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Machine learning of native 
T1 mapping radiomics 
for classification of hypertrophic 
cardiomyopathy phenotypes
Alexios S. Antonopoulos1,4*, Maria Boutsikou2,4, Spyridon Simantiris1, 
Andreas Angelopoulos1, George Lazaros1, Ioannis Panagiotopoulos1, 
Evangelos Oikonomou1, Mikela Kanoupaki2, Dimitris Tousoulis1, Raad H. Mohiaddin3, 
Konstantinos Tsioufis1 & Charalambos Vlachopoulos1

We explored whether radiomic features from T1 maps by cardiac magnetic resonance (CMR) could 
enhance the diagnostic value of T1 mapping in distinguishing health from disease and classifying 
cardiac disease phenotypes. A total of 149 patients (n = 30 with no heart disease, n = 30 with LVH, 
n = 61 with hypertrophic cardiomyopathy (HCM) and n = 28 with cardiac amyloidosis) undergoing a 
CMR scan were included in this study. We extracted a total of 850 radiomic features and explored their 
value in disease classification. We applied principal component analysis and unsupervised clustering 
in exploratory analysis, and then machine learning for feature selection of the best radiomic features 
that maximized the diagnostic value for cardiac disease classification. The first three principal 
components of the T1 radiomics were distinctively correlated with cardiac disease type. Unsupervised 
hierarchical clustering of the population by myocardial T1 radiomics was significantly associated 
with myocardial disease type  (chi2 = 55.98, p < 0.0001). After feature selection, internal validation 
and external testing, a model of T1 radiomics had good diagnostic performance (AUC 0.753) for 
multinomial classification of disease phenotype (normal vs. LVH vs. HCM vs. cardiac amyloid). A subset 
of six radiomic features outperformed mean native T1 values for classification between myocardial 
health vs. disease and HCM phenocopies (AUC of T1 vs. radiomics model, for normal: 0.549 vs. 0.888; 
for LVH: 0.645 vs. 0.790; for HCM 0.541 vs. 0.638; and for cardiac amyloid 0.769 vs. 0.840). We show 
that myocardial texture assessed by native T1 maps is linked to features of cardiac disease. Myocardial 
radiomic phenotyping could enhance the diagnostic yield of T1 mapping for myocardial disease 
detection and classification.

Cardiac magnetic resonance (CMR) is considered the state-of-the-art imaging approach for assessing myocar-
dial  disease1, allowing tissue characterization and fibrosis detection by late gadolinium enhancement (LGE)2. 
Myocardial T1 mapping is also helpful across a spectrum of disease conditions, including diffuse interstitial 
or replacement fibrosis, water, or infiltrative  disorders2,3. However, a major problem with T1 mapping is that 
there is a significant overlap in myocardial native T1 values between health and disease; thus, while in-patient 
regional or even temporal variations in native T1 may be informative of disease development or progression, 
between-patient comparisons are less useful. A method that could harness the richness of information contained 
in myocardial T1 maps, would enhance the diagnostic value of T1 mapping for rapid detection of myocardial 
disease without the need of contrast agents.

Radiomics is a rapidly evolving field, which uses data-characterization algorithms to extract data from medi-
cal  images4. The segmented anatomical volumes are rendered into quantitative radiomic features that provide 
information on tissue volume, shape, and texture by analyzing the spatial relationship of (dis)similar voxels (an 
analogous to terrain mapping)5–8. In other medical fields, such as in clinical oncology, radiomic phenotyping 
has been successfully used to characterize the distinct biological phenotypes of tumors and provide relevant 
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prognostic  information7,8. More recently, we have also shown how pericoronary tissue CT radiomics can enhance 
cardiovascular risk  stratification4. Since T1 mapping is a standardized CMR acquisition, extraction of radiomic 
features by myocardial T1 maps is  feasible9 and recent evidence supports their value for classification between 
hypertensive heart disease and hypertrophic cardiomyopathy (HCM)10. However more evidence is needed to 
fully establish the clinical value of T1 radiomics in reliably discriminating between various cardiac phenotypes.

The aim of this proof-of-concept study was to extract and validate radiomic features from T1 maps using 
machine learning in a wide spectrum of conditions ranging from normal to various myocardial diseases with 
particular emphasis on distinguishing healthy from diseased myocardium and classifying LVH phenotypes.

Material and methods
Study population. Study Arm 1 comprised of 20 CMR scans with available native T1 mapping randomly 
selected by our archive (CMR scan performed for various clinical indications). These imaging datasets served for 
the purpose of stability assessment (i.e., inter-observer variability) of extracted radiomic features from T1 maps, 
which were included in further analysis in Study Arm 2.

Study Arm 2 included a total of 152 consecutive patients undergoing a CMR scan (period 2019–2020) and 
native T1 mapping as follows: individuals without evidence of structural heart disease on CMR (n = 30), patients 
with left ventricular hypertrophy (LVH, i.e. increased wall thickness ≥ 12 mm or increased LV mass index) of 
various causes (athletes, valvular heart disease, hypertension etc., n = 30), patients with known HCM (n = 61) 
and patients with known cardiac amyloidosis (n = 28). Three patients (n = 3) with suboptimal image quality of 
T1 maps (i.e., breathing artefacts) were excluded from analysis. The study was approved by the Institutional 
Research Ethics Committee (Hippokration General Hospital of Athens) with waiver of consent since the study 
involved only the use of anonymized imaging datasets; no individual patient data or human tissue samples were 
collected. All research was performed in accordance with relevant guidelines/regulations and in accordance 
with the Declaration of Helsinki.

Study design. A schematic of the study flowchart is provided in Fig. 1. The objective of the study was to per-
form feature selection of T1 radiomics by machine learning to identify biomarkers of disease that could be used 
for classification of cardiac phenotypes and demonstrate their incremental diagnostic value compared to the 
native T1 values (Fig. 1 left). To achieve this, we followed a stepwise approach. First, in a randomly selected pop-
ulation from our archive (n = 20), we assessed the stability of extracted radiomic features from T1 maps (Study 
Arm 1, see “Study population”, Fig. 1 right). Subsequently, in a proof-of-concept analysis, we demonstrated the 
association of cardiac health/disease phenotypes with the 3 main principal components of radiomic features in 
our main study population (n = 149, Study Arm 2 (Fig. 2). Then, we explored the diagnostic information of the 
whole available radiomic dataset by performing unsupervised clustering of the population and by showing how 
formed patient clusters based on population radiomic features differ in the prevalence of cardiac disease pheno-
types (Figs. 1 right, 3). Next, we applied a machine learning algorithm to eliminate highly correlated features and 
kept only those radiomic features that were stable and non-highly correlated as potential biomarkers of interest. 
Their value in multinomial classification was internally (supervised classification) and externally tested and the 
most important predictors were identified by a random forest Machine Learning algorithm (Fig. 4). Their diag-
nostic performance over and above native T1 for cardiac phenotype classification was demonstrated in relevant 
ROC curves (Figs. 1 right, 5).

Cardiac magnetic resonance scans. All CMR scans were performed on an Ingenia 1.5 T MR system 
(Philips Healthcare). Optimized single breath hold T1 Modified Look -Locker Inversion Recovery (MOLLI) 
sequence using the native 5 s(3 s)3 s scheme was used for T1 mapping with the following acquisition settings: 
preset FOV 320 × 320 mm, slice thickness 10 mm, Relative SNR 1.0, TR/TE 2.3/1.08, TFE factor 80 ACQ Matrix 
160 × 160. As per our local clinical practice T1 mapping was routinely used in all patients with well controlled 
resting heart rate i.e., < 80–85 bpm. Also, patients with T1 mapping of suboptimal quality (i.e., breath-hold arte-
facts) were not included in the final study population (n = 3).

Extraction of myocardial radiomic features from native T1 maps. Extraction of radiomic features 
from left ventricular (LV) myocardium of native T1 maps was done using the 3D Slicer software (v.4.9.0-2017-
12-18 r26813, available at http:// www. slicer. org)11. Operators were blinded to the disease status of patients and 
were trained and supervised in T1 mapping analysis by an experienced CMR Level 3 accredited individual. 
Segmentation of LV myocardium was performed on basal LV short axis slice. LV myocardium was manually 
segmented with manual offset of epicardial and endocardial layers to avoid contamination by epicardial fat or 
blood pool, respectively. The segmented volume of interest was subsequently used to calculate and extract a 
series of radiomic features, using the SlicerRadiomics extension of 3D Slicer, which incorporates the Pyradiom-
ics library into 3D  Slicer12. Shape-related and first-order radiomic features were calculated using the native T1 
values of the segmented myocardium. For calculation of texture features i.e., Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Run-Length Matrix (GLRLM), Gray Level Size 
Zone Matrix (GLSZM), and Neighboring Gray Tone Difference Matrix (NGTDM), voxels of LV myocardium 
were discretized into 16 bins of equal width, to reduce noise while allowing a sufficient resolution to detect 
biologically significant spatial changes in native T1 myocardial  values6,13. To enforce symmetrical, rotationally-
invariant results, texture statistics (GLCM etc.) were calculated in all four directions and then averaged, as previ-
ously  described6.

http://www.slicer.org
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Wavelet transformation. First-order and texture-based statistics were also calculated for wavelet transforma-
tions of the original image resulting in eight additional sets of radiomic  features14. In particular, wavelet transfor-
mation decomposes the data into high and low-frequency components. At high frequency (shorter time inter-
vals), the wavelets can capture discontinuities, ruptures and singularities in the original data. At low frequency 
(longer time intervals), the wavelet characterizes the coarse structure of the data to identify the long-term trends. 
Thus, the wavelet analysis allows extraction of hidden and significant temporal features of the original data, 
while improving the signal-to-noise ratio of imaging  studies7.

Machine learning and statistical analysis. Feature selection and stability assessment. In order to limit 
our analysis to radiomic features that could be of value as imaging biomarkers, we performed a stability as-
sessment of all extracted radiomic features. For this purpose, we used 20 scans from Study Arm 1 to assess the 
coefficient of variation (CV) of each radiomic feature in multiple delineations by two independent operators. 
Only those radiomic features with multiple delineation CV < 10% were included in further analysis (n = 628, 
Fig. 1 right).

Principal components analysis. Calculated LV myocardium radiomic features were included in principal com-
ponent analysis to identify principal components (PC) that describe most of the phenotypic variation in the 
study population. The first two components (PC1, PC2) were used to explore associations with disease back-
ground in relevant cluster plots (Fig. 2).

Unsupervised clustering of the study population by T1 radiomic features. The 628 selected radiomic features of 
LV of the patients of Study Arm 2 were transformed to Z-scores for further analysis. Then all 628 stable radiomic 
features were used to perform hierarchical clustering of the observations (i.e. patients) using the Ward method 
and the squared Euclidean distance (hclust R package). The variation of each of the 628 different radiomic fea-
tures across the n = 149 observations of the Study Arm 2 cohort was represented in a relevant heat map with a 
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row dendrogram indicating the clustering of patients (Fig. 3). The relationships between the 628 stable radiomic 
features were inspected in a corplot. Next a stepwise approach was applied and highly intercorrelated radiomic 
features (|rho|> 0.80) were removed from further analysis by application of a widely used automated  algorithm15. 
This function (function caret::findCorrelation, R package) searches through a correlation matrix and returns a 
vector of integers corresponding to columns to remove and reduce pair-wise correlations. The absolute values 
of pair-wise correlations are considered. If two variables have a high correlation, the function looks at the mean 
absolute correlation of each variable and removes the variable with the largest mean absolute correlation (Fig. 4).

Machine‑learning for classification of cardiac phenotype. We then attempted to select certain radiomic features 
as imaging biomarkers to describe heart disease phenotype and the presence of cardiac amyloidosis. The original 
population of Study Arm 2 was split into a training (67%) and a validation (n = 33%) dataset. Then the final 84 T1 
radiomic features were included in multinomial logistic regression models (nnet::multinom) to seek independ-
ent associations with the cardiac disease phenotype (normal, LVH, HCM or cardiac amyloid). Machine learning 
was used for the internal cross-validation of the filtered radiomic features and final feature selection. A random 
forest algorithm (caret package R) with fivefold cross-validation repeated 3 times was used to select the top fea-
tures able to classify cardiac disease phenotype. Finally, the diagnostic performance of the top radiomic features 
identified from this validation process for classification of each cardiac disease phenotype was assessed by the 
c-index and compared to that of the native T1 values. R statistical package version 3.6.0 (https:// www.R- proje ct. 
org/)16 was used for all statistical analysis.

Results
Radiomic feature extraction. The native T1 values (mean) between patient subgroups are shown in 
Fig. 2A and Table 1. There was a significant overlap between healthy individuals, patients with LVH or HCM; 
only patients with cardiac amyloid had significantly higher native T1 values than the rest patient subgroups, with 
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a median value of 1117 ms; however, this meant that even in cardiac amyloid, the T1 values of approximately a 
quarter of cardiac amyloid patients were overlapping with other cardiac conditions. We calculated a total of 850 
radiomic features by segmentation of LV myocardium, which included 15 shape-related features, 18 first order 
statistics, 15 GLCM, 18 GLDM, 16 GLRLM, 16 GLSZM, and 5 NGTDM features as well as eight wavelet trans-
formations for each one of them.

Principal component analysis. Initially, before looking into associations of specific radiomic features 
with cardiac disease, we performed exploratory data analysis by reducing the original radiomic dataset of pos-
sibly correlated features to its principal components. A total of 32 components accounted for the 99.5% of varia-
tion in the study population (scree plot, Fig. 2B), while the first three components explained 55% of the observed 
variation (Fig. 2C). The first three components were variably associated with the underlying cardiac phenotype 
(Fig. 2D), suggesting that native T1 maps of LV myocardium contain rich extractable information associated 
with distinct phenotypes of human heart, which could be used to distinguish healthy myocardium from myo-
cardial disease (Fig. 2E).

Unsupervised clustering of patients based on the radiomic phenotyping of myocardium. Since 
principal components are inherent to the sample population studied and not of transferrable value as quantifia-
ble biomarkers, we focused on the analysis of the radiomic features per se. From the initial pool of 850 measured 
radiomic features, we performed a stability assessment and calculated the CV for multiple delineation (Arm 
1, Fig. 1). Only those radiomic features with CV < 10% (n = 628) were included in further analyses (Figure S1; 
Table S1).

This set of 628 radiomic features of myocardial T1 maps was then used to perform unsupervised hierarchical 
clustering of the population in Arm 2. Hierarchical clustering identified distinct clusters of patients, which sig-
nificantly differed in the prevalence and type of cardiac disease (p < 0.001, Fig. 3), suggesting that the individual 
radiomic features are also useful to classify cardiac phenotype.

Machine learning for identification and validation of individual T1 radiomic features for cardiac 
disease classification. Having demonstrated the proof-of-concept that the radiomic features of myocar-
dial T1 maps are linked with cardiac disease phenotype, we next attempted to identify specific radiomic features 
that could be used as biomarkers of cardiac disease. In order to limit the number of radiomic features that would 
finally be useful as potential cardiac disease biomarkers, we applied an automated algorithm (see methods) that 
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removed highly correlated features in a stepwise manner. The final set of filtered 84 stable and non-highly cor-
related radiomic features is presented on a relevant correlation matrix (Fig. 4A, Figure S2).

To explore whether this set of radiomic features could be used to classify cardiac phenotype, we split the 
cohort into a training (67%) and a validation dataset (33%, Fig. 4B). Then the radiomic features were fed into 
multinomial logistic regression models which were internally validated by fivefold cross-validation repeated 3 
times and the final performance of the model of T1 radiomics to classify cardiac phenotype was explored in the 
validation dataset. T1 radiomics had a good multinomial logistic c-index of 0.753 for disease classification; a 
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model using only native T1 as a predictor had a poor performance (c-index 0.528). A random forest algorithm 
was applied to assess the importance of radiomic features and choose the minimum number of features needed 
to maximize model’s accuracy. A set of 6 radiomic features (LLHglcmImc1, LLHglcmImc2, HLHglszmZoneVari-
ance, Median (first order), LHHglszmLAHGE, LLLglcmMCC) maximized model’s accuracy for cardiac disease 
classification (Fig. 4C; Table 2). A confusion matrix for the predicted vs. observed classes by the radiomics model 
in the testing dataset is presented in Fig. 4D). The distribution of the 6 radiomic features among the various 
disease classes in the testing cohort is shown in Fig. 5A. The added diagnostic value of these 6 radiomic features 
for cardiac disease phenotypes over and above native T1 alone is shown in relevant ROC curves (Fig. 5B).

Discussion
In the present study, we show that radiomic phenotyping of native T1 mapping using machine learning can 
distinguish healthy vs hypertrophic myocardium and can also differentiate LVH etiology, including HCM or 
cardiac amyloid. We demonstrated that T1 mapping images of human LV myocardium are a rich source of 
extractable, quantifiable data. Through a rigorous process that involved machine learning for feature selection 
and training with internal validation and external testing, we identified 850 distinct T1 radiomic features, that 
when narrowed down to a subset of six features that outperform mean native T1 values in characterization of 
myocardial hypertrophy.

Table 1.  xxx. AHA American Heart Association, HCM hypertrophic cardiomyopathy, LGE late gadolinium 
enhancement, LV left ventricle, LVEDVi left ventricular end diastolic volume index, LVEF left ventricular 
ejection fraction, LVESVi left ventricular end systolic volume index, LVH left ventricular hypertrophy, LVMI 
left ventricular mass index, LVSVi left ventricular stroke volume index, MWT maximal wall thickness;

Overall Normal LVH HCM Amyloid

P valuen = 149 n = 30 n = 30 n = 61 n = 28

Age, years 54.3 (17.9) 37.57 (16.8) 54.5 (16.18) 55.5 (14.5) 69.9 (12.0)  < 0.001

Male sex, n (%) 90 (60.4) 10 (33.3) 21 (70.0) 41 (67.2) 18 (64.2) 0.007

Height, cm 170.9 (9.6) 169.6 (9.2) 170.5 (11.2) 172.6 (9.9) 169.4 (6.8) 0.371

Weight, kg 79.7 (16.3) 68.5 (12.0) 88.6 (19.6) 81.8 (15.1) 77.3 (11.4)  < 0.001

Body mass index, kg/m2 27.1 (4.69) 23.75 (3.74) 30.62 (5.5) 27.20 (3.89) 26.83 (3.56)  < 0.001

Body surface area,  m2 1.93 (0.23) 1.79 (0.19) 2.03 (0.28) 1.97 (0.22) 1.90 (0.16)  < 0.001

MWT, mm 14.0 (4.5) 7.7 (1.1) 12.7 (1.8) 17.2 (3.8) 15.1 (2.2)  < 0.001

LVEF, % 64.3 (11.9) 64.7 (4.6) 61.5 (13.8) 69.1 (9.5) 55.9 (15.1)  < 0.001

LVEDV, ml 150.8 (55.0) 137.8 (27.0) 183.5 (82.8) 141.5 (40.7) 149.9 (56.4) 0.002

LVEDVi, ml/m2 78.0 (26.7) 76.7 (11.4) 91.0 (42.1) 72.1 (18.5) 78.5 (29.0) 0.016

LVESV, ml 57.0 (38.9) 48.7 (14.0) 75.1 (53.6) 45.8 (27.5) 71.4 (49.4) 0.001

LVESVi, ml/m2 29.6 (20.1) 27.3 (6.2) 37.6 (29.3) 23.2 (13.5) 37.5 (25.0) 0.001

LV mass, g 135.7 (65.4) 76.1 (22.4) 142.3 (59.9) 154.7 (69.4) 151.6 (56.9)  < 0.001

LVMI, g/m2 73.3 (51.5) 59.4 (97.8) 72.5 (26.2) 77.9 (32.0) 79.5 (30.2) 0.386

LGE, n (%) 93 (62.4) 0 ( 0.0) 12 ( 40.0) 56 (91.8) 28 ( 100)  < 0.001

LGE (+) AHA segments 4.7 (5.6) 0.0 (0.0) 1.9 (3.6) 5.5 (4.0) 12.2 (6.1)  < 0.001

HCM phenotype

Apical – – – 9 (14.7) –

Concentric – – – 6 ( 9.8) –

Localised basal septum – – – 2 ( 5.4) –

Reverse curvature 
septal – – – 44 (72.1) –

Native T1, ms 1041 [992–1099] 1021 [986–1048 ms] 1019 [984–1051] 1036 [993–1078] 1117 [1055–1170]  < 0.001

Table 2.  Significance of the top radiomic features included in the final model.

Radiomics Type Category Wavelet Explanation

First order median Intensity First order features – The median gray level intensity within the ROI

Zone variance Texture Gray level size zone matrix HLH Measures the variance in zone size volumes for the zones

Informational measure of correlation (IMC) 1 Texture Gray level co-occurrence matrix LLH Complexity of the texture

Informational measure of correlation (IMC) 2 Texture Gray level co-occurrence matrix LLH Complexity of the texture

LAHGLE (low area high gray level emphasis) Texture Gray level size zone matrix LHH Measures the proportion in the image of the joint distribution of larger 
size zones with higher gray-level values

Maximal correlation coefficient (MCC) Texture Gray level co-occurrence matrix LLL Complexity of the texture
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The findings of this study expand and re-enforce those of previous studies in the  field10,17. While thorough 
analysis of CMR allows for definitive diagnosis, using our approach, T1 mapping can be used as an initial readily 
available, screening tool for unbiased and standardized myocardial disease detection and classification. Indeed, 
T1 mapping is a newer approach in the CMR field, which allows detection of alteration in the extracellular matrix 
of  myocardium18,19. Various acquisition techniques for T1 mapping have been developed, such as the modified 
Look Locker inversion recovery (MOLLI)20 technique or the shortened MOLLI sequence (ShMOLLI)21, and 
they all allow a standardized acquisition of the T1 relaxation times of the heart and the reconstruction of an 
image with a well-defined and repeatable relationship between voxel signal intensity and the T1  time18,19. T1 
mapping allows the detection of subclinical myocardial disease before the development of replacement fibrosis 
and any LGE  presence22. Also T1 mapping is useful for the detection of myocardial  oedema23,24 or even iron 
 overload25 and sphingolipid storage  disease26. The degree of diffuse fibrosis detected by T1 mapping provides 
not only diagnostic information but also prognostic information as in non-ischaemic  cardiomyopathy27. Despite 
this useful clinical information derived from T1 mapping significant overlap exists in native T1 values between 
health and  disease18,19. Therefore, unless there is a specific clinical context in which the value of T1 mapping is 
well-established, T1 mapping is not appropriate as a screening tool for detecting subclinical disease in every 
patient undergoing a CMR scan. However, our approach provides unique evidence that could enrich the clinical 
information derived from myocardial T1 maps and further establish the value of T1 mapping in the field of CMR.

Recent advances in biomedical technology and computational power have rendered feasible the application 
of high-throughput screening of human genome, transcriptome, proteome or metabolome and the acquisition 
of high-dimensional datasets. Along these domains, radiomics is a rapidly evolving field of medical imaging that 
relies on high-throughput exploitation of the rich data stored in medical images to extract a series of quantifiable 
radiomic features. In contrast to other omics technologies that are characterised by high measurement cost and 
limited temporal applicability, radiomics can be easily applied to detect patterns and extract quantifiable features 
from standard-of-care medical imaging  stacks5,8. This approach allows the identification of shape, intensity, 
and texture patterns in the imaging voxels of interest by application of first, second or higher order  statistics8. 
To date radiomics have been successfully applied in the field of clinical oncology, whereby radiomic signatures 
improve the diagnostic accuracy, staging and grading of cancer, response to treatment and prediction of clinical 
 outcomes7. Radiomics have been also applied for the first time in the field of cardiovascular medicine to improve 
discrimination of high-risk coronary  plaques5. CMR radiomics from T1 maps has been previously employed to 
discriminate between hypertensive heart disease and  HCM10 or even between subtypes of sarcomeric  HCM28. 
Our study further expands these findings and shows that radiomics analysis of T1 maps, enhances the value of 
T1 mapping to discriminate health from disease and classify the various LVH phenotypes. Such evidence sug-
gests that radiomics could contribute to the improvement of clinical diagnostics or to assess the individualised 
disease risk and response to treatment, and be the key to tailored, personalized  medicine8.

Our study has certain methodological strengths that lie within the stepwise, rigorous approach we followed. 
Initially, we demonstrated the proof-of-concept that T1 mapping images can be decomposed to several independ-
ent components that describe different aspects of cardiac phenotype and are distinctively associated with the 
patient profile. Then we focused on 850 different calculated radiomic features to generate radiomic signatures 
of myocardial health and disease. Since previous evidence suggests that not all T1 radiomics are stable and 
 reproducible9, we followed a rigorous stability assessment approach and only those highly reproducible and 
consistent radiomic features in multiple delineation were used in further exploratory analysis. To facilitate feature 
selection, we also applied an automated algorithm to remove highly correlated features. Then we explored the 
value of the 84 retained radiomic features to classify the cardiac phenotype and, ultimately, we demonstrated 
that a radiomic signature provides incremental value for detection of cardiac disease phenotypes, beyond and 
above native T1 values.

Certain limitations of our study should be acknowledged. Specifically, this was a proof-of-concept study 
from a single study centre in which we used only basal T1 map slice for texture analysis, and with a relatively 
small study population sample. We used the whole cohort to remove highly correlated radiomic features, before 
training and testing our model. Thus, the generalizability of our findings remains to be seen, and therefore true 
external validation of our observations from third independent groups, in other scanner types/acquisition set-
tings would be welcome. Given the reproducibility issues of radiomics, further research on the field is needed to 
harmonize the readouts between different scanners/vendors and acquisition sequences.

Conclusions
In conclusion, we have presented a novel approach for myocardial texture phenotyping using T1 radiomics 
analysis. We demonstrated and validated by a machine learning approach that radiomic features provide added 
diagnostic value for distinction between healthy and diseased myocardium, as well as for differentiation between 
HCM and relevant phenocopies, such as amyloidosis, on top of native T1. The application of radiomics to stand-
ard native T1 mapping is a promising approach for the texture characterization of the human myocardium and 
for further enhancing the diagnostic value of CMR.
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