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A population based expression 
atlas provides insights into disease 
resistance and other physiological 
traits in cassava (Manihot esculenta 
Crantz)
Alex C. Ogbonna1,2*, Punna Ramu1, Williams Esuma3, Leah Nandudu1,3, Nicolas Morales1, 
Adrian Powell2, Robert Kawuki3, Guillaume Bauchet2, Jean‑Luc Jannink4 & 
Lukas A. Mueller1,2*

Cassava, a food security crop in Africa, is grown throughout the tropics and subtropics. Although 
cassava can provide high productivity in suboptimal conditions, the yield in Africa is substantially 
lower than in other geographies. The yield gap is attributable to many challenges faced by cassava 
in Africa, including susceptibility to diseases and poor soil conditions. In this study, we carried out 
3’RNA sequencing on 150 accessions from the National Crops Resources Research Institute, Uganda 
for 5 tissue types, providing population‑based transcriptomics resources to the research community 
in a web‑based queryable cassava expression atlas. Differential expression and weighted gene 
co‑expression network analysis were performed to detect 8820 significantly differentially expressed 
genes (DEGs), revealing similarity in expression patterns between tissue types and the clustering 
of detected DEGs into 18 gene modules. As a confirmation of data quality, differential expression 
and pathway analysis targeting cassava mosaic disease (CMD) identified 27 genes observed in the 
plant–pathogen interaction pathway, several previously identified CMD resistance genes, and 
two peroxidase family proteins different from the CMD2 gene. Present research work represents 
a novel resource towards understanding complex traits at expression and molecular levels for the 
development of resistant and high‑yielding cassava varieties, as exemplified with CMD.

Cassava (Manihot esculenta Crantz), a staple for over 800 million people worldwide, is cultivated across the 
tropics, with Africa accounting for over 50% of the total world production. Yield in Africa has remained sub-
stantially lower compared to other regions where cassava is  grown1. Cassava has become a multipurpose crop 
with the ability to respond to the challenge of climate change and the potential to respond to priorities of devel-
oping countries including food security, poverty alleviation and economic  development1. Most agronomic and 
production traits, such as yield, quality and disease-related traits, have become part of the primary breeding 
objective of a cassava breeding program and define the adoption of new cassava varieties by farmers and the 
market value of harvested  roots2,3. The improvement of agronomic and production traits are enabled by improved 
understanding of the development and physiology characteristics of cassava, as reported for “leaf natural shad-
ing” using transcriptomics  approach4. Transcriptomics is an approach that uses deep sequencing technologies 
such as the RNA-seq to profile transcriptomes, representing the complete set of transcripts in a  cell5. Techniques 
such as transcriptomics can also be used to study plant diseases, such as Cassava mosaic disease (CMD). CMD, 
a major constraint to cassava production in Africa, Thailand and the Indian  subcontinent6,7, with a yield loss 
of up to 95%, can be kept under control with the deployment of resistant  varieties8. CMD is caused by several 
related species of cassava mosaic geminivirus (CGMs) and transmitted through infected cuttings and by a vec-
tor commonly known as whitefly (Bemisia tabaci G.). While much progress has been made on CMD, currently 
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utilized resistance relies on single-gene resistance from related landraces. The narrow genetic base resistance 
could potentially break down over time, given their long-term effectiveness and the potential to be overcome by 
CGMs because of their fast-paced evolutionary  rate9,10. On the other hand, the genetic mechanism of cassava 
brown streak disease (CBSD)—a threat to economic and food security for smallholder farmers in sub-Saharan 
Africa—is yet to be fully  understood11, due to the difficulty in phenotyping the  disease12 and the complex nature 
of CBSD virus  resistance13. Recent efforts on identifying sources of resistance to CBSD using transcriptomics 
have been based on individual contrasting  varieties13,14. Previous studies utilizing whole transcript sequencing 
technology to characterize and quantify transcripts have relied on comparison of transcriptomes allowing the 
identification of genes that are differentially expressed in response to individuals treated differently or individu-
als with contrasting characters of  interest15. Fragmentation and library construction can introduce biases in 
whole transcript sequencing, bringing about more reads being assigned to a longer transcript than a shorter 
transcript, given that longer transcripts are sheared into more  fragments5. The bias of fragmentation has been 
shown to enrich the differential expression of genes with longer  transcripts16. 3′-RNA sequencing now provides 
a lower-cost and higher-throughput alternative to whole transcript sequencing, minimizing the aforementioned 
bias, and has been shown to have similar reproducibility and the ability to detect shorter  transcripts17. Although 
the RNA sequencing methodology assigned more reads to longer transcripts when compared to the 3′-RNA 
sequencing methodology according to differential expression analysis, the RNA sequencing traditional method 
detects more differentially expressed genes, regardless of the level of sequencing  depth17. This study is the first 
to use 3′-RNA sequencing technology in cassava, in a manner similar to earlier applications in  maize18. For most 
complex traits, multiple small effect genetic variants can play a significant role in explaining trait variation when 
compared to simpler traits with rare monogenic mutations of large  effects19. Therefore, analyzing gene expres-
sion levels of multiple tissues on a population basis would establish a high-resolution transcriptome resource 
for eQTL detection or trait prediction.

We present a population-based transcriptomic resource and expression atlas visualization for a population 
consisting of 150 cassava accessions sampled across five tissues (leaf, stem, fibrous root, storage root, flower) for 
studies of complex traits in the cassava community. The objectives of this study were to (1) quantify expression of 
transcripts across five tissues for 150 accessions, (2) make this data resource available to the community in a web-
based queryable cassava expression atlas, (3) conduct differential gene expression analysis to detect differentially 
expressed genes (DEGs) across our population, with which we carried out weighted gene co-expression network 
analysis (WGCNA) and Gene Ontology (GO) analysis to characterize genes detected in different modules or 
co-expressed clusters, (iv) confirm data quality by differential gene expression and GO analysis carried out on 
clones differing for CMD tolerance. Altogether this work provides a population-based transcriptomics resource 
with a wide range of applications and can be leveraged for studies of simple and complex traits in cassava.

Results
Principal component analysis (PCA) highlights the clustering of different tissue types. RNA 
expressions from 150 accessions were quantified using the 3′-RNA sequencing  method20. Five tissue types were 
profiled including storage root, fibrous root, stem, leaf, and flower for 150 cassava accessions, giving a total of 
750 samples. PCA was performed to determine sample clustering. Using the variance stabilizing transformation 
(vst) normalized gene-level counts from HTSeq (Supplementary Table S1), PCA results indicated that samples 
of the same tissue types clustered together with PC1 and PC2 explaining 25.6 and 9.8% of the total variance in 
the gene expression across all tissues (Fig. 1a). For cassava accessions that did not flower at the time of sample 
collection or as a result of asynchronous flowering, tissue samples collected from their apical meristem clustered 
together with samples from flower tissues. Apical meristem tissue types were merged to flower tissue type for 
further downstream analysis. In agreement with PCA observations, heatmap and hierarchical clustering across 
the five tissue types demonstrated the same tissue type clustering and expression patterns (Fig. 1b).

Cassava expression atlas (CEA), a tool for visualizing quantified transcriptomes. The cassava 
expression atlas was implemented on cassavabase (https:// cassa vabase. org), an open-source digital ecosystem 
dedicated to the cassava research  community21,22. Cassavabase provides a tool suite to assist breeders and breed-
ing programs in automating their routine breeding and pre-breeding activities. Counts per million mapped 
reads (CPM) obtained from HTSeq gene-level counts normalized using  EdgeR23 were used as digital units of 
expression for visualization of transcript expression levels (see Supplementary Table S2 for CPM values). Supple-
mentary Fig. S1 provides a brief guide for using CEA functions. The CEA gene discovery search results include 
expression cube, expression images, heatmap and scatter plot features. To demonstrate CEA functions, we 
selected a random gene (Manes.01G011400.v6.1) and four accessions, and went through the process described 
in Supplementary Fig. S1 legend. The results from the different features are highlighted in Fig. 2. Figure 2 repre-
sents the expression cube, heatmap, images and barplot of the different tissue types for the gene of interest and 
other genes correlated to it, based on r2 correlation coefficient of 0.65 and above.

Differential expression analysis identifies genes involved in systemic acquired resistance. To 
quantitatively evaluate and compare transcript levels between tissue types, differential expression analysis was 
carried out using DESeq2 across the 150 accessions in our population. On average, 31,895 genes were mapped to 
at least one read in each of the tissue samples (Supplementary Table S3). A total of 19,445 DEGs were detected 
across pairwise tissue comparisons using an adjusted p value of < 0.05 (Supplementary Fig. S2 and S3, Supple-
mentary Table S4), yielding a maximum of 9225 (storage root vs. leaf, annotated as TvL) and a minimum of 3330 
(stem vs. fibrous root) DEGs (Fig. 3a). However, for downstream analysis, a unique set of 8820 unique DEGs 
were selected out of the 19,445 detected DEGs (Supplementary Table S5). The comparison of DEGs identified 
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across contrasted tissue types show overlap of genes commonly expressed across contrasted groups, with larger 
numbers of genes overlapping across all contrasted groups for any specific tissue type (43.06–56.74%) (Fig. 3b–
f). As a quality assessment positive control step, visualization of Rubisco methyltransferase family protein and 
Rubisco activase protein on CEA in a comparison between storage root versus leaf tissue types show that they 
are significantly differentially expressed (Supplementary Fig. S4). These genes are known to be housekeeping 
genes; Rubisco methyltransferase family protein and Rubisco activase  protein24. Both proteins were significantly 

Figure 1.  Principal component analysis and heatmap visualization of variance stabilizing transformation 
(vst) normalized gene-level counts for 31,895 genes across five different tissues (storage root, fibrous root, 
flower + apical meristem, stem and leaf). (A) Principal component 1 (PC1) and principal component 2 (PC2) 
were estimated using the prcomp function in R. The total variance explained by PC1 and PC2 is shown. (B) 
Heatmap of genes across different tissue types. Since apical meristem clustered with flower tissue type and was 
collected for accessions that did not flower, tissue samples from apical meristem were added to flower tissue 
types.
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highly expressed in the leaf compared to other tissue types (Supplementary Fig. S4), as previously reported for 
Arabidopsis thaliana25.

In order to confirm the high quality of our dataset, we carried out differential expression analysis between 
Mkumba and NASE14. Mkumba is a CMD resistant variety, while NASE14 expresses CMD2-mediated resist-
ance as a mechanism for CMD  resistance26. The implication of the CMD2-mediated resistance mechanism is 
that before the R-gene is activated, CMD viral infection leads to numerous molecular and physiological changes 
that can lead to limited symptom expression. Molecular screening indicated that resistant cultivars showed CMD 
symptoms at the early growth stages but the disease did not advance because of the presence of the CMD2 resist-
ance  gene27. The samples used in this study were collected at early growth stages with the aim of quantifying gene 
expressions, hence NASE14 was used as the “susceptible” variety. Since the effector triggered immunity was yet 
to be triggered but was rather at the phase of effector triggered susceptibility thus explaining the gene changes 
that typically occur in a susceptible  clone28.

A total of 241 DEGs were detected between Mkumba and NASE14, based on adjusted p value of < 0.05, with 
13% (321) and 87% (2220) DEGs upregulated and downregulated, respectively (Fig. 4a, Supplementary Fig. S5, 
Supplementary Table S6).  KEGG29,30 gene enrichment pathway analysis on the detected DEGs, identified genes 
(highlighted using red star) involved in the Plant–pathogen interaction pathway (27 DEGs; 1.6 fold enrichment) 
based on p value of < 0.05 (Fig. 5, Supplementary Table S7). In the plant–pathogen interaction map, only two 
nodes (MKK1/2 and HSP90) were upregulated, the other 10 nodes were downregulated (Fig. 5a,c) based on 
log2 fold change. Hierarchical clustering of these identified plant–pathogen interaction pathway genes showed 
three clusters of genes based on their expression patterns across the gene clusters, with distinct expression across 
different tissue types (Fig. 5b). Other identified pathways included Pyruvate metabolism (15 DEGs), Base exci-
sion repair (9 DEGs) and Peroxime pathways with respective fold enrichments of 2.0, 2.4, and 1.8, and p value 
of < 0.05. Based on Bonferroni multiple test correction of < 0.05, KEGG biological processes GO terms, showed 
that response to chitin was significantly enriched with 2.6 fold enrichment, and molecular function GO terms 
showed that protein binding, helicase activity, ATP binding, and metal ion binding were significantly enriched 
with fold enrichment of 1.4, 3.1, 1.3, and 1.3, respectively.

Weighted gene co‑expression network analysis (WGCNA) of the detected 8,820 unique DEGs 
identified 18 gene modules. WGCNA was carried out using the 8820 DEGs obtained from comparison 
of different tissue types for construction of a scale-free co-expression network. These 8820 DEGs showed distinct 
expressions across different tissue types (Fig. 6a). The weighted coefficient parameter β = 7 was chosen to obtain 

Figure 2.  Cassava expression atlas (CEA) visualization output for four accessions (F10, Nam130, Mkumba, 
Pwani) and the Manes.01G011400 gene. (A) Expression atlas cube showing the expression of five tissue types 
on four accessions for Manes.01G011400 gene and other genes that are correlated to the gene of interest. (B) 
Heatmap of the expression of five tissue types on four accessions for Manes.01G011400 gene. (C) Expression 
images of five tissue types on four accessions for Manes.01G011400 gene. (D) Barplots showing the expression 
of five tissue types on four accessions for Manes.01G011400 gene.
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a correlation coefficient of 0.93 (Supplementary Fig. S6). A hierarchical tree function was used to divide the con-
structed clustered tree, detecting 18 co-expression modules, each tagged with a color, including turquoise with 
maximum number of 2848 DEGs, light green with minimum number of 39 DEGs and a yellow module with 307 
DEGs (see all modules in Fig. 6b–d, Supplementary Fig. S7a and Supplementary Table S8).

Given that the yellow module with 307 DEGs contains the Manes.10G147700 gene, characterized to be 
involved in CMD resistance, we subjected it to further analysis. First, we functionally classified the genes in the 
yellow module based on (1) molecular function, (2) biological function, (3) cellular components, (4) protein 
classes and (5) pathway categories using PANTHER classification system version 16.031 with corresponding 
Arabidopsis thaliana annotation IDs from the cassava version 6.1 annotation  genome32.

The molecular function categories observed for genes in the yellow module included Binding (GO:0005488), 
Catalytic activity (GO:0003824), Molecular function regulator (GO:0098772) and Transporter activity 
(GO:0005215) with 23%, 58.4%, 7.1% and 11.5% genes in each category, respectively (Supplementary Fig. S7b). 
The categories of protein classes represented in the yellow module included genes encoding metabolite intercon-
version enzymes (PC00262), transporters (PC00227) and gene-specific transcriptional regulators (PC00264) with 
63%, 10.6%, and 8.55% genes in each category, respectively (Supplementary Fig. S8a). The biological process GO 
term categories for genes in the yellow module included cellular processes (GO:0009987), metabolic processes 
(GO:0008152) and biological regulations (GO:0065007) with 34%, 30.5% and 10.6% genes in each category, 

Figure 3.  Detected differentially expressed genes (DEGs) across tissue types comparisons. (A) barplot showing 
detected DEGs across pairwise tissue types (SvsF stem vs flower, SvsT stem vs storageRoot, FvsT flower vs 
StorageRoot, TvsFR storageRoot vs fibrousRoot, FvsL flower vs leaf, SvsL stem vs leaf, TvsL storageRoot vs leaf, 
FRvsL fibrousRoot vs leaf). (B–F) Overlaps of detected DEGs for different tissue type comparisons.
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respectively (Supplementary Fig. S8b). The cellular component GO terms categories observed in the yellow 
module included cellular anatomical entities (GO:0110165) and intercellular activities (GO:0005622) with 58.3% 
and 39.6% of genes for each category, respectively (Supplementary Fig. S8c). Pathway characterization shows that 
genes in the yellow module fall within categories including glycolysis (P00024), fructose galactose metabolism 
(P02744), pentose phosphate pathway (P02762), and vitamin B6 metabolism (P02787) with gene percentage of 
21.1%, 10.5%, 10.5%, 10.5%, and 5.3%, respectively (Supplementary Fig. S8d). Other pathway categories included 

Figure 4.  Differential expression between Mkumba vs Nase14, heatmap of hierarchical clustering and 
phylogenetics analysis of CMD associated peroxidase genes. (A) Volcano plot showing differentially expressed 
genes. Some of the gene names were printed on the plots. NS = not significant; Log2 FC = significant DEGs 
above the threshold of >|1| log2 fold change; P = significant DEGs based on adjusted p value of < 0.05; P & 
Log2 FC = significant DEGs based on adjusted p value of < 0.05 and threshold of >|1| log2 fold change. The 
gene (Manes.10G147700) in the top left is a Bifunctional inhibitor/lipid-transfer protein/seed storage 2S 
albumin superfamily protein. Inserted are Expression atlas cube [above gene name] and barplot [below gene 
name] showing the expression of five tissue types on two accessions for Manes.10G147700 gene. (B) Heatmap 
for 27 genes involved in transmembrane transport activities in the yellow module with the genes and their 
corresponding description. The heatmap shows two broad characterizations. (C) Phylogeny of two differentially 
expressed peroxidase gene families and the two from GWAS analysis associated with CMD resistance in 
 cassava10.
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Figure 5.  Plant–pathogen interaction pathway, Heatmap of hierarchical clustering of the 27 DEGs in the pathway and 
cassava expression atlas (CEA) barplot of selected genes. (A) Observed plant–pathogen interaction pathway using the 
KEGG pathway enrichment analysis. Proteins present in the CMD DEGs are marked with red stars. Proteins marked 
in green belong to the reference-organism path. The plant–pathogen interaction pathway reveals sets of genes involved 
in the plant immune response. The gene MKK1/2 and HSP90 were upregulated, while the rest of the observed genes 
in the pathway were downregulated based on log2 fold change. MKK1/2 and HSP90 shows down- and up-regulations 
in a CMD susceptible and resistant accessions, respectively. The functions of these genes included potential calcium 
sensors (AGD11, CML, CAM), hydrogen peroxide generation during hypersensitive response-like cell death (MKK5), 
and disease resistance pathogen recognition protein that triggers a defense system including the hypersensitive 
response, which restricts the pathogen growth (RPS2)84. Others were genes that produce nitric oxide, a messenger 
molecule involved in hormonal signaling and defense responses in plants (NOA1); a protein kinase gene, involved in 
plant defense responses specifically recognizing effector avirulence protein and triggering a defense reaction (RPS5); 
and a gene that is an essential regulator of plant defense, which plays a central role in resistance in case of infection by 
a pathogen (RIN4). Additional genes in the pathway are involved in transcription, interacting with the W box (5′-(T)
TGAC[CT]-3′) (WRKY2); and a gene that generates reactive oxygen species during incompatible interactions with 
pathogens and is important in the regulation of the hypersensitive response (RBOH F). (B) Heatmap of hierarchical 
clustering for the 27 genes observed in the plant–pathogen interaction pathway using KEGG enrichment analysis. (C) 
Barplot of selected genes in the plant–pathogen interaction pathway showing the pattern of gene expression for genes 
that are upregulated and downregulated for CMD susceptible (based on CMD2 resistance-NASE14) and resistant 
(Mkumba) accessions.
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cholesterol (P00014), cysteine (P02737), serine glycine (P02776), and tyrosine (P02784) biosynthesis, all at 5.3% 
of genes in the yellow module (Supplementary Fig. S8d).

Second, the yellow module analysis for enriched GO terms was conducted for (1) biological processes, (2) 
molecular functions and (3) cellular components based on the Bonferroni-corrected p value of < 0.05. The statisti-
cally significant enriched terms indicated that genes in the yellow module were mostly involved in biological pro-
cesses of sporopollenin biosynthesis (p value = 2.69E−06), anther wall tapetum development (p value = 0.0065), 
cuticle development (p value = 0.0045), cellular carbohydrate catabolic process (p value = 0.00086), and starch 
metabolic process (p value = 0.0064; Table 1) (with all GO lists in Supplementary Table S9). For molecular func-
tion GO terms, genes in the yellow module were mostly involved in sugar transmembrane transporter activity 
(p value = 0.0036), oxidoreductase activity (p value = 0.01), iron ion binding and heme binding (p value = 0.01). 
For cellular component enriched GO terms, integral component of plasma membrane (p value = 0.033), plant-
type cell wall (p value = 0.0006) and protein-containing complex (p value = 0.0007) were statistically significantly 
enriched terms for genes in the yellow module (Supplementary Table S9).

A set of 27 genes from the yellow module were found to be involved in transmembrane transporter activities 
in the molecular function GO using PANTHER gene enrichment tool with Fisher’s exact test and Bonferroni 
correction for multiple testing for p value of < 0.05, included Manes.16G007900, a MATE transporter, earlier 
reported to be involved in the regulation of cyanogenic glucosides in cassava  root33 (Table 2). The expression 
pattern of these sets of 27 genes shows at least two broad groups with genes mostly involved in detoxification 
found in the upper half (Fig. 4b). The GO term enrichment results for all detected modules are described in 
Supplementary Table S10.

Figure 6.  Heatmap of hierarchical clustering analysis and weighted gene co-expression network analysis 
(WGCNA). (A) Heatmap of 8820 DEGs across different tissue types. (B) Gene co-expression modules showing 
the cluster dendrogram constructed based on the eigengenes of the modules (upper panel) and the heatmap for 
the correlation coefficient between the modules (lower panel). (C) Barplot showing the approximate percentage 
distributions of DEGs clustered into 18 gene modules using the WGCNA R package. (D) Expression patterns of 
genes as they are clustered based on detected modules and different tissue types. Genes in the grey module are 
usually genes that did not cluster with genes in any of the 18 modules.
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Genetic variance explained by SNP markers in the detected 8,820 DEG regions. Evaluating the 
functional relevance of the detected DEGs, proportion of variance explained by SNPs in the DEG regions was 
higher for vigor (DEG SNPs: 0.24, sampled SNPs: 0.12), a fitness trait and dry matter (DM) content (DEG SNPs: 
0.38, sampled SNPs: 0.32), an agronomic trait when compared to randomly selected SNPs (excluding SNPs in 
high LD with the DEG SNPs) of equal size and distribution (Supplementary Fig. S10). For other agronomic and 
disease related traits, SNPs within the DEG regions explained less variance when compared to the randomly 
sampled SNPs of equal sizes and distribution. While fitness related traits respond to gene regulation (though 
fresh root yield does not respond in that manner based on this dataset), disease resistance in plants has been 
shown not to be influenced by differential expression but rather by genes that are involved in disease infection 
 recognition18,34,35. This is also highlighted by the SNPs in the DEG regions explaining about twice the variance 
explained by the rest of the genome (11,399 DEG-SNPs: 0.23; 65,054 Other-SNPs: 0.13) for plant vigor trait.

Table 1.  List of six genes from the yellow module identified in the biological processes GO to be involved in 
starch metabolic processes using PANTHER overrepresentation Fisher’s exact test with Bonferroni correction 
for multiple testing for p value < 0.05.

No GeneID Annotation Gene name

1 Manes.14G031100.v6.1 AT5G51820 Phosphoglucomutase

2 Manes.01G055700.v6.1 AT1G32900 UDP-Glycosyltransferase superfamily protein

3 Manes.01G236700.v6.1 AT1G27680 ADPGLC-PPase large subunit

4 Manes.06G021000.v6.1 AT3G52180 dual specificity protein phosphatase (DsPTP1) family protein

5 Manes.18G063500.v6.1 AT4G09020 isoamylase

6 Manes.03G171500.v6.1 AT3G55760 Uncharacterized protein

Table 2.  List of 27 genes involved in transmembrane transporter activity identified in the molecular function 
GO for yellow module genes, using PANTHER overrepresentation Fisher’s exact test with Bonferroni 
correction for multiple testing for p value < 0.05. Manes.16G007900 MATE transporter, earlier reported to be 
involved in the regulation of cyanogenic glucosides in cassava root, was found in these groups of genes.

No GeneID Annotation Gene name Protein class

1 Manes.05G009300.v6.1 AT1G02520 ABC transporter B family member 11 ATP-binding cassette (ABC) transporter

2 Manes.08G109200.v6.1 AT1G09380 WAT1-related protein At1g09380

3 Manes.10G105100.v6.1 AT1G17840 ABC transporter G family member 11 ATP-binding cassette (ABC) transporter

4 Manes.09G027700.v6.1 AT1G51340 Protein DETOXIFICATION 42 Transporter

5 Manes.15G030700.v6.1 AT1G77210 Sugar transport protein 14 Secondary carrier transporter

6 Manes.18G081500.v6.1 AT1G77380 Amino acid permease 3

7 Manes.04G104100.v6.1 AT1G80760 Aquaporin NIP6-1

8 Manes.11G066100.v6.1 AT1G80830 Metal transporter Nramp1 Secondary carrier transporter

9 Manes.01G167200.v6.1 AT2G26975 Copper transporter 6 Secondary carrier transporter

10 Manes.02G169700.v6.1 AT2G39060 Bidirectional sugar transporter SWEET9

11 Manes.10G004700.v6.1 AT2G40540 Potassium transporter 2 Transporter

12 Manes.03G183400.v6.1 AT3G06100 Probable aquaporin NIP7-1

13 Manes.03G143200.v6.1 AT3G13220 ABC transporter G family member 26 ATP-binding cassette (ABC) transporter

14 Manes.16G113300.v6.1 AT3G16180 Protein NRT1/ PTR FAMILY 1.1 Transporter

15 Manes.16G007900.v6.1 AT3G21690 Protein DETOXIFICATION 40 Transporter

16 Manes.15G183200.v6.1 AT3G28007 Bidirectional sugar transporter SWEET4

17 Manes.07G111500.v6.1 AT4G01470 Aquaporin TIP1-3

18 Manes.02G006600.v6.1 AT4G10850 Bidirectional sugar transporter SWEET7

19 Manes.12G039000.v6.1 AT4G13510 Ammonium transporter 1 member 1 Primary active transporter

20 Manes.15G118500.v6.1 AT4G18210 Probable purine permease 10

21 Manes.01G067900.v6.1 AT4G23010 UDP-galactose/UDP-glucose transporter2 Secondary carrier transporter

22 Manes.02G156100.v6.1 AT5G10180 Sulfate transporter 2.1 Transporter

23 Manes.12G006700.v6.1 AT5G13170 Bidirectional sugar transporter SWEET15

24 Manes.13G006800.v6.1 AT5G13170 Bidirectional sugar transporter SWEET15

25 Manes.17G069300.v6.1 AT5G46240 Potassium channel KAT1 Ion channel

26 Manes.06G123400.v6.1 AT5G50790 Bidirectional sugar transporter SWEET10

27 Manes.14G074000.v6.1 AT5G62680 Protein NRT1/ PTR FAMILY 2.11 transporter
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Discussion
The multifaceted ability of cassava to respond to both the challenge of climate change and the priorities of devel-
oping countries makes cassava a sustainable and reliable crop for food security, poverty alleviation and economic 
 development1. However, the cassava yield gap in the developing countries compared to other regions where cas-
sava is grown highlights the necessity for better understanding of the cassava developmental and physiological 
processes. This will allow further improvements in complex traits including yield, quality, fitness and disease 
resistance-related traits in Sub-Saharan Africa. Here, we aimed to provide a population-based transcriptomics 
resource for studies of complex traits to assist cassava improvement efforts.

Expression of transcripts for 150 accessions from the Ugandan cassava breeding program were quantified, 
with sampling performed on flower, leaf, stem, fibrous and storage root tissues for each accession. A 3′-RNA 
sequencing method was chosen, which has been shown to be more efficient than RNA sequencing in the way 
it handles  paralogs20. Multivariate analysis shows the clustering of each tissue type together. PCA outputs split 
variance according to distinct biological parameters, with PC1 highlighting the variance due to different tissue 
types, while PC2 likely explains the genetic differences between the accessions in the population. Similar observa-
tions were made using a heatmap hierarchical clustering algorithm, supporting our earlier PCA observation and 
highlighting similarities in the pattern of expression between tissue types, with the storage root having a closer 
expression pattern to the fibrous root, while the leaf had a similar expression profile to the stem tissue. The reso-
lution of the different tissue types into distinct clusters indicated the high quality of the dataset, and highlights 
that the quantified transcripts captured transcriptional differences in the tissue types and the physical related-
ness between tissue types. A similar clustering pattern was previously reported for cassava among tissue  types15.

Differential expression results and overlapping of identified DEGs between contrasting tissue type com-
parisons, highlight common DEGs across comparisons and indicate the abundance of house-keeping genes 
and smaller percentage of genes that are unique or specific to a set of contrasted tissue types. In addition, it was 
observed that tissue types with similar expression patterns had fewer DEGs than those having more distinct 
expression patterns. For example, stem versus fibrous root tissue comparison gave the least number of DEGs 
(3330), followed by storage root versus fibrous root comparison with 3676 DEGs, while comparison of storage 
root versus leaf tissue gave the highest number of DEGs (9225). This observation is consistent, supports our 
PCA and hierarchical clustering results, and represents the first study in cassava that looked at the comparative 
expression patterns of major organs/tissues using a population-based approach. In addition, expression pat-
terns of the detected modules by tissue types seem to suggest modules/genes that could be targeted for cassava 
improvements based on traits and contrasting tissue types of interest. This highlights how genes within a module 
are differentially expressed across different tissue types. For example, genes in the brown module show that flower 
tissues had distinct expression patterns compared to the rest of the tissue types, while genes in the blue module 
show that leaf tissues had distinct expression patterns compared to the rest of the tissue types.

The classification of the genes in the yellow module indicates that they are mostly involved in regulatory 
functions such as RNA- and DNA-binding transcription and other transcription factors required for the regula-
tion of many cellular processes, including transcription, translation, gene silencing, gene expression control, 
catalysis and similar  functions36. Other genes in the yellow module are involved in transport activities, allowing 
the transfer of substances (sugar, copper, sulfate, potassium, iron) across plasma membranes, enabling activities 
such as detoxification as earlier described for cyanogenic glucosides in  cassava33.

GO term enrichment (over-representation) analysis showed that genes in the yellow module are involved in 
both molecular, cellular and biological functional processes. Notable among them are the sugar transmembrane 
transporter activity, integral component of plasma membrane and sporopollenin biosynthetic process with the 
most upregulated fold enrichment, supporting the earlier speculation that most genes in this module are mostly 
associated with plant developmental processes. While Manes.10G147700 found in the yellow module, involved 
in plant defense against cassava mosaic virus and its insect vector whitefly, is characterized to be involved 
in lipid transport/protein metabolism based on functional GO terms. The cassava root HCN regulation gene 
(Manes.16G007900) also found in the yellow module, and part of the transmembrane transport activity GO term, 
supports the speculation that genes in the yellow module are functionally involved in developmental processes. 
Manes.16G007900 is a MATE transporter that may be involved in the regulation of cyanogenic glucosides such as 
linamarin and lotaustralin in cassava  root33. Linamarin, an abundant cyanogenic glucoside variant in cassava and 
a secondary metabolite, contains nitrogen and serves as a nitrogen shuttling and storage  compound37. Nitrogen 
is a vital and major component of chlorophyll used as an energy source to produce sugar, a major component of 
amino acids, the building blocks of proteins, and together they ensure the survival and development of a  plant38.

Twenty-seven transporter genes from the yellow module, characterized to be involved in transmembrane 
transporter activity based on molecular function GO terms, facilitates transfer of a specific substance or group 
of related substances, from one side of a membrane to the  other39. The expression pattern of these 27 trans-
membrane transporters indicated two broad categories: those likely involved in allowing the uptake of essential 
nutrients and those involved in secretion of metabolic end products and hazardous substances. Among those 
already characterized in cassava are Manes.15G030700 involved in galactose  transport40 and Manes.16G007900 
involved in cyanogenic glucoside  transport33. However, the phosphoserine aminotransferase family gene 
(Manes.02G112800—phosphoserine transaminase), identified to be involved in vitamin B6 metabolism, has not 
been previously characterized in cassava. Six genes in the yellow module characterized by PANTHER biological 
process GO appear to be involved in the starch metabolic processes, and two were previously characterized as 
being involved in the starch biosynthetic pathway in  cassava41,42.

Differential expression results were further investigated for CMD tolerance. DEGs detected encoding NBS 
(Nucleotide Binding Site) and TIR (Toll/Interleukin-1 Receptor) regions were previously described by Lopez et al. 
as resistance gene candidates in  cassava43. Eleven (11% R genes) out of the 99 resistance analogues genes reported 
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by Allie et al. to respond to cassava mosaic virus infection were among the detected  DEGs44 (Supplementary 
Table S11). The eleven R genes included leucine-rich repeat (LRR) transmembrane protein kinase and NB-ARC 
domain-containing disease resistance protein, disease resistance protein (TIR-NBS-LRR class) family and His-
tone superfamily protein. Previous genome-wide association studies (GWAS) on CMD resistance in African 
cassava identified two closely linked genes on chromosome 12, Manes.12G076200 and Manes.12G076300, both 
identified as peroxidase superfamily proteins to be involved in the regulation of  CMD9,10. One is characterized 
as CMD2 and the second is a “highly correlated peroxidase gene about 17 kilobases away”45–49. However, neither 
of these peroxidase genes were differentially expressed in our dataset, despite the fact that they were character-
ized as pathogenesis-related proteins involved in host response to  infection50 and downregulated in response to 
CMD infection in susceptible  accessions44. Surprisingly, we found two different peroxidase superfamily proteins, 
Manes.03G063400 (log2 fold change: − 2.7919) and Manes.17G124300 (log2 fold change: 9.0907), located on 
chromosomes 3 and 17, respectively to be significantly differentially expressed. The percentage sequence similar-
ity of the CMD2 gene to Manes.03G063400 and Manes.17G124300 genes was 52.80% and 52.73%, and that of 
Manes.12G076300 to Manes.03G063400 and Manes.17G124300 genes were 53.06% and 48.12%, respectively. 
With an average of 50% pairwise sequence similarity across homologs (Fig. 4c), the significance of these findings 
will require additional investigation to ascertain if these genes are involved in CMD response.

Coincidentally, based on an optimal adjusted p value (7.45E−45) and log2 fold change (− 40.13), we identified 
a lipid-transfer protein (Manes.10G147700), previously reported to be involved in plant defense against cas-
sava mosaic virus and its insect vector  whitefly8,10. Vidya et al. used the Nucleotide Binding Site transcriptome 
profiling technique with the aim of identifying CMD resistance genes in  India8. A total of 24 genes (27 DEGs 
with homologs) out of the 105 candidates genes reported to be associated with CMD resistance by Wolfe et al. 
were part of our DEGs, including Manes.10G147700 reported to be a candidate gene associated with CMD 
resistance when phenotyped at three months after planting (CMD3S)10 (Supplementary Table S11). These 24 
genes reported by Wolfe et al., are associated with CMD resistance across all phenotyping time points (CMD1S, 
CMD3S, CMD6S, CMD9S)10. Manes.10G147700 was expressed in flower tissue and at a lower level in the stem 
of a susceptible cassava variety (see Fig. 4a inserted CEA cube and barplot), similar to the expression pattern 
observed in its Arabidopsis homolog (AT3G52130)51. Manes.10G147700 is a non-specific lipid transfer protein 
(nsLTP) with the ability to transfer lipids across  membranes52. nsLTP has been previously described in Arabidop-
sis, maize, spinach, castor bean,  wheat53 and only recently reported to be involved in CMD resistance in  cassava8. 
A non-specific lipid transfer protein, encoded by large gene families in many flowering  plants54, binds to sterol 
molecules to trigger plant defense response by interacting with a receptor at the plant plasma  membrane55 and 
usually detected during early development in  plants56. This protein was previously implicated in plant defense 
against viral, fungal and bacterial pathogens in  plants57. Other identified DEGs included heat shock proteins also 
reported to be required for the resistance mediated by R  proteins8. These findings on CMD resistance in cassava 
(1) further highlight the complexity of cassava mosaic disease and the fact that current qualitative methods of 
CMD phenotyping do not provide enough information to decipher the molecular relationship between genotype 
and phenotype, given that CMD2 gene was not differentially expressed. These findings are similar to what has 
been previously reported for  CBSD58. (2) In addition, this could also be attributed to the fact that the CMD2 
gene is not expressed on any of the five cassava tissues in this study (as seen in Supplementary Fig. S9b—right 
side), as previously speculated by Adenike et al59. Previous studies on CMD resistance highlighted a single source 
of monogenic resistance in the cassava  genepool60, especially in Africa. The findings in this study provide the 
foundation for a more in-depth, quantitative understanding of resistance and support the long term goal of 
diversifying the sources of resistance, given the precarious nature of single gene  resistance9,10.

Conclusion
While transcriptomics has relied on contrasting individuals, our study provides a population-based resource, 
unique to previously described available transcriptomics cassava resources. Resources including genomics, tran-
scriptomics, metabolomics, epigenomics and proteomics to support cassava improvement and intensification 
have been previously  described15,32,61–71. In this study, we characterized the transcriptomics of 150 accessions 
across five different tissue types. The expression dataset highlights the similarity in expression pattern between tis-
sue types, indicating that tissue types that are physically closely related seem to have similar expression patterns. 
We detected 19,445 DEGs with 8820 DEGs unique across tissue types comparisons and further characteriza-
tion detected 18 modules, in which the HCN cassava root regulation transporter, the galactose transporter and 
the plant defence gene against cassava mosaic virus and its insect vector whitefly, were all located in the yellow 
module, based on previous characterization in cassava. The yellow module is widely involved in developmental 
processes and highlights important regulatory genes in cassava. These 307 genes in the yellow module, highly 
enriched in biosynthesis of secondary metabolites and metabolic pathway processes, represent important genes 
for studying physiology and developmental characters for cassava improvement. We provided further insight on 
CMD resistance and highlighted sets of 27 genes that were involved in the plant–pathogen interaction pathway. 
Our study suggests a potential path to sources of CMD resistance diversification and provides a queryable cas-
sava expression atlas that will serve as a valuable and novel population-based resource to the cassava research 
community. These resources can be used to develop a biological information driven genomic selection (GS) 
framework to further improve prediction accuracies, especially for disease traits, which could leverage spatial 
and temporal control of plant pathogen response to facilitate breeding for crop improvement in cassava. Other 
applications include differential gene expression analysis to quantitatively evaluate transcript levels between 
tissue types or contrasting individuals of interest and performing expression quantitative trait loci to identify 
genomic loci explaining variation in expression levels of mRNAs for traits of interest. In the future, a validation 
study of the Manes.10G147700 gene using analysis of promoters or knock-outs would be required to understand 
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its relationship with the CMD phenotype. The combination of these approaches would provide information on 
the specific functioning of Manes.10G147700 to CMD inoculation at different developmental stages.

Methods
Tissue sample collection, RNA extraction, RNA‑seq library preparation and Illumina sequenc‑
ing. Tissue samples were collected from 150 accessions across five tissues at a cassava experimental field 
at National Crops Resources Research Institute (NaCRRI) Kampala, Uganda. Dr. Robert Kawuki undertook 
the formal development and identification of the cassava accessions used in this study. These accessions are 
part of the genetic gain populations of  NaCRRI10, and publicly available on https:// cassa vabase. org. For most 
of the accessions, samples were collected from leaf, stem, fibrous root, storage root and flower tissues; while for 
accessions that were not flowering, apical meristem tissue was collected in place of flowers. RNA was extracted 
using TRIzol by Invitrogen protocol, in which hot borate and lithium chloride were used to extract RNA from 
tissue samples of leaf, flower, stem, fibrous and storage  root72. 3′RNA-seq libraries were prepared according to 
the method described by Kremling et al18. Briefly, libraries were prepared robotically, using 96-well plates from 
500 ng total RNA on an NXp liquid handler using QuantSeq FWD kits. Post-PCR cleanup was performed and 
libraries were pooled to 96-plex according to the QuantSeq protocol. Molar concentrations were calculated for 
each pool and sequenced using 90 nucleotide single-end read Illumina TruSeq primers on an Illumina NextSeq 
500 with v2 chemistry in the year 2015 at the Cornell University Sequencing facility. Normalized gene-leve 
counts and raw sequencing datasets were deposited on https:// cassa vabase. org, hosted at ftp:// ftp. cassa vabase. 
org/ Cassa va3pr imeRN AseqR awRea ds/. Raw sequencing data were submitted to NCBI sequence reads archive 
(SRA) with the following details (BioProject: PRJNA737128) and can be accessed via http:// www. ncbi. nlm. nih. 
gov/ biopr oject/ 737128.

3’RNA‑seq dataset processing. Fastq files for each sample were processed using  Trimmomatic73 (ver-
sion 0.32) to remove the first 12 bp and remnants of the Illumina Truseq adapter from each read according 
to kit maker recommendation. The STAR  aligner74 (version 2.7) was used to align reads against cassava ver-
sion 6.1 (https:// phyto zome. jgi. doe. gov/ pz/ portal. html# !info? alias= Org_ Mescu lenta) genome annotation using 
parameters that included (-outFilterMultimapNmax 10; -outFilterMismatchNoverLmax 0.04; -outFilterIntron-
Motifs RemoveNoncanonicalUnannotated), allowing reads to map in 10 locations, with at most 4% mismatches, 
and filtering out all non-canonical intron motifs.  HTSeq75 (version 0.11.2) default settings were used to obtain 
gene-level counts, which were then normalized using the counts per million mapped reads (CPM) method 
implemented in the  EdgeR23 (version 3.26.8) package in R version 3.6.3 (2020-02-29). The normalized CPM 
expression digital values were used for visualization in a cassava expression  atlas76 (https:// cea. sgn. corne ll. edu/ 
expre ssion_ viewer/ input) hosted on cassavabase.org (https:// cassa vabase. org) (see Supplementary Fig. S11 for 
data processing schema). Obtained gene-level counts from  HTSeq75 were normalized using variance stabilizing 
 transformation77 (vst) method in  DESeq277 (version 1.24.0) for downstream analysis including principal com-
ponent analysis (PCA) and weighted gene co-expression network analysis (WGCNA)78.

Cassava expression atlas data availability. The cassava expression atlas graphical interface was imple-
mented on cassavabase.org to allow for the interactive visualization and exploration of tissue-specific patterns 
and discovery of trends in a population-based transcriptomics  dataset76. The implementation uses CPM normal-
ized read counts obtained from  HTSeq75 (version 0.11.2), functional gene annotations from Phytozome (version 
10.3), and analysis of correlation of genes using the cor function in R 3.4.2 (R. Core Team, 2015). The expression 
atlas has four main features: expression cube, expression images, heatmap and scatter plot. The expression cube 
enables gene discovery based on gene expression patterns across accessions and tissue types, with the ability to 
display genes with expression correlated to that of your gene of interest across the dataset. The expression images 
are whole cassava plant images showing tissue-specific expression patterns of selected or newly discovered genes 
across selected accessions. The heatmap is created to visualize tissue-specific expression patterns for selected 
genes across selected accessions. The scatter plot feature visualizes expression of any two samples. The cassava 
expression atlas can be found at: https:// cassa vabase. org and additional details can be found in the cassavabase.
org manual.

Differential gene expression and weighted gene co‑expression network analysis. Differential 
expression and statistical analysis were carried out using the  DESeq277 (version 1.24.0) R package. DESeq2 uses 
raw read counts as input, corrects for library size and accounts for sequencing depth using vst normalization. 
To account for multiple testing corrections, p values were adjusted using Benjamini–Hochberg79 testing proce-
dure and a false discovery rate adjusted p value of < 0.05 was used as a threshold for significantly differentially 
expressed genes (DEGs) for each differential expression analysis done in this study. As a quality assessment 
step, we profiled the expression of Rubisco as a positive control similar to housekeeping genes used in  qPCR80. 
To assemble DEGs for downstream analysis, first we retrieved the detected DEGs for different pairwise tis-
sue comparisons based on adjusted p value of < 0.05 and log2 fold change (log2FC) of >|1|. We then combined 
(union) all detected DEGs (19,445) from all comparisons and kept a total of 8,820 unique DEGs for downstream 
analysis. Previously reported resistance genes with cassava genome annotation versions earlier than version 6 
were identified by BLAST search on phytozome (https:// phyto zome. jgi. doe. gov/ pz/ portal. html# !search? show= 
BLAST) using cassava genome version 6 annotation. Variance stabilizing transformation normalized gene-level 
counts from HTSeq for the 8820 selected unique DEGs were used to infer co-expression gene network modules 
using the  WGCNA78 R package with power-law coefficient β selected using the soft-thresholding method and a 
hierarchical tree cut algorithm used in detecting the co-expression modules.

https://cassavabase.org
https://cassavabase.org
ftp://ftp.cassavabase.org/Cassava3primeRNAseqRawReads/
ftp://ftp.cassavabase.org/Cassava3primeRNAseqRawReads/
http://www.ncbi.nlm.nih.gov/bioproject/737128
http://www.ncbi.nlm.nih.gov/bioproject/737128
https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mesculenta
https://cea.sgn.cornell.edu/expression_viewer/input
https://cea.sgn.cornell.edu/expression_viewer/input
https://cassavabase.org
https://cassavabase.org
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=BLAST
https://phytozome.jgi.doe.gov/pz/portal.html#!search?show=BLAST
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Gene ontology (GO) analysis. Genes identified in different modules from WGCNA were characterized 
for GO terms including biological processes, cellular components, and molecular functions using over-represen-
tation Fisher’s exact test with Bonferroni multiple testing correction p value of < 0.05 in PANTHER version 16.0 
(Released 2020/07/28) as previously  described10. The gene enrichment analysis was performed on the Arabidop-
sis thaliana GO database (GO Ontology database https:// doi. org/ 10. 5281/ zenodo. 40817 49 Released 2020-10-
09)31 using corresponding cassava genome version 6.1 annotation  IDs32 as previously  described10. DEGs identi-
fied from differential expression analysis of CMD susceptible and resistant accessions were subjected to KEGG 
pathways enrichment  analysis29,30. KEGG was used because it was easy to overlay identified genes on pathway 
maps available on the platform (Database last updated: January 18, 2021).

Partitioning proportion of genetic variance explained by markers on the DEG selected 
regions. Using parametric multiple kernel mixed  model81 as previously described for  cyanide33 and other 
traits in cassava, we calculated the heritability contribution of the SNP markers found within the regions (with 
53,335 bp maximum transcript length) of the selected 8820 DEGs for traits fresh root yield (FYLD), vigor, root 
number (RTNO), dry matter (DM), mean CMD (MCMD), and mean CGM (MCGM). The variance explained 
by the markers in these regions was compared with a random set of markers of similar size and distribution 
across the genome. To ensure precise estimation of the proportion of variance explained, LD was controlled by 
removing markers that are in high LD (r2 ≥ 0.9) with the 11,399 SNPs in the DEG regions. We estimated the 
variance components using the ‘emmremlMultikernel’ function implemented in the R package  EMMREML82. 
The multikernel model is represented in matrix notation: y = Xu+ Zg1 + Zg2 + e , where y is the vector of the 
best linear unbiased prediction (BLUP) for each trait, and X is a vector of ones, representing the intercept. u is 
the genetic mean effect of DEG SNPs on a trait, and Z is the design matrix linking observations to individuals. 
g1 and g2 are the genetic variance components for SNPs in the DEG regions and sampled SNPs of equal size 
and distributions across the genome, respectively. Where g1 ∼ N

(

0,GRMDσ
2
)

 and g2 ∼ N
(

0,GRMSσ
2
)

 have 
known variance structure, calculated using DEG SNPs ( GRMD ) or sampled SNPs ( GRMS ) and e is the residuals 
variance. The phenotype and genotype dataset used were sourced from Okeke et al. and included 750 acces-
sions and 76,453 SNP markers after a minor allele frequency filtering threshold of 0.01, below which SNPs were 
 removed3. These historical datasets are from multiple trials conducted at the International Institute of Tropical 
Agriculture, Ibadan, Nigeria, as a part of their genetic gain population and represented clones selected between 
1970s through  200783.
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