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Molecular drivers of tumor 
progression in microsatellite stable 
APC mutation‑negative colorectal 
cancers
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Xavier Llor2, Nathan Ellis4 & Megha Padi 1*

The tumor suppressor gene adenomatous polyposis coli (APC) is the initiating mutation in 
approximately 80% of all colorectal cancers (CRC), underscoring the importance of aberrant regulation 
of intracellular WNT signaling in CRC development. Recent studies have found that early‑onset 
CRC exhibits an increased proportion of tumors lacking an APC mutation. We set out to identify 
mechanisms underlying APC mutation‑negative (APCmut–) CRCs. We analyzed data from The Cancer 
Genome Atlas to compare clinical phenotypes, somatic mutations, copy number variations, gene 
fusions, RNA expression, and DNA methylation profiles between APCmut– and APC mutation‑positive 
(APCmut+) microsatellite stable CRCs. Transcriptionally, APCmut– CRCs clustered into two approximately 
equal groups. Cluster One was associated with enhanced mitochondrial activation. Cluster Two was 
strikingly associated with genetic inactivation or decreased RNA expression of the WNT antagonist 
RNF43, increased expression of the WNT agonist RSPO3, activating mutation of BRAF, or increased 
methylation and decreased expression of AXIN2. APCmut– CRCs exhibited evidence of increased 
immune cell infiltration, with significant correlation between M2 macrophages and RSPO3. APCmut– 
CRCs comprise two groups of tumors characterized by enhanced mitochondrial activation or increased 
sensitivity to extracellular WNT, suggesting that they could be respectively susceptible to inhibition of 
these pathways.

Colorectal cancer (CRC) is the second deadliest cancer in the United States, with an estimated 147,950 individu-
als diagnosed and 53,200 deaths in  20201. Although there have been great reductions in CRC incidence and 
mortality widely attributed to increased  screening2, the incidence of CRC has been increasing in individuals 
less than 50 years of age at a rate of 2% per year since  19943. Molecular analysis has shown that < 20% of early-
onset CRC cases are explained by genetically determined hereditary  syndromes4 and a variety of environmental 
factors have been postulated to underlie its  increase5, suggesting that a unitary cause of early-onset CRC will be 
elusive. With early-onset CRC manifesting as a heterogenous disease caused by a multitude of factors, there is a 
pressing need to identify the distinct molecular subtypes of CRC that are overrepresented in early-onset cases.

Somatic mutation of the adenomatous polyposis coli (APC) gene is the initiating event in approximately 80% 
of all CRCs, but APC mutations are significantly less frequent in early-onset  CRCs6–8. APC is a structural and 
regulatory component of a destruction complex, which responds to WNT stimulation by inhibition of degrada-
tion of the stem cell-promoting transcription factor β-catenin, encoded by the CTNNB1  gene9. Failure to regulate 
β-catenin by degradation due to mutational inactivation of APC throws colorectal epithelial cells into a continu-
ous “WNT-activated” state; they no longer require activation by WNTs to maintain the stem cell  compartment10. 
The fact that early-onset CRCs more frequently lack an APC mutation suggests that many of these tumors depend 
on alternative molecular mechanisms. In mismatch repair-deficient CRCs, which exhibit microsatellite instability 
(MSI) and constitute 12–15% of all CRCs, APC mutations are also significantly less frequent and BRAF mutations 
constitute a dominant driver  mechanism11. What initiates and drives the carcinogenetic process in microsatellite 
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stable (MSS) CRCs that lack APC mutations? Here, we comprehensively compare molecular profiles of MSS APC 
mutation-positive CRCs (APCmut+) and MSS APC mutation-negative (APCmut–) CRCs to identify novel APC-
independent mechanisms driving CRC subtypes.

Methods
Analyses of genomic alterations in case series. To formulate a discovery series, we obtained colon 
adenocarcinoma (COAD) and rectal adenocarcinoma (READ) data from The Cancer Genome Atlas (TCGA) 
in the Genomic Data Commons portal (Supplementary File 1). Curated somatic nucleotide variant and copy 
number data were extracted using TCGAbiolinks and FireBrowse,  respectively12. Deep deletions, amplifications, 
and gene  fusions13 were identified. We excluded hypermutable cases by removing MSI-high cases based on 
clinical data and by removing cases with > 700 mutations. CRC samples were classified as APCmut– if they lacked 
a non-silent mutation or deep (homozygous) deletion in APC or lacked a mutation in CTNNB114. With these 
filtration steps, we had 63 APCmut– samples and 362 APCmut+ samples. We compared genomic alterations between 
APCmut– and APCmut+ CRCs by Fisher’s exact test and tested mutual exclusivity by  CoMEt15. For more details on 
the bioinformatics analysis, see Supplementary Methods.

For validation series, we used the CPTAC-216 and  GSE3589617 datasets, because they were the only CRC 
datasets with APC mutation status and gene expression data available from the cBioPortal, the International 
Cancer Genome Consortium or studies utilized by Guinney et al. to determine consensus molecular subtypes of 
CRC 18. CPTAC-2 was downloaded from cBioPortal and GSE3896 from synapse.org18. In the CPTAC-2 dataset, 
we identified 11 APCmut– CRCs and 70 APCmut+ CRCs. Because GSE35896 did not have whole exome sequencing 
or copy number data, we could not filter for hypermutation, APC deep deletion, or CTNNB1 mutations. Based 
on the data available, we classified 16 out of 56 MSS CRC samples as APCmut–.

Transcriptomic analyses. For TCGA and CPTAC-2 series, we obtained HTSeq count files and used the 
edgeR and limma pipeline to normalize the counts matrix. For GSE35896, we used the RMA normalized data. 
Genes that had less than one count per million in more than half the samples were discarded. MBatch analysis 
showed no evidence of batch effects.

We used limma to identify differentially expressed genes between APCmut– and APCmut+ CRCs  (Padj < 0.05). 
PathView was used to map differentially expressed genes onto the KEGG WNT canonical signaling pathway, 
with the node sum parameter set to “max.abs”19. Gene set enrichment analysis (GSEA) was performed using 
 fgsea20. For GSEA input, we used the Gene Ontology (GO) biological process gene sets from MSigDB and ranked 
the genes by the t-statistic from our differential expression analysis. The Cytoscape application EnrichmentMap 
was used to visualize all statistically significant GO terms  (Padj < 0.05)21. CIBERSORTx was used to impute the 
fraction of immune cells based on gene expression data from the TCGA, GSE35896, and CPTAC-2  datasets22.

To characterize the theoretical WNT ligand sensitivity of APCmut– tumors, we defined a score by the normal-
ized expression of RSPO3 minus the sum of the normalized expression levels of RNF43 and ZNRF3:

where the subscript mRNA-z indicates the z-score of the expression value relative to all samples including tumors 
and normals. The  WNTLS score for each tumor was then compared to the maximum WNT ligand expression 
over all 12 WNTs in the same tumor.

DNA methylation analyses. Methylation was assayed by TCGA using Illumina Human Methylation 450 
arrays and data was accessed using TCGAbiolinks. Preprocessing and normalization were carried out with the R 
package  minfi23. MBatch analysis showed no evidence of batch effects. Differentially methylated regions (DMRs) 
were identified using DMRcate and annotated with  annotatr24,25. For DMRs that spanned multiple gene regions, 
we selected the gene with the most significant beta-values. To quantify methylation of a DMR, we took the aver-
age of all the statistically significant beta-values associated with the DMR.

DepMap data analyses. DepMap data was obtained from https:// depmap. org/ portal/ downl oad/26. CRC 
cell lines were selected excluding those with MSI and with > 800 mutations. To distinguish APCmut– from APCmut+ 
CRC cell lines, we used the same filtering steps we used for the TCGA dataset. To assess the effect of CRISPR 
knockouts, we applied a Welch’s two-sample t-test statistic to the dependency scores of APCmut– and APCmut+ cell 
lines. Dependency scores were extracted from the file “Achilles_gene_dependency.csv” on the DepMap portal.

Ethics statement. Ethics approval is not required for this study because it does not involve human partici-
pants or animal subjects.

Results
Age effect in APCmut– CRCs. To identify characteristics that distinguished APCmut– from APCmut+ CRCs, 
we compared molecular profiles between the two groups in a discovery series from the TCGA, then validated 
the results in two additional publicly available series. CRC samples that exhibited MSI or were hypermutated 
were excluded from our study, because tumors with these characteristics constitute a well-defined  subtype11. 
In addition to separating MSS and non-hypermutated CRCs by APC mutation status, samples that contained 
a CTNNB1  mutation14 or deep deletion of APC were also classified as APCmut+. After applying these filtration 
steps, we classified 63 of 425 (15%) of the MSS CRCs in the TCGA dataset as APCmut–. In the GSE35896 valida-

WNTLS = Z[RSPO3mRNA−z − (RNF43mRNA−z + ZNRF3mRNA−z)],

https://depmap.org/portal/download/
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Table 1.  Comparison of clinical features in APC mutation-positive (APCmut+) and APC mutation-negative 
(APCmut–) colorectal cancers. P values were calculated for comparisons between APCmut+ CRCs and APCmut– 
CRCs from the TCGA dataset. A two-sample t-test with a two-tailed p value was performed for continuous 
features and a Fisher’s exact test with a two-tailed p value was performed for categorical data. A p value 
threshold of 0.05 was considered significant. CIMP, CpG island methylator phenotype was defined by 
unsupervised clustering as reported byGuinney et al. CMS, consensus molecular subtypes of colorectal cancer 
determined by Guinney et al. Significant values are in bold.

Feature APCmut+ (N = 362, 85%) APCmut– (N = 63, 15%) P value

Age 66.4 61.4 .004

Non-silent mutations 121.4 112.4 .21

Male/female 194/165 (54%) 30/33 (48%) .41

COAD/READ 250/109 (70%) 51/12 (81%) .07

Proximal/distal 104/195 (35%) 24/25 (49%) .08

White 305/359 (85%) 53/63 (84%) .85

African American 46/359 (13%) 5/63 (8%) .40

Asian 4/359 (1%) 5/63 (8%) .005

American Indian 4/359 (1%) 0/63 (0%) 1.0

Stage I 62/346 (18%) 4/59 (7%) .035

Stage II 106/346 (31%) 23/59 (39%) .23

Stage III 119/346 (34%) 18/59 (31%) .66

Stage IV 59/346 (17%) 14/59 (23%) .27

CIMP-0 177/251 (70%) 30/50 (60%) .18

CIMP-low 57/251 (23%) 11/50 (22%) 1.0

CIMP-high 17/234 (7%) 9/50 (18%) .02

CMS1 5/291 (2%) 2/49 (4%) .27

CMS2 149/291 (51%) 20/49 (41%) .22

CMS3 41/290 (14%) 7/49 (14%) 1.0

CMS4 96/290 (33%) 20/49 (41%) .33

Figure 1.  WNT signaling mutations in APCmut– CRCs. (A) Fraction of APCmut– CRCs from the TCGA dataset 
with gene mutations, amplifications, deep deletions, and fusions that were significantly more common in 
APCmut– in comparison to APCmut+ CRCs. The top 10 are shown by p-value ranking, most significant (left) 
to least (right). (B) OncoPrint diagram showing the top 10 statistically significant mutations associated with 
APCmut– CRCs and the gene fusion PTPRK-RSPO3 for the 63 APCmut– CRCs.
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tion dataset, 16 out of 56 (29%) CRCs were classified as APCmut– and in the CPTAC-2 dataset, 11 out of 81 (14%) 
CRCs were classified as APCmut–.

We tested clinical features that might be statistically associated with TCGA APCmut– CRCs (Table 1). In 
agreement with previous  studies6–8, APCmut– CRCs were diagnosed at a younger age (61.4 in APCmut– vs. 
66.4 in APCmut+), and 63% of tumors diagnosed < 50 were APCmut–. APCmut– CRCs were also younger in 
the CPTAC-2 dataset (61.5 in APCmut– vs. 65.5 in APCmut+), but this observation did not reach statistical 
significance (p = 0.24). (Age of diagnosis was not available for the GSE35896 dataset.) In addition to age, 
TCGA APCmut– CRCs were more prevalent in Asians (p = 0.005), were more likely to be classified as CpG 
island methylator phenotype (CIMP) high (p = 0.02), and were more likely to be diagnosed later than 
stage one (p = 0.035).

WNT signaling mutations in APCmut– CRCs. To identify distinctive somatic mutations, we com-
pared non-silent nucleotide variants, gene amplifications, deep gene deletions, and gene fusions in APC-
mut– and APCmut+ CRCs (Fig. 1A). The top three most statistically different genomic alterations specific 
to APCmut– CRCs were PTPRK-RSPO3 gene fusions (p = 1.3 ×  10–5), RNF43 mutations (p = 4.7 ×  10–5) and 
BRAF mutations (p = 1.9 ×  10–4). These genetic alterations have been identified in CRC previously with 
evidence for mutual exclusivity with APC  mutations27–30. (The RNF43 mutation G659Vfs*41, which is 
associated with MSI CRCs, was not present in the tumors analyzed here as MSI tumors were excluded 
from this  analysis31). Eight of nine BRAF mutated APCmut– CRCs had the oncogenic V600E BRAF muta-
tion. Six of eight RNF43 mutated APCmut– CRCs had mutations that caused premature protein truncations, 
whilst one sample had a previously identified missense mutation, R554G. These findings suggested that 
BRAF and RNF43 mutations are associated with tumor progression in MSS APCmut– CRCs.

Based on the mutated genes in Fig. 1A and the PTPRK-RSPO3 gene fusion, we found that only 37 out of 
63 samples (59%) contained a genomic alteration that distinguished APCmut– from APCmut+ CRCs (Fig. 1B). 
No pairwise combination of genes were statistically mutually exclusive. However, PTPRK-RSPO3 gene 
fusions and RNF43 mutations never co-occurred and were found in 23% of the APCmut– CRCs. After dis-
regarding overlapping genomic alterations, BRAF mutations were the next most abundant (10%), followed 
by mutations in ADGRL1 (6%), ERBB3 (5%), and ZAP70 (5%). Supporting these findings, we found that 
BRAF mutations in the GSE35896 dataset and mutations in RNF43, ERBB3, and ZAP70 in the CPTAC-2 
dataset were more frequent in APCmut– CRCs than in APCmut+ CRCs (Supplementary Fig. 1). (No additional 
mutation information was provided with the GSE35896 dataset.)

Enhanced sensitivity to extracellular WNT in APCmut– CRCs. Because a distinctive somatic 
mutational mechanism was not evident in over 40% of APCmut– CRCs, we examined transcriptomics data 
for further distinguishing molecular characteristics. Strikingly, in differential gene expression analysis 
of the TCGA dataset, RNF43 was the most differentially expressed gene between the two tumor groups 
 (Padj = 4.6 ×  10–15; Fig.  2A), with a -0.98  log2 fold decrease in mean expression level in APCmut– CRCs. 
Consistent with these results, RNF43 was also down-regulated in APCmut– CRCs in the GSE35896 and 
CPTAC-2 validation datasets (Fig. 2B). RNF43 and its family member ZNRF3 are membrane-bound E3 
ubiquitin ligases that actuate the degradation of low-density-lipoprotein-related protein (LRP)-FZD 
WNT receptors. Binding of R-spondins to leucine-rich repeat-containing G-protein coupled receptors 
(LGR) leads to sequestration and membrane clearance of RNF43 and ZNRF3 from the cell  surface32–34. 
The transcriptional down-regulation of RNF43 we found in APCmut– CRCs suggested that these tumors 
may express higher levels of LRP-FZD receptors at the cell surface, and consequently be more responsive 
to extracellular WNTs.

Because WNT signaling was implicated by these results, we sought to determine the extent to which 
other factors in the canonical WNT signaling pathway were differentially expressed between APCmut– and 
APCmut+ CRCs (Fig. 2C). Consistent with the results above, we observed that other genes involved in extra-
cellular WNT signaling were dysregulated, namely RSPO3 and ZNRF3. Differences in RSPO3 and ZNRF3 
mRNA expression showed a similar trend in the validation datasets and were statistically significant in 
select cases (Supplementary Fig. 2). We did not observe any differential expression of the extracellular 
WNT regulator genes LGR4, LGR5, LGR6, or LRP-FZD receptors. The fact that LGR4-6 were not differen-
tially expressed between APCmut– and APCmut+ CRCs was consistent with the finding that RSPO3 does not 

Figure 2.  Enhanced sensitivity to extracellular WNT in APCmut– CRCs. (A) Volcano plot representing the 
results from differential expression analysis between APCmut– and APCmut+ CRCs. Labeled points are the 
genes with an  Padj < 0.0005. Blue points were downregulated in APCmut– CRCs and red points upregulated. 
(B) Comparison of RNF43 gene expression in APCmut– CRCs, APCmut+ CRCs, and normal colon samples in 
the TCGA, GSE35896 and CPTAC-2 datasets. Two-sample t-tests with a two tailed p-value were used to test 
statistical significance. (C) Differentially expressed genes  (Padj < 0.05) between APCmut– and APCmut+ CRCs 
from TCGA were mapped onto the KEGG canonical WNT signaling pathway. Blue labeling represents genes 
downregulated in APCmut–; red labeling represents upregulated genes. (D) Unsupervised clustering analysis 
of APCmut– CRCs from the TCGA dataset using differentially expressed genes  (Padj < 0.05). (E) Scatter plot 
showing estimation of activation potential of extracellular WNT signaling. Each point is the mean for individual 
groups. The y-axis represents a group’s apparent sensitivity to extracellular WNT signaling using the WNT 
ligand sensitivity score. The x-axis represents a group’s WNT stimulation potential by quantifying each sample’s 
maximum WNT ligand expression.
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require interaction with LGRs to potentiate WNT  signaling35 and LRP-FZD receptor levels are regulated 
post-transcriptionally36. When we compared gene expression of APCmut– and APCmut+ CRCs to normal sam-
ples and mapped genes onto the canonical WNT signaling pathway, changes in gene expression in WNT 
signaling were similar between these two tumor types (Supplementary Fig. 3). These results suggested that 
both types of CRCs exploit changes in WNT signaling. However, based on the mutation and expression 
data, APCmut– CRCs appear to favor dysregulation of genes involved in response to extracellular WNT 
signaling, whereas APCmut+ CRCs are stuck in the “on” state and are WNT signal-transduction incompetent.

To determine the fraction of APCmut– CRCs that operate via enhanced sensitivity of extra-cellular WNT, we 
performed unsupervised hierarchical clustering using all differentially expressed genes  (Padj < 0.05) between 
APCmut– and APCmut+ CRCs in the TCGA dataset (Fig. 2D). APCmut– CRCs clustered into two prominent groups, 
referred to here as Cluster 1 (CL1) and Cluster 2 (CL2). Most APCmut– CRCs with a PTPRK-RSPO3 fusion, 
BRAF mutation, or RNF43 mutation were in CL2. To characterize the expression profiles of APCmut– CRCs in the 
context of extracellular WNT signaling, we computed a summarized score defined as RSPO3 expression minus 
the sum of RNF43 and ZNRF3 expression. This score represents a theoretical WNT ligand sensitivity  (WNTLS) 
based on the known function of RSPO3 in increasing ligand sensitivity, and RNF43 and ZNRF3 in decreasing 
ligand  sensitivity33,34. We examined how the  WNTLS score tracked with maximum WNT ligand expression 
(Fig. 2E; see Methods for more details). Consistent with our expectation, APCmut– CRCs with RNF43 mutations 
had higher  WNTLS scores than APCmut+ CRCs and higher maximum WNT expression than normals. Interest-
ingly, APCmut– CRCs with PTPRK-RSPO3 fusions had the highest  WNTLS score, but had the lowest expression 
of WNT ligands compared to other CRCs. Inconsistencies in how CRCs with PTPRK-RSPO3 fusions and CRCs 

Figure 3.  APCmut– CRCs associated with immune infiltration. (A) GSEA results of differential gene expression 
analysis of APCmut– versus APCmut+ CRCs from the TCGA dataset. Red clusters represent GO terms enriched 
among upregulated genes in APCmut– CRCs and blue clusters correspond to down-regulated processes. (B) 
CIBERSORTx absolute score in CRCs from the TCGA, GSE35896 and CPTAC-2 datasets. Two-sample t-tests 
with a two-tailed p-value were used to test statistical significance. (C) Violin plot of CIBERSORTx absolute 
score across subtypes of APCmut– CRCs. (D) Expression of RSPO3 in APCmut– and APCmut+ CRCs plotted against 
their individual M2 macrophage scores identified from the CIBERSORTx algorithm. Pearson correlation was 
performed to determine statistical significance.
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with RNF43 mutations enhance their sensitivity to extracellular WNT signaling may be due to different selective 
pressures during cancer evolution.

APCmut– CRCs with BRAF mutations also exhibited higher  WNTLS and higher WNT ligand expression, 
similar to APCmut– CRCs with RNF43 mutations. Importantly, APCmut– CRCs from CL2 that did not have BRAF 
mutations, RNF43 mutations, or PTPRK-RSPO3 fusions exhibited higher  WNTLS scores compared to APCmut+ 
CRCs. In contrast, APCmut– CRCs from CL1 exhibited  WNTLS scores similar to APCmut+ CRCs. APCmut– CRCs 
from the GSE35896 and CPTAC-2 datasets also clustered into two groups with high and low  WNTLS scores 
(Supplementary Fig. 4). Given the importance of WNT signaling in CRC, these results suggest that other WNT-
related mechanisms drive CL1 APCmut– CRCs. By transcriptomic analysis, CL1 APCmut– CRCs were practically 
indistinguishable from APCmut+ CRCs; however, GSEA showed enrichment of oxidative phosphorylation genes 
(Supplementary Figs. 5 and 6), implicating mitochondrial activation in CL1 APCmut– tumorigenesis. These results 
were supported by data from the DepMap CRISPR screen that demonstrated dependence of APCmut– CRC cell 
lines on oxidative phosphorylation complexes in the mitochondria (Supplementary Fig. 5E).

APCmut– CRCs associated with immune infiltration. GSEA analysis showed that GO terms 
related to the adaptive immune response were upregulated in APCmut– compared to APCmut+ CRCs 
(Fig.  3A). To further investigate immune system involvement in APCmut– CRCs, we employed the bulk 
tissue deconvolution method  CIBERSORTx22. In agreement with the GSEA results, the CIBERSORTx 
absolute score was increased in APCmut– compared to APCmut+ CRCs in all three CRC datasets (Fig. 3B). 
The CIBERSORTx absolute score was highest in APCmut– CRCs with BRAF or RNF43 mutations and CL2 
APCmut– CRCs without mutations (Fig. 3C). Because these APCmut– CRCs had more infiltrating immune 
cells than those with PTPRK-RSPO3 fusions, we tested whether any of the 22 immune cell types were asso-
ciated with expression of WNT agonist ligand RSPO3 (Fig. 3D). We found that M2 macrophages had the 
strongest positive Pearson correlation with RSPO3 expression. M2 macrophages and RSPO3 expression 
were also significantly correlated in the GSE35896 and the CPTAC-2 datasets. Macrophage expression of 
RSPO3 was shown in a study of patients with pulmonary  fibrosis37.

APCmut– CRCs have higher AXIN2 methylation. Because we found an association between APC-
mut– CRCs and CIMP-high  previously7, we identified differentially methylated regions (DMRs) between 
APCmut– and APCmut+ CRCs. APCmut– CRCs were globally more hypermethylated than APCmut+ CRCs, with 
a particular excess in promoter regions (Fig.  4A). Comparing the top ten hypermethylated and hypo-
methylated DMRs, we did not observe the same statistically significant genes as we did in the mutation 
and expression analyses (Fig. 4B). However, when we tested correlation of RNF43 expression with DNA 
methylation levels of DMRs and with RNA expression, we found that methylation and gene expression 
of AXIN2 had the highest correlations (Fig. 4C). RNF43 gene expression was also significantly correlated 
with AXIN2 expression in the GSE35896 and CPTAC-2 datasets (Fig. 4D; methylation data was not avail-
able in these datasets). Increased AXIN2 DNA methylation was associated with decreased RNF43 expres-
sion in a subset of APCmut– CRCs that did not have one of the common somatic mutations (Fig. 4E). Simi-
lar to our findings with RSPO3 expression, we found that M2 macrophages correlated most with AXIN2 
DNA methylation (Fig. 4F).

AP2M1 gene expression associated with earlier onset in APCmut– CRCs. Age of onset was not 
different in CL1 and CL2 APCmut– CRCs (Fig. 5A). To identify gene expression changes linked to earlier 
age of onset in APCmut– CRCs, we separated APCmut– CRCs into two groups based on the median expres-
sion of each gene and performed a logrank test between these two groups, using the age at diagnosis as 
the event variable. Expression of AP2M1 best distinguished earlier onset APCmut– CRCs from later onset 
APCmut– CRCs (Fig. 5B), and higher AP2M1 expression was associated with earlier onset in APCmut– rela-
tive to APCmut+ CRCs (Fig. 5C).

Discussion
Most CRCs are initiated by somatic mutation of the gene APC, leading to ligand-independent, constitutive 
activity of the WNT pathway. In the present study, we found two alternate ways in which APCmut– CRCs 
may activate the WNT pathway. APCmut– tumors clustered into two groups according to their transcrip-
tomic profiles (Fig. 5D). One cluster (CL2) exhibited a variety of molecular alterations that were consistent 
with the hypothesis that these tumors have enhanced sensitivity to extracellular WNT ligands. In particu-
lar, the most significant change was downregulation of RNF43, which is expected to result in increased 
levels of WNT receptors and greater sensitivity to extracellular WNTs. AXIN2 methylation was highly 
correlated with RNF43 downregulation. AXIN2 and RNF43 are negative regulators of WNT signaling that 
are transcriptionally activated by nuclear β-catenin, consistent with the notion that epigenetic silencing of 
negative regulators plays a critical role in tumor formation in ligand-dependent, APCmut– CRCs. Similarly, 
PTPRK-RSPO3 gene fusions drive R-spondin signaling, which is also expected to reduce RNF43 levels at 
the cell surface, upregulate WNT receptors, and enhance sensitivity to extracellular WNTs. We defined a 
WNT ligand sensitivity score to quantify this signature of extracellular WNT signaling in a sample-specific 
fashion and found a high  WNTLS score was associated with CL2 APCmut– CRCs in multiple independent 
datasets.

Germline mutations in RNF43 have been previously associated with serrated polyposis families, and 
somatic mutations in RNF43 and BRAF have been associated with sporadic serrated  adenomas38. In a 
preliminary analysis, we found that CL2 APCmut– CRCs expression profiles appear to be more similar 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23507  | https://doi.org/10.1038/s41598-021-02806-x

www.nature.com/scientificreports/



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23507  | https://doi.org/10.1038/s41598-021-02806-x

www.nature.com/scientificreports/

to serrated adenomas than CL1 APCmut– CRCs and APCmut+ CRCs, according to two published gene 
 signatures39,40 (data not shown), but these results need further investigation.

We also found that CL2 APCmut– CRCs have a higher level of immune infiltration compared to APCmut+ 
and CL1 APCmut– CRCs, especially in APCmut– CRCs that had RNF43 or BRAF mutations. M2 macrophages 
had the strongest association with potentiating WNT signaling through its significant correlations with 
RSPO3 expression and AXIN2 DNA methylation. Previous studies have shown that macrophages have 
the capability to express RSPO3 and stimulate WNT signaling in response to tissue  damage41,42. The asso-
ciation of CL2 APCmut– CRCs with M2 macrophages suggests the etiology of this cancer subtype is tied 
to chronic tissue stress and inflammation that eventually favors a clone with hypersensitivity to WNT. 
We suggest that CL2 APCmut– CRCs may be sensitive to porcupine inhibitors or anti-WNT/anti-DKK1 
biologics. We note that AXIN2 methylation has been previously identified in APCmut– CRCs as a potential 
biomarker for ligand-dependent tumors that would respond to anti-WNT-based therapies such as por-
cupine  inhibitors43–45.

In contrast, the other cluster (CL1) of APCmut– CRCs was associated with low  WNTLS score and may be 
dependent on enhanced mitochondrial activation. APCmut– CRC cell lines from the DepMap database had a 
strong dependency on mitochondrial activation relative to APCmut+ CRC cell lines. We are cautious in interpret-
ing these data, because the observed effectiveness of mitochondrial disruption of the APCmut– CRC cell lines 
may be due to the absence of immune cells in vitro. One potential reason why some APCmut– CRCs become 
dependent on enhanced mitochondrial activation is because mitochondria can stimulate the WNT pathway 
independently of WNT  ligands46. Moreover, intestinal epithelial cell-specific knockout of TFAM, a transcription 
factor required for replication of mitochondria DNA, drastically reduced tumor formation in APCmin/+ mouse 
 models47. Therefore, we suggest that enhanced activation of mitochondria is a second, independent mechanism by 
which APCmut– CRCs exploit WNT signaling in tumor progression. These findings also suggest that mitochondria 
inhibitors may be a promising therapeutic option for CL1 APCmut– CRCs.

Although APCmut- tumors overall exhibit a lower age of onset than  APCmut+ tumors, we found no difference 
in age of onset between CL1 and CL2, suggesting that both extracellular WNT sensitivity and mitochondrial 
activation contribute to the incidence of early-onset CRC. We performed a APCmut–wide analysis to determine 
what gene expression feature was most associated with age of onset and found that earlier-onset APCmut– CRCs 
had increased expression of AP2M1. AP2M1 plays an important role in clathrin-mediated  endocytosis48. A recent 
study showed that when insulin binds to an insulin receptor, IRS1 and IRS2 recruit AP2M1 to initiate insulin 
receptor  endocytosis49. Thus, an increase of AP2M1 may suggest increased insulin signaling. Importantly, insulin 
can activate both the PI3K pathway and the MAPK pathway, which may in turn play a role in enhancing both 
mitochondrial activation and immune infiltration, thus contributing to driving both CL1 and CL2 subtypes 
of APCmut– CRC 50–52. Other studies have found that individuals with type two diabetes are at a greater risk for 
early-onset CRC 53,54.

Early-onset CRC is a rapidly advancing public health emergency, and it is associated with a lack of mutation 
in APC. Our comprehensive genomic analysis has uncovered two classes of APCmut– CRCs, one which potenti-
ates WNT signaling through sensitivity to extracellular signaling, and the other which exhibits mitochondrial 
activation. Future research should test the effect of anti-WNT biologics and mitochondrial inhibitors in organoid 

Figure 4.  APCmut– CRCs have higher AXIN2 methylation. (A) Bar plot comparing total number of hyper-
methylated and hypo-methylated differentially methylated regions (DMRs) between APCmut– and APCmut+ 
CRCs from the TCGA dataset. (B) Top 10 APCmut– hypermethylated and hypomethylated DMRs between 
APCmut– and APCmut+ CRCs from TCGA. Red bars represent APCmut– CRC differentially hypermethylated genes 
and blue bars represent APCmut– CRC differentially hypomethylated genes. (C) Bar plot representing DMRs 
with strongest correlations with RNF43. Blue bars represent the top 10 DMRs with the highest Pearson gene 
expression correlation with RNF43 gene expression. Red bars represent the Pearson correlation between the 
average differentially methylated beta values and RNF43 expression for these differentially methylated regions. 
(D) Scatter plots of RNF43 expression and AXIN2 expression of both APCmut– and APCmut+ CRCs in the TCGA, 
GSE35896, and CPTAC-2 datasets. Pearson correlation was performed to determine statistical significance. (E) 
Matched comparison between Z-normalized AXIN2 average beta values and Z-normalized RNF43 expression 
of APCmut– CRCs. (F) Scatter plot of AXIN2 average beta values and the CIBERSORTx M2 macrophage score of 
APCmut– and APCmut+ CRCs from the TCGA dataset. Pearson correlation was performed to measure statistical 
significance.
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models and in vivo and compare the efficacy of AXIN2 methylation and WNT ligand sensitivity score in iden-
tifying anti-WNT sensitive tumors.

Data availability
Data analyzed in this study can be found in the Genomic Data Commons (https:// gdc. cancer. gov); Gene Expres-
sion Omnibus (GSE35896; https:// www. ncbi. nlm. nih. gov/ geo/); cBioPortal (CPTAC-2; https:// www. cbiop ortal. 
org/); and DepMap (https:// depmap. org/ portal/). All analytic methods and study materials are available to other 
researchers through supplemental materials and in the methods section.
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