univariate (bimodal) and bivariate distributions. We obtain mean recovery and decease periods from 
the univariate distribution. We observe two groups of recovered individuals as well as deaths: a short recovery 
(decease) period and a long recovery (decease) period from the univariate (bimodal) distribution. From the 
bivariate analysis, we investigate the correlation between the incubation and recovery periods as well as the 
correlation between incubation and decease periods. The model itself and the procedure to solve it, are the core 
of this work, and it can be applied to any infectious disease in any region. We obtain the distributions of the 
key periods from the population, considering all types of cases (non-hospitalized, non-ICU, ICU) of recovered 
individuals and deaths, which is naturally better than any sample-dependent result. In this approach, we do not 
need any clinical survey; the publicly available data on confirmed cases, recovery and death toll, are sufficient 
to analyze the univariate and bivariate distributions. The current model can be extended to study age-based key 
periods, but for this purpose we need an age dependent database. The monotonic iteration scheme, introduced 
for better estimation, can be applied to numerical analysis problems.

Methods
In this section, we introduce a compartment based infectious disease model including a large number of parti-
tions, Lockdown, Susceptible, Removed, Infected, fourteen compartments of Confirmed cases, hundreds of 
compartments of Recovered and Deaths. The model is constructed as a set of coupled delay differential equa-
tions involving few thousands of variables and parameters, and will be used, not as a prediction tool, but (1) 
for constructing the myriad groups of recovered individuals and death tools and (2) estimating accurately the 
recovery and decease periods. This model will however have to be parameterized and validated using existing 
data, in order to justify its accuracy and its application in the proposed methodology.

The model.  Modeling the spread of pandemics is an essential tool for projecting its outcome. By estimating 
important epidemiological parameters using the available database and optimization techniques, we can make 
predictions of different intervention scenarios. Compartment based model, where the population of a region is 
distributed into several population groups, such as susceptible, infected, total cases, etc., is a simple but useful 
tool to demonstrate the panorama of an epidemic.

The proposed model is an extension of our previous work3, including a very large number of compartments 
of recovered and deaths individuals; the schematic diagram of the model is presented in Fig. 5a. The following 
are the underlying principles of the present model.

•	 The total population is constant (neglecting the migrations, births and unrelated deaths) and initially every 
individual is assumed susceptible to contract the disease.

•	 The disease is spread through the direct (face-to-face meeting) or indirect (through air current, common used 
or delivery items like door handles, grocery products) contact of susceptible individuals with the infected 
individuals.

•	 The quarantined area or the compartment for corona cases contains only members of the infected population 
who are tested corona-positive.

•	 The virus kills a part of the people it infects; the survivors represent the recovered group.
•	 There is a non-pharmaceutical policy (stay at home), commonly known as lockdown, to stop the spread of 

the disease.
•	 The group of asymptomatic patients is a part of infected individuals, and the never-tested recovered asymp-

tomatic patients can be removed from the infected group. If an asymptomatic patient dies, it is counted after 
investigation.

Based on the above principles, we consider the following compartments:

•	 Lockdown (insusceptible) (L): the group of persons who are keeping themselves safe.

Figure 2.   Distribution of the recovery and decease periods: Results based on the total recovered cases of the 
first 177 days during the pandemic in Canada starting from January 22, 2020 i.e., cumulative data as of July 
16, 2020. (a) Splitting values of recovered individuals as a function of incubation and recovery periods. (b) 
Probability density function of the gamma distribution Ŵ(ζ ,K , θ) with K = 18.62067 and θ = 1.18892 . The 
blue bars indicate the densities obtained from the model calculation. (c) Probability density function of the 
bimodal gamma distribution 0.9365Ŵ(ζ ,K1, θ1)+ 0.0635Ŵ(ζ ,K2, θ2) with K1 = 34.55447 , θ1 = 0.60847 , 
K2 = 226.40545 and θ2 = 0.17171 . The blue bars indicate the densities obtained from the model calculation. (d) 
Percentile curves for unimodal and bimodal gamma distributions. (e) Splitting values of the deaths as a function 
of incubation and decease periods. (f) Probability density function of the gamma distribution Ŵ(η,K , θ) with 
K = 21.33660 and θ = 1.03174 . The blue bars indicate the densities obtained from the model calculation. (g) 
Probability density function of the bimodal gamma distribution 0.9508Ŵ(η,K1, θ1)+ 0.0492Ŵ(η,K2, θ2) with 
K1 = 35.00855 , θ1 = 0.60511 , K2 = 186.11379 and θ2 = 0.20636 . The blue bars indicate the densities obtained 
from the model calculation. (h) Percentile curves for unimodal and bimodal gamma distributions.
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•	 Susceptible (S): the group of individuals who can be infected.
•	 Infected (I): the group of people who are spreading the contiguous disease.
•	 Removed (V): the group of recovered asymptomatic patients without testing.
•	 Confirmed cases (C): the group of individuals who tested corona-positive.
•	 Recovered (R): the group of recovered individuals who tested corona-positive.
•	 Deaths (D): the group of deaths individuals who tested corona-positive.

In the present context, we assume that there is no overlap between these two compartments, infected (I) and 
confirmed cases (C). In other words, tested corona-positive individuals are assumed to be unable to substantially 

Figure 3.   Bivariate distribution of the incubation and recovery periods: (a) Histogram of the estimated data 
Rik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 using the model. (b) Fitted bivariate normal distribution. (c) Two-
dimensional display of (b); the red region is the highly probable domain for recovery, and x (6.43, 21.91) denotes 
the center of the region. (d) Fitted nonparametric density estimate with wide 33%; two peaks show that there 
are two distinguishable high probable regions. (e) Two-dimensional display of (d); two x represent the centers of 
two high probable regions (3.49, 20.52) and (8.38, 20.35).
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spread the disease due to isolation and are immune to re-infection after recovery33. The aim of the present work is 
to estimate the distribution of the recovery and decease periods of COVID-19. In this goal, we split the compart-
ment C into J subcomponents C1, . . . ,CJ , the compartment R into J ×M subcomponents Rik for i = 1, . . . , J and 
k = 1, . . . ,M and the compartment D into J ×M subcomponents Dik for i = 1, . . . , J and k = 1, . . . ,M where

(1)C(t) =

J∑

i=1

Ci(t) or C(m) =

J∑

i=1

C
(m)
i ,

Figure 4.   Bivariate distribution of the incubation and decease periods: (a) Histogram of the estimated data 
Dik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 using the model. (b) Fitted bivariate normal distribution. (c) Two-
dimensional display of (b); the red region is the highly probable domain for decease, and x (6.56, 21.64) denotes 
the center of the region. (d) Fitted nonparametric density estimate with wide 40%; two peaks show that there are 
two distinguishable high probable regions. (e) Two-dimensional display of (d); the x represents the center of the 
high probable red region (8.17, 21.86).
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Figure 5.   Model, methodology and estimated values of the parameters: (a) Schematic diagram of the present 
compartmental based model, total 830 compartments. Here �ik = �ikδiβS(t − τi − θik)I(t − τi − θik)/N and 
Kik = κikδiβS(t − τi − µik)I(t − τi − µik)/N for i = 1, 2, . . . , J and k = 1, 2, . . . ,M . We consider J = 14 
and M = 29 . (b) Bubble diagram of the foundation of the present work, splitting publicly available database, 
total cases (T), recovered individuals (R) and death toll (D), into myriad groups. (c) Sketch of the Monotonic 
Iteration Scheme (MIS); for ‘recovery’ calculation �i = {�ik|k = 1, 2, . . . , 29} and for ‘decease’ calculation 
�i = {κik|k = 1, 2, . . . , 29} and i = 1, 2, . . . , 14 . (d) Sketch of the optimization scheme for the primary, P0 , and 
secondary, P1 and P2 , parameters. P1/2 indicates either P1 or P2 . (e) Estimated values of the primary parameters. 
(f) Estimated values of the secondary parameters, upper panel: �ik and lower panel: κik . (g) Iteration verses error 
function in MIS, upper panel: estimating �ik and lower panel: estimating κik.
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In (1), (2) and (3) m represents the time index, and C(m)
i  , R(m)

ik  and D(m)
ik  represents the total corona-positive cases 

corresponding the incubation period τi , recovered individuals corresponding the incubation period τi and onset 
time θik i.e., recovery period ζk = τi + θik and death toll corresponding the incubation period τi and onset time 
µik i.e., decease period ηk = τi + µik , respectively, presented in Fig. 5a.

The time-dependent model is the following set of coupled delay differential equations, for i = 1, . . . , J:

where the real positive modeling parameters α , β , γ δi , �ik , κik and ν are the rate of lockdown, the rate of infection, 
the rate of recovery from the asymptomatic group, the rate of tested corona-positive corresponding the incuba-
tion period τi , the rate of recovery corresponding the recovery period ζk , the rate of decease corresponding the 
decease period ηk and the rate of transit from lockdown compartment to susceptible compartment, respectively. 
The variables S(t − τi) and I(t − τi) denote the cumulative data of (t − τi) days, i.e., total number of suspected and 
infected individuals of (t − τi) days. The factors δiβS(t − τi)I(t − τi)/N , �ikδiβS(t − τi − θik)I(t − τi − θik)/N , 
κikδiβS(t − τi − µik)I(t − τi − µik)/N convey the rate of individuals who were infected τi days ago, the rate of 
individuals who were infected τi + θik days ago and recovered, the rate of individuals who were infected τi + µik 
days ago and died, respectively. It follows from (4), that for any t

where N (constant) is the total population size. We can define a group of new variable Ti for i = 1, . . . , J such that

and

where T, total confirmed cases, is the group of individuals who tested corona positive (active cases + recovered 
+ deaths). From Eq.(4) we can generate three different sets of coupled delay differential equations for i = 1, . . . , J 
and k = 1, . . . ,M

(2)R(t) =

J∑

i=1

M∑

k=1

Rik(t) or R(m) =

J∑

i=1

M∑

k=1

R
(m)
ik ,

(3)D(t) =

J∑

i=1

M∑

k=1

Dik(t) or D(m) =

J∑

i=1

M∑

k=1

D
(m)
ik .

(4)





dS
dt

= − β SI
N
− αS + νL

dI
dt

= β SI
N
− γ I − β

�J
i=1 δi

S(t−τi)I(t−τi)
N

dV
dt

= γ I

dCi

dt
= δiβ

S(t−τi)I(t−τi)
N

− β
�M

k=1 �ikδi
S(t−τi−θik)I(t−τi−θik)

N

− β
�M

k=1 κikδi
S(t−τi−µik)I(t−τi−µik)

N

dRik
dt

= �ikδiβ
S(t−τi−θik)I(t−τi−θik)

N

dDik

dt
= κikδiβ

S(t−τi−µik)I(t−τi−µik)
N

dL
dt

= αS − νL

(5)L(t)+ S(t)+ I(t)+ V(t)+ C(t)+ R(t)+ D(t) = N ,

(6)Ti = Ci +

M∑

k=1

Rik +

M∑

k=1

Dik ,

(7)T(t) =

J∑

i=1

Ti(t) or T(m) =

J∑

i=1

T
(m)
i ,

(8)





dS
dt

= − β SI
N
− αS + νL

dI
dt

= β SI
N
− γ I − β

�J
i=1 δi

S(t−τi)I(t−τi)
N

dTi
dt

= δiβ
S(t−τi)I(t−τi)

N

dL
dt

= αS − νL

(9)





dS
dt

= − β SI
N
− αS + νL

dI
dt

= β SI
N
− γ I − β

�J
i=1 δi

S(t−τi)I(t−τi)
N

dRik
dt

= �ikδiβ
S(t−τi−θik)I(t−τi−θik)

N

dL
dt

= αS − νL
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and

where Eqs. (8), (9) and (10) can be used to calculate incubation period3, recovery period and decease period, 
respectively. In the present context, we focus on recovery as well as decease periods. We solve Eqs. (8), (9) and 
(10) using matlab inner-embedded function dde23 with particular sets of model parameters. To solve the initial 
value problem, in the interval [t0, t1] , we consider L(t0) , S(t0) , I(t0) , T(t0) , R(t0) and D(t0) as follows:

where T̃(t0) , R̃(t0) and D̃(t0) are the available data at time t0 , and q is the initial value adjusting parameters. Ini-
tially, there are no lockdown individual and no removed individuals from the asymptomatic group so that we 
can consider L(t0) = 0 and V(t0) = 0. It follows from (7) and (11)

In the present context T̃(t0) = 0 , since there were no corona-positive cases reported on January 22, 2020. As 
a consequence, we also take Ti(t0) = 0 for i = 1, 2, . . . , J , and the similar assumptions are valid for Rik(t0) and 
Dik(t0) i.e., Rik(t0) = 0 and Dik(t0) = 0 for i = 1, 2, . . . , J and k = 1, 2, . . . ,M.

Parameter estimation.  We focus on the exponential growth phase of the COVID-19 epidemic in Can-
ada; one can use this approach to estimate the incubation, recovery period and decease periods for any region 
affected by this infectious disease. The time resolved (daily updated) database30 provides the number of total 
corona-positive cases, the number of recovered individuals and the death toll. We define two groups of model 
parameters: primary parameters, the parameters involved in Eq. (8) i.e., q, α , β , γ , δi for i = 1, 2, . . . , J and ν , and 
secondary parameters, the parameters involved in Eqs. (9) and (10) other than the primary parameters i.e., �ik 
and κik for i = 1, 2, . . . , J and k = 1, 2, . . . ,M . We use the estimated values of the primary parameters to optimize 
the secondary parameters. The optimal values of the primary parameters P0 = (q,α,β , δ1(t), . . . , δJ (t), ν)

T , q is 
the initial value of I(t), is obtained by minimizing the error function Er(P0) , defined as

where T̃(m) is the available data of total corona-positive cases on the particular mth day, and T(m) is the calculated 
results obtained from the system (8). The integer K, used in (13), is the size of the data set. Due to the complexity 
of the error function, the minimization using the matlab function fminsearch requires a very large num-
ber of iterations. We use the similar error functions Er(P1) and Er(P2) to optimize the secondary parameters 
P1 = (�11, . . . , �JM)T and P2 = (κ11, . . . , κJM)T , defined as

and

where Pop0  is the estimated values of P0 ; R̃(m) and D̃(m) are the available data of total number of recovered indi-
viduals and total number of death toll; R(m) and D(m) are the calculated results obtained from the Eqs. (9) and 
(10), respectively.

(10)





dS
dt

= − β SI
N
− αS + νL

dI
dt

= β SI
N
− γ I − β

�J
i=1 δi

S(t−τi)I(t−τi)
N

dDik

dt
= κikδiβ

S(t−τi−µik)I(t−τi−µik)
N

dL
dt

= αS − νL

(11)





L(t0) = 0 ,
S(t0) = N − L(t0)− I(t0)− V(t0)− T(t0) ,
I(t0) = q ,
V(t0) = 0 ,

T(t0) = �T(t0) ,
R(t0) = �R(t0) ,
D(t0) = �D(t0) ,

(12)
J∑

i=1

Ti(t0) = T(t0) = T̃(t0).

(13)Er(P0) =
1

K

√√√√
K∑

m=1

(T(m)(P0)− T̃(m))2 ,

(14)Er(P1) =
1

K

√√√√
K∑

m=1

(R(m)(P
op
0 ,P1)− R̃(m))2 ,

(15)Er(P2) =
1

K

√√√√
K∑

m=1

(D(m)(P
op
0 ,P2)− D̃(m))2 ,
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Numerical experiment.  In this section, we present a detailed description of the computational procedure for 
the proposed model. On 23 January 2020, a 56-year old man admitted to Toronto hospital emergency depart-
ment in Toronto with a new onset of fever and nonproductive cough, and returning from Wuhan, China, the day 
prior34,35. It is believed this is the first confirmed case of 2019-nCoV in Canada, and according to the government 
report, the novel coronavirus arrived on the Canadian coast on January 25, 2020, first reported case. The above 
information suggests that the start date of the current pandemic in Canada is possibly to be January 22, 2020. 
Additionally, some research studies reported that the estimation of the incubation period is from 2 to 14 days, 
and recovery as well as decease period of COVID-19 is from 2 to 6 weeks2,36. As a consequence, in the present 
study we consider J = 14 i.e, 14 delays for the incubation period, and M = 42− 14+ 1 = 29 i.e, 29 delays for 
the recovery as well as decease periods. Here we consider a calculation of 177 days, from January 22, 2020 to 
July 16, 2020, duration of the first wave in Canada. The purpose of the model is to separate the publicly available 
database T, R and D into myriad groups Ti , Rik and Dik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 (Fig. 5b).

Then the local minimum computed by the optimization algorithm depends on the initial values of 
the parameters: for q, α , β , ν we consider any positive random number less than unity, where as a choice of 
δ = (δ1, . . . , δ14)

T is tricky. For this purpose, we consider a vector of 14 positive random numbers δ such that 
δ1 < · · · < δ4 < δ5 > δ6 > · · · > δ14 and ∑14

i=1 δi = 0.9 . We observe, from numerous numerical experiments, the renor-
malization factor 0.9 works perfectly for the computation. The estimated values of the primary parameters 
P
op
0  are presented in Fig. 5e, and the value of the error function Er(P0) = 41.64. The estimated values of the 

primary parameters are related to Eq. (8), the set of coupled delay differential equations, and Eq. (13), the error 
function. Using the estimated values of the primary parameters, we optimize the secondary parameters �ik for 
i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 related to Eqs. (9) and (14). The choice of the initial values of �ik is such that 
for any fixed i, i = 1, 2, . . . , 14 , the first fourteen �ik s i.e., {�i1, �i2, . . . , �i14} are in ascending order, and the rest 
i.e., {�i15, �i16, . . . , �i29} are in descending order; and 

∑29
k=1 �ik = 0.72 . After optimization, we obtain the value 

of the error function Er(P1op) = 236.47. Using the estimated values of the primary parameters, we optimize the 
secondary parameters κik for i = 1, 2, . . . , 14 and k = 1, 2, . . . , 29 related to Eqs. (10) and (15). The choice of 
the initial values of κik is such that for any fixed i, i = 1, 2, . . . , 14 , the first fourteen κik s i.e., {κi1, κi2, . . . , κi14} 
are in ascending order, and the rest i.e., {κi15, κi16, . . . , κi29} are in descending order; and 

∑29
k=1 κik = 0.1 . After 

optimization, we obtain the value of the error function Er(Pop2 ) = 52.82. The values of the error functions Er(Pop1 ) 
and Er(Pop2 ) are not sufficiently small. To overcome that difficulties, here, we introduce a Monotonic Iteration 
Scheme (MIS).

Monotonic iteration scheme.  To optimize the parameters ξik for i = 1, 2, . . . , J and k = 1, 2, . . . ,M , in the pre-
sent context J = 14 and M = 29 , we use a MIS. However, the MIS can be applied for other numerical/optimiza-
tion problems with any finite integer values of J and M. The schematic diagram of MIS is presented in Fig. 5c, 
and consists of the following steps.

•	 Step 1 We decompose the parametric domain � = {ξik|i = 1, 2, . . . , 14; k = 1, 2, . . . , 29} into 14 subdomains 
�i = {ξik|k = 1, 2, . . . , 29} so � = {�1,�2,�3, . . . ,�14}.

•	 Step 2 We optimize the subdomain �1 and consider the other parameters �2,�3, . . . ,�14 , as con-
stants. After first iteration, we get estimated parameters �op

1  ; the entire parametric domain is 
�(1) = {�

op
1 ,�2,�3, . . . ,�14} , and the error function Er(�(1)).

•	 Step 3 In the second iteration, we optimize the subdomain �2 and keeping the other subdomains of �(1) 
unchanged. After second iteration, we get estimated parameters �op

2  ; the entire parametric domain is 
�(2) = {�

op
1 ,�

op
2 ,�3, . . . ,�14} , and the error function Er(�(2)).

•	 Step 4 Repeated the same procedure discussed in Step3.

The optimization of the subdomain �2 , demonstrated in Step3, is related to minimizing the error function such 
that Er(�(1)) ≥ Er(�(2)) ; the equality sign holds for �op

2 = �2 . The error function of the (n+ 1) th iteration, 
Er(�(n+1)) cannot be greater than that of nth iteration, Er(�(n)) , because of this characteristic of the error 
function we define the approach as MIS. The flow chat of the optimization scheme is presented in Fig. 5d. The 
upper and lower panels of Fig. 5f show the estimated values of the secondary parameters �ik and κik , respectively, 
obtained from the MIS. The upper and lower panels of Fig. 5g show the values of the error functions ER , using 
MIS to optimize �ik , and ED , using MIS to optimize κik , for fourteen iteration steps and Er(PopMIS

1 ) = 104.07 , 
Er(P

opMIS
2 ) = 26.66 where PopMIS

1  and PopMIS
2  are the estimated values of Pop1  and Pop2  , respectively, using MIS. 

Figure 5g shows that the MIS works efficiently to get better estimations.

Data availibility
The data used to estimate the model parameters are publicly available and are available with the code.

Code availability
All code is available in the GitHub repository for the project at https://​github.​com/​SPAUL​2021/​COVID​19REC​
OVERY/​tree/​SPAUL​2021-​patch-1.
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