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Supervised training of spiking 
neural networks for robust 
deployment on mixed‑signal 
neuromorphic processors
Julian Büchel1,2, Dmitrii Zendrikov2, Sergio Solinas3, Giacomo Indiveri1,2 & Dylan R. Muir1*

Mixed‑signal analog/digital circuits emulate spiking neurons and synapses with extremely high energy 
efficiency, an approach known as “neuromorphic engineering”. However, analog circuits are sensitive 
to process‑induced variation among transistors in a chip (“device mismatch”). For neuromorphic 
implementation of Spiking Neural Networks (SNNs), mismatch causes parameter variation between 
identically‑configured neurons and synapses. Each chip exhibits a different distribution of neural 
parameters, causing deployed networks to respond differently between chips. Current solutions 
to mitigate mismatch based on per‑chip calibration or on‑chip learning entail increased design 
complexity, area and cost, making deployment of neuromorphic devices expensive and difficult. Here 
we present a supervised learning approach that produces SNNs with high robustness to mismatch and 
other common sources of noise. Our method trains SNNs to perform temporal classification tasks by 
mimicking a pre‑trained dynamical system, using a local learning rule from non‑linear control theory. 
We demonstrate our method on two tasks requiring temporal memory, and measure the robustness 
of our approach to several forms of noise and mismatch. We show that our approach is more robust 
than common alternatives for training SNNs. Our method provides robust deployment of pre‑
trained networks on mixed‑signal neuromorphic hardware, without requiring per‑device training or 
calibration.

Dedicated hardware implementations of Spiking Neural Networks (SNNs) are an extremely energy-efficient 
computational substrate on which to perform signal processing and machine learning inference  tasks1–8. Opti-
mal energy efficiency is achieved when using mixed-signal analog/digital neuron and synapse circuits following 
an approach known as “neuromorphic engineering”9. In these hardware devices, large arrays of neurons and 
synapses are physically instantiated in silicon, and coupled with flexible digital routing and interfacing logic in 
“mixed-signal”  designs2,6.

However, all analog silicon circuits suffer from process variation across the surface of a chip, changing the 
operating characteristics of otherwise identical transistors—known as “device mismatch”10,11. In the case of spik-
ing neurons implemented using analog or mixed-signal circuits, mismatch is expressed as parameter variation 
between neurons and synapses that are otherwise configured  identically12–15. The parameter mismatch on each 
device appears as frozen parameter noise, introducing variance between neurons and synapses in time constants, 
thresholds, and weight strength.

Parameter noise in mixed-signal neuromorphic devices can be exploited as a symmetry-breaking mecha-
nism, especially for neural network architectures that rely on randomness and stochasticity as a computational 
 mechanism16–20, or can be exploited to improve in-situ training of Bayesian networks via MCMC  sampling21. 
However, random architectures can raise problems for commercial deployment of applications on mixed-signal 
devices: the parameter noise would affect neuronal response dynamics, and these device to device variations 
could affect and degrade the system performance of individual chips. A possible solution is to perform  post-
production device calibration  or re-training, but this would raise deployment costs significantly and not scale 
well with deployment to large numbers of devices. In addition to device mismatch, mixed-signal neuromorphic 
systems also suffer from other sources of noise, such as thermal noise or quantisation noise introduced by 
restricting synaptic weights to a low bit-depth.
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In contrast to current mainstream  Deep Neural Networks (DNNs), spiking networks suffer from a severe con-
figurability problem. The backpropagation algorithm permits configuration of extremely deep NNs for arbitrary 
 tasks22, and is effective also for network models with temporal  state23, but is difficult to apply to the discontinu-
ous dynamics of  SNNs24–26. Methods to approximate the gradient calculations by using surrogate  functions27, 
eligibility  traces28 or adjoint  networks29 have provided a way to adapt backpropagation for spiking networks. 
Non-local information is required for strict implementation of the backpropagation algorithm, but random 
 feedback30 and local  losses31 have been employed with some success to train multi-layer spiking networks. Alter-
native approaches using initial random dynamics coupled with error feedback and spike-based learning rules 
can permit recurrent SNNs to mimic a teacher dynamical  system32,33. Strictly-local spike-timing-based learning 
rules, inspired by results in experimental  neuroscience34, have been implemented in digital and mixed-signal 
neuromorphic devices, as they provide a better match to the distribution of information across neuromor-
phic  chips35. Unfortunately, local spike-dependent rules such as Spike-Timing Dependent Plasticity (STDP) are 
themselves not able to perform supervised training of arbitrary tasks, since they do not permit error feedback 
or error-based modification of parameters. In both cases, implementing strictly local or backpropagation-based 
learning infrastructure on-chip adds considerable complexity, size and therefore cost to neuromorphic hardware 
designs. This cost makes it impractical to use on-chip learning and adaptation to solve the mismatch problem 
on mixed-signal architectures.

Robustness to noise and variability can be approached from the architectural side. For example, a network 
architecture search approach can identify networks that are essentially agnostic to precise weight  values36. How-
ever, these networks rely on complex combinations of transfer functions which do not map to neuromorphic 
SNN designs.

Alternatively, a class of analytically-derived network architectures have been proposed for spiking networks, 
known as Efficient Balanced  Networks37–43, relying on a balance between excitation and inhibition to provide 
robustness to sources of noise including spike-time stochasticity and neuron deletion. These networks can be 
derived to mimic an arbitrary linear dynamical system through an auto-encoding  architecture38 or can learn 
to represent and mimic dynamical  systems37,40–42. We propose to adapt the learning machinery of this spiking 
architecture to produce deployable SNN-based solutions for arbitrary supervised tasks that are robust to noise 
and device mismatch.

In this work we present a method for training robust networks of Leaky Integrate and Fire (LIF) spiking 
neurons that can solve supervised temporal signal regression and classification tasks. We adopt a knowledge 
distillation approach, by first training a non-spiking Recurrent Neural Network (RNN) to solve the desired super-
vised task using Back-Propagation Through Time (BPTT)23. By then interpreting the activations of the RNN as 
a teacher dynamical system, we train an SNN using an adaptation of the learning rule from Ref.41 to mimic the 
RNN. We show that the resulting trained SNN is robust to multiple forms of noise, including simulated device 
mismatch, making our approach feasible for deployment on to mixed-signal devices without post-deployment 
calibration or learning. We compare our method with several other standard approaches for configuring SNNs, 
and show that ours is more robust to device mismatch.

Results
We assume a family of tasks defined by mappings c(t) → ŷ(t) , where c(t) ∈ R

d1 and ŷ(t) ∈ R
d2 are temporal 

signals with arbitrary dimensionality (Fig. 1a; see “Methods”). For simplicity of notation we do not write the 
temporal dependency “(t)” for the remainder of the paper. This definition encompasses any form of deterministic 
temporal signal processing or classification task without loss of generality. We refer to our network architecture 
as ADS (Arbitrary Dynamical System) spiking networks.

Our approach begins by training a non-spiking rate network to implement the arbitrary task mapping by 
learning the dynamical system

through modification of the recurrent weights �̂ ∈ R
N̂×N̂ ; encoding and decoding weights F̂ ∈ R

d1×N̂ and 
D̂ ∈ R

N̂×d2 ; biases b ∈ R
N̂ ; time constants τ ∈ R

N̂ ; and non-linear transfer function f (·) = tanh(·) . BPTT or 
any other suitable approach can be used to obtain the trained rate network.

We subsequently train a network of spiking neurons to emulate x̂ , with leaky membrane dynamics defined by

with spike trains o = V > Vthresh produced when exceeding threshold voltages Vthresh ; leak rate � ; and fast and 
slow recurrent weights �f and �s (Fig. 1b; see “Methods”). The decoded dynamics x̃ ≈ x̂ are obtained from the 
filtered spiking activity r with x̃ = Fr . By feeding back an error signal e = x̃ − x̂ under the control of a decaying 
feedback rate k, the spiking network is forced to remain close to the desired target dynamics. �f is initialised to 
provide fast balanced  feedback39, and �s is learned using the rule

under learning rate η (see “Methods” and Ref.41). Note that we do not require complex multi-compartmental 
neurons or dendritic nonlinearities in our neuron model, but use a simple leaky integrate-and-fire neuron that is 
compatible with compact mixed-signal neuromorphic  implementation2. Once the spiking network has learned 
to represent x̃ ≈ x̂ with high accuracy, we replace the rate network entirely with the spiking network (Fig. 1c).

τ ˙̂x =�̂f (x̂)+ F̂c + b

ŷ =D̂x̂

V̇ = −�V + F̂Fc −�f o+�so+ kFTe

�̇s = ηrFe
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Temporal XOR task. We begin by demonstrating our method using a nonlinear temporal XOR task (Fig. 2; 
see “Methods”). This task requires memory of past inputs to produce a delayed output, as well as a nonlinear 
mapping between the memory state and the output variable. A network receives a single input channel where 
pulses of varying width (100–230 ms) and sign are presented in sequence. The network must report the XOR of 
the two input pulses by delivering an output pulse of appropriate sign after the second of the two input pulses. 
A non-spiking RNN ( N̂ = 64 ) was trained to perform the temporal XOR task, using BPTT with Mean-Squared 
Error (MSE) loss against the target output signal (target and output signals shown in Fig. 2a). After 20 epochs 
of training with 500 samples per epoch, the RNN reached negligible error on 200 test samples ( ≈ 100% accu-
racy). A spiking ADS network ( N = 320 ) was then trained to perform the task, reaching equivalent accuracy 
(Fig. 2a,b).

Wake‑phrase detection. The temporal XOR task demonstrates that one-dimensional nonlinear tasks 
requiring memory can be learned through our method through supervised training. To show that our approach 
also works on more realistic tasks with complex input dynamics, we implemented an audio wake-phrase detec-
tion task (Fig. 3; see “Methods”). Briefly, real-time audio signals were extracted from a database of spoken wake 
phrases (“Hey Snips”  dataset44), or from a database of noise samples (“DEMAND”  dataset45). The target wake 
phrase data was augmented with noise at an SNR of 10 dB, then passed through a bank of 16 Butterworth filters 
with central frequencies spaced between 0.4 and 2.8 kHz (Fig. 3b). We trained a non-spiking RNN ( N̂ = 128 ) to 
perform the task with high accuracy, using BPTT under an MSE loss function against a smooth target classifica-
tion signal (Fig. 3d,e). We then trained a spiking ADS network ( N = 768 ) to implement the audio classification 
task. The non-spiking RNN achieved a testing accuracy of ≈ 90% , and our spiking imitator achieved ≈ 87% after 
training for 10 epochs on 1000 training samples.

Training considerations. We found that slower input, internal and target dynamics in the RNN were easier 
for the SNN to reconstruct than very rapid dynamics, depending on the neuron and synaptic time constants in 
the SNN. Longer and slower target responses yielded smoother ANN dynamics, which were easier for the spik-
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Figure 1.  Schematic overview of our supervised training approach. (a) A recurrent non-spiking neural network 
with N̂ neurons (“rate”) is trained using BPTT or a similar approach to implement the mapping c → ŷ , via 
encoding and decoding weights F̂ and D̂ , using the recurrent weights �̂ and resulting in the internal temporal 
representation of neural activity x̂ . (b) To train a robust spiking network for the task, a network with N  = N̂ LIF 
neurons (“ADS spiking”) is initialised with fast balanced feedback connections �f , analytically determined from 
a randomly chosen encoding matrix F . The ADS spiking network learns to represent the target signals x̂ with 
reference to an error signal e = x̃ − x̂ , by adapting slow feedback connections �s . (c) For inference, the ADS 
spiking network replaces the non-spiking rate network, and uses the encoding and decoding weights F̂ and D̂ to 
implement the trained task mapping c → ŷ.
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ing ADS network to learn. Our approach did not assume any dendritic non-linearities, or multi-compartmental 
dendrites with complex basis functions. Instead, the non-linearity of the spiking neuron dynamics is sufficient 
to learn the dynamics of a non-spiking ANN using the tanh nonlinearity.

We found that including a learning schedule for the error feedback rate k was important to achieve low 
reconstruction error. The factor k must drop to close to zero before the end of training, or else the SNN learns to 
rely on error feedback for accuracy, and generalisation will be poor once error feedback is removed. Conversely, 
if k drops too rapidly during training, the SNN is not held close to the desired target dynamics, and is unable to 
correctly learn the slow feedback weights �s . For these reasons, a well-chosen schedule for k is important during 
learning. In this work we chose a progressive stepping function that decrements k by a fixed amount after some 
number of signal iterations (see “Methods”). Setting k to a fixed value for some number of trials enables the SNN 
to adapt to the corresponding scale of error feedback by updating �s.

Robustness to noise sources. The slow learned recurrent feedback connections �s in the spiking network 
enable the SNN to reproduce a learned task. In contrast, the balanced fast recurrent feedback connections �f are 
designed to enable the SNN to encode the dynamic variables x̃ in a way that is robust to  perturbation38,39. We 
examined the robustness of our trained networks to several sources of noise (Fig. 4).

Device mismatch. We first introduced frozen parameter noise as a simulation of device mismatch present in 
mixed-signal neuromorphic implementation of event-driven neuron and synapses. We measured distributions 
of neuronal and synaptic parameters induced in silicon spiking neurons by device mismatch (see “Methods”; 
Fig. S1). Measurements were performed on 1 core of 256 analog neurons and synapses, on fabricated mixed-
signal neuromorphic DYNAP-SE  processors2. We observed a consistent relationship between the mean and vari-
ance of parameter distributions: the variance of the measured parameters increased linearly with the magnitude 
of the set parameter. We used this experimentally-recorded relationship to simulate mismatch in our spiking 
network implementations, simulating deployment of the networks on mixed-signal neuromorphic hardware. 
Mismatched parameters �′ were generated with �′ ∼ N (�, δ�) , where δ determines the level of mismatch, 
which we found experimentally to be between 10–20%. Under 20% simulated mismatch on weights, thresholds, 
biases, synaptic and neuronal time constants, our networks compensated well for the frozen parameter noise 
present in mixed-signal deployment (Fig. 4b).

Quantisation noise. In contrast to 64-bit floating point precision used by the non-spiking RNN, deployment 
of NN architectures in memory-constrained systems often uses low bit-depth precision for weights and neuron 
state. Mixed-signal neuromorphic architectures use analog voltages or currents to represent internal neural state, 
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Figure 2.  Our approach implements a supervised temporal non-linear sequence classification task to high 
accuracy. (a) The non-spiking RNN (green; N̂ = 64 neurons) is trained to perform a temporal XOR of the input 
(black), closely matching the target function (dotted). A spiking ADS network (dashed; N = 320 neurons) is 
trained to perform the same task. (b) The first six internal dynamical variables x̂ of the RNN are shown (solid), 
along with their reconstructed equivalents x̃ from the spiking ADS network (dashed). (c) The spiking activity of 
the ADS network. Panels (b) and (c) correspond to the first example in (a).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23376  | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

but can use some form of quantisation for synaptic weights. For example, DYNAP-SE2 processors impose a five-
bit representation of synaptic weights, as well as a restricted fan-in of 64 pre-synaptic input sources per  neuron2. 
We imposed weight quantisation constraints on our spiking model, and found that our networks compensated 
well for the resulting frozen quantisation noise (Fig. 4c; see “Methods”).

Thermal noise. Due to the analog representation of neuron and synapse states in mixed-signal neuromorphic 
chips, these state variables are subject to thermal noise. Thermal noise appears as white-noise stochastic fluctua-
tions of all states. We simulated thermal noise by adding noise ζ ∼ N (0, σ) to membrane potentials V, with 
σ = 1%, 5%, 10% scaled to the range between reset and threshold potentials Vreset and Vthresh . The spiking ADS 
network performed well in the presence of thermal noise (Fig. 4d).

Sudden neuron failure. The fast recurrent feedback connections �f present in spiking balanced networks have 
been shown to be able to compensate for neuron loss, where a subpopulation of spiking neurons is silenced dur-
ing a  trial38,41,46. We examined this property in our spiking ADS networks that include fast balanced feedback, 
and found that indeed our networks compensated well for neuron loss (Fig. 4e). In the absence of fast recurrent 
feedback (i.e. �f = 0 ), neuron silencing degraded the performance of the spiking ADS networks (Fig. S3).

100 ms

a Raw audio
Filtered audio

b
Target dynamics x̂
Recon. dynamics x̃

c

d
ŷrate
ỹspiking
ytarget

e

Figure 3.  Our approach performs a supervised spoken audio multi-dimensional classification task with high 
accuracy. (a) Audio samples were presented that either matched a spoken target phrase, or consisted of random 
speech or background noise. Raw audio (black) was filtered into 16 channels (orange) for classification by the 
network ( c ∈ R

16 ). (b) Internal RNN dynamics ( ̂x ; solid) was reconstructed accurately by the trained spiking 
ADS network ( ̃x ; dashed) based on the spiking activity (shown in c). An output signal was high (shown in d) 
when the audio sample matched the target signal, or low (shown in e) when the audio signal was background 
noise or other speech. Panels (a)–(d) correspond to a single trial.
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Comparison with alternative architectures. We have demonstrated that our method produces spiking 
implementations of arbitrary tasks, defined through supervised training. We compared our approach against 
several alternative methods for supervised training of SNNs, and evaluated the performance of these methods 
under simulated deployment on mixed-signal neuromorphic hardware:

• Reservoir Computing, in the form of a Liquid State  Machine18, relies on the random dynamics of an SNN to 
project an input over a high-dimensional temporal basis. A readout is then trained to map the random tem-
poral basis to a specified target signal, using regularised linear regression. Since perturbation of the weights 
and neural parameters will directly modify the temporal basis, we expect the Reservoir approach to perform 
poorly in the presence of mismatch.

• The spiking FORCE  algorithm32 trains an SNN to mimic a teacher dynamical system. We applied this algo-
rithm to a trained non-spiking RNNs to produce a trained SNN, similarly as in our spiking ADS approach.

• We implemented the BPTT algorithm to train an SNN end-to-end, using a surrogate gradient function similar 
to Ref.25. During training, these networks received input and target functions identical to those presented to 
the non-spiking RNN.

We first examined simulated deployment of all architectures by simulating parameter mismatch (Fig. 5; see 
“Methods”). We trained 10 networks for each architecture, and evaluated each network at three levels of mismatch 
( δ = 5%, 10%, 20% ) for 10 random mismatch trials of 500 samples each. We quantified the effect of mismatch on 
the performance of each network architecture by measuring the MSE between the SNN-generated output ỹ and 
the training target for that architecture. For the FORCE and ADS networks the training target was the output of 
the non-spiking RNN y . In the case of the Reservoir and BPTT architectures, the training target was the target 
task output ŷ . Under the lowest level of simulated mismatch (5%), the spiking ADS network showed the smallest 
degradation of network response (MSE drop 0.0094→0.0109; p ≈ 8× 10−14 , U test). The spiking ADS network 
also showed the smallest mismatched variance in MSE, reflecting that all mismatched networks responses were 
close to the desired target response (MSE std. dev. ADS 0.0076; Reservoir 11.4; FORCE 0.0244; BPTT 0.0105; 
p < 1× 10−2 in all cases, Levene test). The spiking Reservoir architecture fared the worst, with large degradation 
in MSE for even 5% mismatch (MSE drop 0.0157→1.2523; p ≈ 4× 10−51 , U test). At 10% simulated mismatch, 
comparable with deployment on mixed-signal neuromorphic devices, our spiking ADS network architecture 
maintained the best MSE (ADS 0.0161; Reservoir 6.19; FORCE 0.301; BPTT 0.308), performing significantly 
better than all other architectures ( p < 1× 10−6 in all cases, U test). At 20% simulated mismatch the performance 
of all architectures began to degrade, but our spiking ADS architecture maintained the best MSE (ADS 0.0470; 
Reservoir 10.5; FORCE 0.953; BPTT 0.565; p < 5× 10−2 in all cases, U test).

We compared the effect of quantisation noise on the four architectures, examining 6-2 bits of weight precision 
(Fig. S2; see “Methods”). Note that no architectures were trained using quantisation-aware methods, making this 

a Nominal b Mismatch c Quantisation d Thermal noise e Neuron death

Target dynamics x̂
Recon. dynamics x̃

200 ms

ŷrate
ỹspiking
ytarget

400 ms

MSE Perturbed
MSE Original

Figure 4.  Our trained spiking networks are robust to device mismatch and other sources of noise. Each column 
shows (top to bottom) the raw signal input; the ANN and reconstructed dynamics; the spiking activity of the 
ADS network; and the task output and target signals. (a) The trained ADS network reproduces the ANN internal 
and target signals with high accuracy. (b) In the presence of simulated mismatch in a mixed-signal silicon 
implementation of LIF neurons (20%; see “Methods”), the ADS network compensates well for the resulting 
frozen parameter noise. (c) Frozen weight noise introduced by quantisation of weights to 4 bits is compensated 
by the ADS spiking network. (d) The spiking network also compensates well in the presence of simulated 
thermal noise ( σ = 5% ). (e) The balanced fast recurrent feedback connections �f permit the ADS spiking 
network to compensate for sudden neuron death (40% of spiking neurons silenced between vertical bars).
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a direct test of inherent robustness to quantisation noise. The Reservoir architecture broke down for any quantisa-
tion level (chance task performance accuracy ≈ 50% ). The FORCE architecture performed well down to 5 bits 
(median accuracy 85%), beyond which MSE increased and performance decayed to chance level at 3 bits (med. 
acc. 50%). Both the ADS spiking network and BPTT architectures maintained good performance down to 4 bits 
of precision (med. acc. ADS 81%; BPTT 87%), decaying to chance level at 2 bits (med. acc. ADS 52%; BPTT 54%).

We compared the effect of thermal noise of the four architectures, simulated as membrane potential noise 
(Fig. S4; see “Methods”). The FORCE architecture was most robust to thermal noise, performing best at all noise 
levels (higher accuracy, p < 5× 10−2 ; lower MSE, p < 1× 10−3 except for highest level of noise; U test). All 
other architectures degraded progressively with increasing noise levels. Our spiking ADS network architecture 
showed the smallest degradation in general over increasing noise levels (MSE 0.0083-0.115; acc. 82–67%). The 
BPTT architecture also fared well, while dropping in accuracy for the largest noise level (med. acc. 56%).

Power comparison for mixed‑signal and traditional implementations. We estimated and com-
pared the power requirements between a direct implementation of the recurrent non-spiking network dynamics 
on commodity and ASIC hardware, against our mixed-signal spiking implementation of the network dynamics. 
We performed the power comparison for the real-time audio processing task outlined above, for varying recur-
rent network dimensions. Computation on the DYNAP-SE1 processor occurs continuously in real-time, with no 
clock. We selected the slowest clock speeds for the commodity hardware that are sufficient to support real-time 
operation.

We estimated the power requirements for an ultra-low-power digital microcontroller from ST Microelectron-
ics (STM32L552xx)47 (see Table S1). When operating at a 16MHz clock frequency and efficiently implementing 
only the recurrent dynamics required by a N̂ = 64-neuron non-spiking RNN, the low-power MCU was estimated 
to require 260µW when simulating with a time-step dt = 10ms , increasing to 1130µW for dt = 1ms . For the 
equivalent spiking network with N = 768 spiking neurons the DYNAP-SE1 processor requires 288µW when 
fabricated at 180 nm process, and 38µW when fabricated at 65 nm process. For larger non-spiking RNNs, the 
DYNAP-SE1 processor has an increasing energy advantage over the low-power MCU.

We also considered the implementation of the non-spiking RNN on an ultra-low-power ASIC,  EIE48. When 
implementing the dynamics required by a N̂ = 64-neuron non-spiking RNN, the ASIC required 11µW when 
simulating with a time-step dt = 10ms , increasing to 105µW for dt = 1ms . The ASIC displays a power advan-
tage when simulating dynamics for extremely small RNNs with N̂ < 35 , or with large time-steps dt = 10ms and 
N̂ < 200 . For larger networks and with more accurate temporal dynamics, the mixed-signal SNN implementa-
tion using our approach is more energy-efficient. For further details of the power estimations see “Methods” 
and Table S1.

Figure 5.  Under simulated deployment, our method is more robust to mismatch than standard training 
approaches. Shown are the distributions of errors (MSE) between the non-spiking teacher RNN and 
final trained SNN response for 10 random initialisations of training for each architecture and 10 random 
instantiations for each level of mismatch. Dashed black line: baseline network with no mismatch ( δ = 0% ) for 
each architecture. See text for statistical comparisons.
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Discussion
We propose a method for supervised training of spiking neural networks that can be deployed on mixed-signal 
neuromorphic hardware without requiring per-device retraining or calibration. Our approach interprets the 
activity of a non-spiking RNN as a teacher dynamical system. Using results from dynamical systems learning 
theory, our spiking networks learn to copy the pre-trained RNN and therefore perform arbitrary tasks over 
temporal signals. Our method is able to produce spiking networks that perform both simple and complex non-
linear temporal detection and classification tasks. We show that our networks are considerably more robust 
to several forms of parameter and state noise, compared with several other common techniques for training 
spiking networks.

Our networks are by design robust to common sources of network and parameter variation, both intra- and 
inter-chip, which must be compensated for when deploying to mixed-signal neuromorphic hardware. For levels 
of mismatch measured directly from neuromorphic devices, we show that common SNN network architectures 
break down badly. Usual approaches for compensating for mismatch-induced parameter variation on neuro-
morphic hardware employ either on-device  training49–53 or per-device  calibration14,15,53–55, entailing considerable 
additional expense in hardware complexity or testing time. In contrast, our method produces spiking networks 
that do not require calibration or retraining to maintain performance after deployment. As a result, our approach 
provides a solution for cost-efficient deployment of event-driven neuromorphic hardware.

The coding scheme used by our spiking networks has been shown to promote sparse  firing38. For mixed-signal 
neuromorphic hardware, power consumption is directly related to the network firing rate. Our method therefore 
produces networks that consume little power compared with alternative architectures that use firing-rate encod-
ing or do not promote sparse  activity18,23,32.

Our approach to obtain high-performing SNNs is at heart a knowledge-transfer approach, relying on copying 
the dynamics of a highly-performing non-spiking RNN. This two-step approach is needed because the learning 
rule for our SNN requires a task to be defined in terms of a dynamical system, and is not able to learn the dynam-
ics of an arbitrary input–output mapping (see Supplementary Methods). Consequently, our spiking networks can 
only perform as well as the pre-trained non-spiking RNN, and require multiple training steps to build a network 
for a new task. Nevertheless, training non-spiking RNNs is efficient when using automatic differentiation, just-
in-time compilation and automatic  batching56, and can be performed rapidly on GPUs. Our approach trades off 
between training time on commodity hardware, and immediate deployment on neuromorphic hardware with 
no per-device training required.

The robustness of our spiking ADS networks comes partially from the fast balanced recurrent feedback 
connections, which ensure sparse encoding and compensate in real-time for encoding  errors38,39. These weights 
also degrade under noise, but can be adapted in a local untrained fashion using local learning rules that are 
compatible with HW  implementation57.

Our supervised training approach is designed for temporal tasks, where input and target output signals evolve 
continuously. This set of tasks encompasses real-time ML-based signal processing and recognition, but is a poorer 
fit to high-resolution frame-based tasks such as frame-based image processing. These “one-shot” tasks can be 
mapped into the temporal domain by serialising input  frames58 or by using temporal coding  schemes59. We found 
anecdotally that temporal discontinuities in input and target time series made training our ADS networks more 
difficult, with the implication that a careful matching between task and network time constants is important.

Our approach builds single-population recurrent spiking networks, in contrast to deep non-recurrent net-
work architectures which are common in  202160. Recurrent spiking networks such as Liquid State Machines 
(LSMs) have been shown to be universal function  approximators61, but RNNs do not perform the progressive 
task decomposition that can appear in deep feed-forward  networks62. Interpretability of the internal state of 
recurrent networks such as ours is therefore potentially more difficult than for deep feedforward architectures.

Neuromorphic implementation of spiking neural networks has been hailed as the next generation of com-
puting technology, with the potential to bring ultra-low-power non-von-Neumann computation to embedded 
devices. However, parameter mismatch has been a severe hurdle to large-scale deployment of mixed-signal 
neuromorphic hardware, as it directly attacks the reliability of the computational elements — a problem that com-
modity digital hardware generally does not face. Previous solutions to device mismatch have been impractical, as 
they require expensive per-device calibration or training prior to deployment, or increased hardware complex-
ity (and therefore cost) in the form of on-device learning circuits. We have provided a programming method 
for mixed-signal neuromorphic hardware that frees application developers from the necessity to worry about 
computational unreliability, and does not require per-device handling during or after deployment. Our approach 
therefore removes a significant obstacle to the large-scale and low-cost deployment of neuromorphic devices.

Methods
We trained and simulated ANNs and SNNs using  Rockpool63, an open-source Python package for machine 
learning of SNNs. We implemented a liquid state machine  SNN18; spiking FORCE  network32; and a BPTT-trained 
 SNN23 using  Jax56 and custom-written forward-Euler solvers. Parameters for all architectures are given in the 
Supplementary Material. Code to generate all models, analysis and figures in this paper are available from https:// 
github. com/ synse nse/ Robust- Class ifica tion- EBN.

Temporal XOR task. We created signals of a total duration of 1 second, of which the first two thirds were 
dedicated to the input and the last third to the target (Fig. 2). During the input time-frame, two activity bumps 
were created on a single input channel representing the binary inputs to the logical XOR operation. The bumps 
had varying length (uniformly drawn between 66–157 ms) and magnitude ±1 , and were smoothed with a Gauss-
ian filter to produce smooth activity transitions. In the final third of the signal we defined a target bump of 

https://github.com/synsense/Robust-Classification-EBN
https://github.com/synsense/Robust-Classification-EBN
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magnitude ±1 , indicating the true output of the XOR operation. The target bump was also smoothed with a 
Gaussian filter. We trained a rate network ( N̂ = 64 ) to high performance on the XOR task, then subsequently 
trained a spiking model ( N = 320 ) to follow the dynamics of the trained rate network . We used a fixed learning 
rate η = 1× 10−5 and fixed error feedback rate k = 75 during SNN training. Output classification from both 
networks was determined by the network output passing the thresholds ±0.5.

Speech classification task. We drew samples from the “Hey Snips”  dataset44, augmented with noise sam-
ples from the DEMAND  dataset45, with a signal-to-noise ratio of 10 dB . Each signal had a fixed length of 5 s and 
was pre-processed using a 16-channel bank of 2nd-order Butterworth filters with evenly-spaced centre frequen-
cies ranging 0.4–2.8 kHz. The output of each filter was rectified with abs(·) , then smoothed with a 2nd order 
Butterworth low-pass filter with cut-off frequency 0.3 kHz to provide an estimate of the instantaneous power in 
each frequency band. The rate network for the speech classification task ( N̂ = 128 ) was trained for 1 epoch on 
10 000 samples to achieve roughly the same performance as the spiking network trained with BPTT. We trained 
spiking networks ( N = 768 ; τmem = 50ms ; τfast = 1ms ; τslow = 70ms ) for 5 epochs on 1000 training samples, 
validated on 500 validation samples and 1000 test samples. To perform a classification we integrated the output 
of the network when it passed a threshold of 0.5. We then applied a subsequent threshold on this integral, deter-
mined by a validation set, to determine the final prediction. We used a fixed learning rate η = 1× 10−4 and a 
decaying step function for the error feedback factor k (from 200–25 in 8 evenly-spaced steps).

Spiking neuron model and initialisation. We used an LIF neuron model with a membrane time con-
stant τmem = 50ms ; reset potential Vreset = 0 ; resting potential Vrest = 0.5 ; and spiking threshold Vthresh = 1 . 
The membrane potential dynamics for the neuron model were given by

with input current Iinp ; fast and slow recurrent post-synaptic potentials (PSPs) Ifast and Islow ; error current 
Ie = kDTe ; and noise current η . Output spikes from a neuron are given by o(t) = V > Vthresh . Synaptic dynam-
ics were described by

with input synaptic weights W; synaptic time constants τsyn = 1ms and 70ms for fast and slow synapses, respec-
tively; and simulation time step �t . Feed-forward and decoding weights were initialised using a standard normal 
distribution scaled by the number of input/output dimensions ( N̂ ). Fast balanced recurrent feedback connections 
were initialised and rescaled according to the threshold and reset potential, as described in Ref.38. The spiking 
network was simulated using a forward Euler solver with a simulation time step of 1ms.

Non‑spiking network. The dynamics of a neuron in the non-spiking RNN were described by

with input c(t); encoding weights F̂ ; recurrent weights �̂ ; non-linearity f (·) = tanh(·) ; bias b; and noise term 
ǫ . Time constants τ were initialised with linearly spaced values ( 10− 100ms ). The trainable parameters in this 
network are the time constants τ ; the encoding and recurrent weights F̂ and �̂ ; and the biases b. No noise was 
applied during training or inference ( ǫ = 0).

Measurements of parameter mismatch. Using recordings from fabricated mixed-signal neuromor-
phic chips we measured levels of parameter mismatch (i.e. fixed substrate noise pattern) present in hardware. In 
particular, for DYNAP-SE2, a neuromorphic processor which emulates LIF neuron, AMPA and NMDA synapse 
models with analog circuits, we measured neuron and synaptic time constants, and synaptic weights for individ-
ual neuron units, by recording and analysing the voltage traces produced by these circuits. We observed levels of 
mismatch in the order of 10–20% for individual parameters, with widths of the distributions being proportional 
to the means (see Fig. S1).

Power estimates. Since the input and output weighting differs between the spiking and non-spiking net-
work, and comprises only a small portion of the parameters, we limited our power comparison to the recur-
rent portion of the network. Updating the recurrent dynamics for the non-spiking rate network requires 
multiply-accumulate operations for the recurrent input rt = �̂f (xt) (neglecting the transfer function f (·) ); 
multiply-accumulate operations for the Euler solver update xt+1 = xt + ẋt ∗ dt/τ ; and accumulate operations 
for ẋt = −xt + it + b+ rt . With N̂ = 64 neurons, these amount to 8576 OPs, with MACs counted as two OPs. 
With a time-step of dt = 1ms , this corresponds to 8.58GOPS (Giga-OPs per second). We estimated the power 
to implement our RNN on non-neuromorphic NN accelerators by using previously reported power as GOPS/W. 
We examined only chips with published data for total power, and where we could identify the fabrication node 
for the published chip. We re-scaled power estimates to normalise against the fabrication node, providing esti-
mates for 65 nm nodes in all cases. For the ultra-low-power microcontroller (STM32L552xx), we assumed that 
the MCU switched to a low-power sleep mode once the dynamics for a given time-step were computed. This 

τmem
∂V

∂t
= Vrest − V + Iinp + Ifast + Islow + Ie + ηn

τsyn
∂I∗

∂t
= −I∗ + (Wo(t)τsyn)/�t

τj ẋj = −xj + F̂cj(t)+ �̂f (x)+ bj + ǫj
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permits the MCU to save power when only a portion of computing resources is required to simulate real-time 
dynamics.

Again neglecting synaptic operations required for input and output, we estimate the energy for routing a single 
recurrent spike on the DYNAP-SE1 mixed-signal neuromorphic processor as 3.3 nJ . We found that the firing rate 
of the spiking population is upper-bounded by approximately 3Hz per neuron during simulation. For the spiking 
recurrent population with N = 768 , this corresponds to energy usage of 7.6µW dynamic power consumption. 
Static power consumption for the DYNAP-SE1 processor is estimated at 30µW . Table S1 compares the energy 
consumption of running the ANN on an efficient  ASIC48, and a low-power general purpose  MCU64 to the energy 
consumption of the DYNAP-SE1 using the spiking network with 12 times more neurons.

Simulated mismatch. To simulate parameter mismatch in mixed-signal neuromorphic hardware we 
derived a model where the values for each parameter follow a normal distribution with the standard deviation 
depending linearly on the mean. The mismatched parameters �′ are obtained with �′ ∼ N (�, δ�) where δ 
determines the level of mismatch. We considered three levels of mismatch: 5, 10 and 20%.

Quantisation noise. We introduced quantisation noise by reducing the bit-precision of all weights 
post-training to 2,  3,  4,  5 and 6 bits. The weights were quantised by setting Ws

disc
= ρ⌊W/ρ⌉ where 

ρ = (max(Ws
full)−min(Ws

full))/(2
b − 1) and ⌊.⌉ is the rounding operator.

Simulated thermal noise. Thermal noise is inherent in neuromorphic devices and can be modeled by 
Gaussian noise on the input currents. We applied three different levels of thermal noise ( σ = 0.01, 0.05, 0.1 ) that 
was scaled according to the difference between Vreset and Vthresh to assure equal amounts of noise for neuron 
model and network architecture.

Neuron silencing. We created four network instances grouped into two pairs: One pair was trained with 
the fast recurrent feedback connections �f as described above, and the other pair with �f = 0 . We then clamped 
40% of the neurons of one instance of both pairs to Vreset while evaluating 1000 test samples.

Benchmark network architectures. We investigated the robustness to simulated noise for four differ-
ent learning paradigms, including the FORCE  method32,  BPTT23 and reservoir  computing18. All parameters for 
these methods are given in Supplementary Material.

Statistical tests. All statistical comparisons were double-sided Mann–Whitney U tests unless stated oth-
erwise.

Data availability
Code to generate all models, analysis and figures in this paper are available from https:// github. com/ synse nse/ 
Robust- Class ifica tion- EBN.
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