
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports

Supervised training of spiking
neural networks for robust
deployment on mixed‑signal
neuromorphic processors
Julian Büchel1,2, Dmitrii Zendrikov2, Sergio Solinas3, Giacomo Indiveri1,2 & Dylan R. Muir1*

Mixed‑signal analog/digital circuits emulate spiking neurons and synapses with extremely high energy
efficiency, an approach known as “neuromorphic engineering”. However, analog circuits are sensitive
to process‑induced variation among transistors in a chip (“device mismatch”). For neuromorphic
implementation of Spiking Neural Networks (SNNs), mismatch causes parameter variation between
identically‑configured neurons and synapses. Each chip exhibits a different distribution of neural
parameters, causing deployed networks to respond differently between chips. Current solutions
to mitigate mismatch based on per‑chip calibration or on‑chip learning entail increased design
complexity, area and cost, making deployment of neuromorphic devices expensive and difficult. Here
we present a supervised learning approach that produces SNNs with high robustness to mismatch and
other common sources of noise. Our method trains SNNs to perform temporal classification tasks by
mimicking a pre‑trained dynamical system, using a local learning rule from non‑linear control theory.
We demonstrate our method on two tasks requiring temporal memory, and measure the robustness
of our approach to several forms of noise and mismatch. We show that our approach is more robust
than common alternatives for training SNNs. Our method provides robust deployment of pre‑
trained networks on mixed‑signal neuromorphic hardware, without requiring per‑device training or
calibration.

Dedicated hardware implementations of Spiking Neural Networks (SNNs) are an extremely energy-efficient
computational substrate on which to perform signal processing and machine learning inference tasks1–8. Opti-
mal energy efficiency is achieved when using mixed-signal analog/digital neuron and synapse circuits following
an approach known as “neuromorphic engineering”9. In these hardware devices, large arrays of neurons and
synapses are physically instantiated in silicon, and coupled with flexible digital routing and interfacing logic in
“mixed-signal” designs2,6.

However, all analog silicon circuits suffer from process variation across the surface of a chip, changing the
operating characteristics of otherwise identical transistors—known as “device mismatch”10,11. In the case of spik-
ing neurons implemented using analog or mixed-signal circuits, mismatch is expressed as parameter variation
between neurons and synapses that are otherwise configured identically12–15. The parameter mismatch on each
device appears as frozen parameter noise, introducing variance between neurons and synapses in time constants,
thresholds, and weight strength.

Parameter noise in mixed-signal neuromorphic devices can be exploited as a symmetry-breaking mecha-
nism, especially for neural network architectures that rely on randomness and stochasticity as a computational
 mechanism16–20, or can be exploited to improve in-situ training of Bayesian networks via MCMC sampling21.
However, random architectures can raise problems for commercial deployment of applications on mixed-signal
devices: the parameter noise would affect neuronal response dynamics, and these device to device variations
could affect and degrade the system performance of individual chips. A possible solution is to perform post-
production device calibration or re-training, but this would raise deployment costs significantly and not scale
well with deployment to large numbers of devices. In addition to device mismatch, mixed-signal neuromorphic
systems also suffer from other sources of noise, such as thermal noise or quantisation noise introduced by
restricting synaptic weights to a low bit-depth.

OPEN

1SynSense, Thurgauerstrasse 40, 8050 Zurich, Switzerland. 2Institute of Neuroinformatics, University of Zurich and
ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland. 3Department of Biomedical Science, University of
Sassari, Piazza Università, 21, 07100 Sassari, Sardegna, Italy. *email: dylan.muir@synsense.ai

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-02779-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

In contrast to current mainstream Deep Neural Networks (DNNs), spiking networks suffer from a severe con-
figurability problem. The backpropagation algorithm permits configuration of extremely deep NNs for arbitrary
 tasks22, and is effective also for network models with temporal state23, but is difficult to apply to the discontinu-
ous dynamics of SNNs24–26. Methods to approximate the gradient calculations by using surrogate functions27,
eligibility traces28 or adjoint networks29 have provided a way to adapt backpropagation for spiking networks.
Non-local information is required for strict implementation of the backpropagation algorithm, but random
 feedback30 and local losses31 have been employed with some success to train multi-layer spiking networks. Alter-
native approaches using initial random dynamics coupled with error feedback and spike-based learning rules
can permit recurrent SNNs to mimic a teacher dynamical system32,33. Strictly-local spike-timing-based learning
rules, inspired by results in experimental neuroscience34, have been implemented in digital and mixed-signal
neuromorphic devices, as they provide a better match to the distribution of information across neuromor-
phic chips35. Unfortunately, local spike-dependent rules such as Spike-Timing Dependent Plasticity (STDP) are
themselves not able to perform supervised training of arbitrary tasks, since they do not permit error feedback
or error-based modification of parameters. In both cases, implementing strictly local or backpropagation-based
learning infrastructure on-chip adds considerable complexity, size and therefore cost to neuromorphic hardware
designs. This cost makes it impractical to use on-chip learning and adaptation to solve the mismatch problem
on mixed-signal architectures.

Robustness to noise and variability can be approached from the architectural side. For example, a network
architecture search approach can identify networks that are essentially agnostic to precise weight values36. How-
ever, these networks rely on complex combinations of transfer functions which do not map to neuromorphic
SNN designs.

Alternatively, a class of analytically-derived network architectures have been proposed for spiking networks,
known as Efficient Balanced Networks37–43, relying on a balance between excitation and inhibition to provide
robustness to sources of noise including spike-time stochasticity and neuron deletion. These networks can be
derived to mimic an arbitrary linear dynamical system through an auto-encoding architecture38 or can learn
to represent and mimic dynamical systems37,40–42. We propose to adapt the learning machinery of this spiking
architecture to produce deployable SNN-based solutions for arbitrary supervised tasks that are robust to noise
and device mismatch.

In this work we present a method for training robust networks of Leaky Integrate and Fire (LIF) spiking
neurons that can solve supervised temporal signal regression and classification tasks. We adopt a knowledge
distillation approach, by first training a non-spiking Recurrent Neural Network (RNN) to solve the desired super-
vised task using Back-Propagation Through Time (BPTT)23. By then interpreting the activations of the RNN as
a teacher dynamical system, we train an SNN using an adaptation of the learning rule from Ref.41 to mimic the
RNN. We show that the resulting trained SNN is robust to multiple forms of noise, including simulated device
mismatch, making our approach feasible for deployment on to mixed-signal devices without post-deployment
calibration or learning. We compare our method with several other standard approaches for configuring SNNs,
and show that ours is more robust to device mismatch.

Results
We assume a family of tasks defined by mappings c(t) → ŷ(t) , where c(t) ∈ R

d1 and ŷ(t) ∈ R
d2 are temporal

signals with arbitrary dimensionality (Fig. 1a; see “Methods”). For simplicity of notation we do not write the
temporal dependency “(t)” for the remainder of the paper. This definition encompasses any form of deterministic
temporal signal processing or classification task without loss of generality. We refer to our network architecture
as ADS (Arbitrary Dynamical System) spiking networks.

Our approach begins by training a non-spiking rate network to implement the arbitrary task mapping by
learning the dynamical system

through modification of the recurrent weights �̂ ∈ R
N̂×N̂ ; encoding and decoding weights F̂ ∈ R

d1×N̂ and
D̂ ∈ R

N̂×d2 ; biases b ∈ R
N̂ ; time constants τ ∈ R

N̂ ; and non-linear transfer function f (·) = tanh(·) . BPTT or
any other suitable approach can be used to obtain the trained rate network.

We subsequently train a network of spiking neurons to emulate x̂ , with leaky membrane dynamics defined by

with spike trains o = V > Vthresh produced when exceeding threshold voltages Vthresh ; leak rate � ; and fast and
slow recurrent weights �f and �s (Fig. 1b; see “Methods”). The decoded dynamics x̃ ≈ x̂ are obtained from the
filtered spiking activity r with x̃ = Fr . By feeding back an error signal e = x̃ − x̂ under the control of a decaying
feedback rate k, the spiking network is forced to remain close to the desired target dynamics. �f is initialised to
provide fast balanced feedback39, and �s is learned using the rule

under learning rate η (see “Methods” and Ref.41). Note that we do not require complex multi-compartmental
neurons or dendritic nonlinearities in our neuron model, but use a simple leaky integrate-and-fire neuron that is
compatible with compact mixed-signal neuromorphic implementation2. Once the spiking network has learned
to represent x̃ ≈ x̂ with high accuracy, we replace the rate network entirely with the spiking network (Fig. 1c).

τ ˙̂x =�̂f (x̂)+ F̂c + b

ŷ =D̂x̂

V̇ = −�V + F̂Fc −�f o+�so+ kFTe

�̇s = ηrFe

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

Temporal XOR task. We begin by demonstrating our method using a nonlinear temporal XOR task (Fig. 2;
see “Methods”). This task requires memory of past inputs to produce a delayed output, as well as a nonlinear
mapping between the memory state and the output variable. A network receives a single input channel where
pulses of varying width (100–230 ms) and sign are presented in sequence. The network must report the XOR of
the two input pulses by delivering an output pulse of appropriate sign after the second of the two input pulses.
A non-spiking RNN (N̂ = 64) was trained to perform the temporal XOR task, using BPTT with Mean-Squared
Error (MSE) loss against the target output signal (target and output signals shown in Fig. 2a). After 20 epochs
of training with 500 samples per epoch, the RNN reached negligible error on 200 test samples (≈ 100% accu-
racy). A spiking ADS network (N = 320) was then trained to perform the task, reaching equivalent accuracy
(Fig. 2a,b).

Wake‑phrase detection. The temporal XOR task demonstrates that one-dimensional nonlinear tasks
requiring memory can be learned through our method through supervised training. To show that our approach
also works on more realistic tasks with complex input dynamics, we implemented an audio wake-phrase detec-
tion task (Fig. 3; see “Methods”). Briefly, real-time audio signals were extracted from a database of spoken wake
phrases (“Hey Snips” dataset44), or from a database of noise samples (“DEMAND” dataset45). The target wake
phrase data was augmented with noise at an SNR of 10 dB, then passed through a bank of 16 Butterworth filters
with central frequencies spaced between 0.4 and 2.8 kHz (Fig. 3b). We trained a non-spiking RNN (N̂ = 128) to
perform the task with high accuracy, using BPTT under an MSE loss function against a smooth target classifica-
tion signal (Fig. 3d,e). We then trained a spiking ADS network (N = 768) to implement the audio classification
task. The non-spiking RNN achieved a testing accuracy of ≈ 90% , and our spiking imitator achieved ≈ 87% after
training for 10 epochs on 1000 training samples.

Training considerations. We found that slower input, internal and target dynamics in the RNN were easier
for the SNN to reconstruct than very rapid dynamics, depending on the neuron and synaptic time constants in
the SNN. Longer and slower target responses yielded smoother ANN dynamics, which were easier for the spik-

rate

a

b

c

ADS spiking

rate

T

T

ADS spiking

T

Figure 1. Schematic overview of our supervised training approach. (a) A recurrent non-spiking neural network
with N̂ neurons (“rate”) is trained using BPTT or a similar approach to implement the mapping c → ŷ , via
encoding and decoding weights F̂ and D̂ , using the recurrent weights �̂ and resulting in the internal temporal
representation of neural activity x̂ . (b) To train a robust spiking network for the task, a network with N = N̂ LIF
neurons (“ADS spiking”) is initialised with fast balanced feedback connections �f , analytically determined from
a randomly chosen encoding matrix F . The ADS spiking network learns to represent the target signals x̂ with
reference to an error signal e = x̃ − x̂ , by adapting slow feedback connections �s . (c) For inference, the ADS
spiking network replaces the non-spiking rate network, and uses the encoding and decoding weights F̂ and D̂ to
implement the trained task mapping c → ŷ.

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

ing ADS network to learn. Our approach did not assume any dendritic non-linearities, or multi-compartmental
dendrites with complex basis functions. Instead, the non-linearity of the spiking neuron dynamics is sufficient
to learn the dynamics of a non-spiking ANN using the tanh nonlinearity.

We found that including a learning schedule for the error feedback rate k was important to achieve low
reconstruction error. The factor k must drop to close to zero before the end of training, or else the SNN learns to
rely on error feedback for accuracy, and generalisation will be poor once error feedback is removed. Conversely,
if k drops too rapidly during training, the SNN is not held close to the desired target dynamics, and is unable to
correctly learn the slow feedback weights �s . For these reasons, a well-chosen schedule for k is important during
learning. In this work we chose a progressive stepping function that decrements k by a fixed amount after some
number of signal iterations (see “Methods”). Setting k to a fixed value for some number of trials enables the SNN
to adapt to the corresponding scale of error feedback by updating �s.

Robustness to noise sources. The slow learned recurrent feedback connections �s in the spiking network
enable the SNN to reproduce a learned task. In contrast, the balanced fast recurrent feedback connections �f are
designed to enable the SNN to encode the dynamic variables x̃ in a way that is robust to perturbation38,39. We
examined the robustness of our trained networks to several sources of noise (Fig. 4).

Device mismatch. We first introduced frozen parameter noise as a simulation of device mismatch present in
mixed-signal neuromorphic implementation of event-driven neuron and synapses. We measured distributions
of neuronal and synaptic parameters induced in silicon spiking neurons by device mismatch (see “Methods”;
Fig. S1). Measurements were performed on 1 core of 256 analog neurons and synapses, on fabricated mixed-
signal neuromorphic DYNAP-SE processors2. We observed a consistent relationship between the mean and vari-
ance of parameter distributions: the variance of the measured parameters increased linearly with the magnitude
of the set parameter. We used this experimentally-recorded relationship to simulate mismatch in our spiking
network implementations, simulating deployment of the networks on mixed-signal neuromorphic hardware.
Mismatched parameters �′ were generated with �′ ∼ N (�, δ�) , where δ determines the level of mismatch,
which we found experimentally to be between 10–20%. Under 20% simulated mismatch on weights, thresholds,
biases, synaptic and neuronal time constants, our networks compensated well for the frozen parameter noise
present in mixed-signal deployment (Fig. 4b).

Quantisation noise. In contrast to 64-bit floating point precision used by the non-spiking RNN, deployment
of NN architectures in memory-constrained systems often uses low bit-depth precision for weights and neuron
state. Mixed-signal neuromorphic architectures use analog voltages or currents to represent internal neural state,

b Target dynamics x̂
Recon. dynamics x̃

R
ec
ur
re
nt

po
pu

la
ti
on

100 ms

c

100 ms

a
Input c
ŷrate
ytarget
ỹspiking

Figure 2. Our approach implements a supervised temporal non-linear sequence classification task to high
accuracy. (a) The non-spiking RNN (green; N̂ = 64 neurons) is trained to perform a temporal XOR of the input
(black), closely matching the target function (dotted). A spiking ADS network (dashed; N = 320 neurons) is
trained to perform the same task. (b) The first six internal dynamical variables x̂ of the RNN are shown (solid),
along with their reconstructed equivalents x̃ from the spiking ADS network (dashed). (c) The spiking activity of
the ADS network. Panels (b) and (c) correspond to the first example in (a).

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

but can use some form of quantisation for synaptic weights. For example, DYNAP-SE2 processors impose a five-
bit representation of synaptic weights, as well as a restricted fan-in of 64 pre-synaptic input sources per neuron2.
We imposed weight quantisation constraints on our spiking model, and found that our networks compensated
well for the resulting frozen quantisation noise (Fig. 4c; see “Methods”).

Thermal noise. Due to the analog representation of neuron and synapse states in mixed-signal neuromorphic
chips, these state variables are subject to thermal noise. Thermal noise appears as white-noise stochastic fluctua-
tions of all states. We simulated thermal noise by adding noise ζ ∼ N (0, σ) to membrane potentials V, with
σ = 1%, 5%, 10% scaled to the range between reset and threshold potentials Vreset and Vthresh . The spiking ADS
network performed well in the presence of thermal noise (Fig. 4d).

Sudden neuron failure. The fast recurrent feedback connections �f present in spiking balanced networks have
been shown to be able to compensate for neuron loss, where a subpopulation of spiking neurons is silenced dur-
ing a trial38,41,46. We examined this property in our spiking ADS networks that include fast balanced feedback,
and found that indeed our networks compensated well for neuron loss (Fig. 4e). In the absence of fast recurrent
feedback (i.e. �f = 0), neuron silencing degraded the performance of the spiking ADS networks (Fig. S3).

100 ms

a Raw audio
Filtered audio

b
Target dynamics x̂
Recon. dynamics x̃

c

d
ŷrate
ỹspiking
ytarget

e

Figure 3. Our approach performs a supervised spoken audio multi-dimensional classification task with high
accuracy. (a) Audio samples were presented that either matched a spoken target phrase, or consisted of random
speech or background noise. Raw audio (black) was filtered into 16 channels (orange) for classification by the
network (c ∈ R

16). (b) Internal RNN dynamics (̂x ; solid) was reconstructed accurately by the trained spiking
ADS network (̃x ; dashed) based on the spiking activity (shown in c). An output signal was high (shown in d)
when the audio sample matched the target signal, or low (shown in e) when the audio signal was background
noise or other speech. Panels (a)–(d) correspond to a single trial.

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

Comparison with alternative architectures. We have demonstrated that our method produces spiking
implementations of arbitrary tasks, defined through supervised training. We compared our approach against
several alternative methods for supervised training of SNNs, and evaluated the performance of these methods
under simulated deployment on mixed-signal neuromorphic hardware:

• Reservoir Computing, in the form of a Liquid State Machine18, relies on the random dynamics of an SNN to
project an input over a high-dimensional temporal basis. A readout is then trained to map the random tem-
poral basis to a specified target signal, using regularised linear regression. Since perturbation of the weights
and neural parameters will directly modify the temporal basis, we expect the Reservoir approach to perform
poorly in the presence of mismatch.

• The spiking FORCE algorithm32 trains an SNN to mimic a teacher dynamical system. We applied this algo-
rithm to a trained non-spiking RNNs to produce a trained SNN, similarly as in our spiking ADS approach.

• We implemented the BPTT algorithm to train an SNN end-to-end, using a surrogate gradient function similar
to Ref.25. During training, these networks received input and target functions identical to those presented to
the non-spiking RNN.

We first examined simulated deployment of all architectures by simulating parameter mismatch (Fig. 5; see
“Methods”). We trained 10 networks for each architecture, and evaluated each network at three levels of mismatch
(δ = 5%, 10%, 20%) for 10 random mismatch trials of 500 samples each. We quantified the effect of mismatch on
the performance of each network architecture by measuring the MSE between the SNN-generated output ỹ and
the training target for that architecture. For the FORCE and ADS networks the training target was the output of
the non-spiking RNN y . In the case of the Reservoir and BPTT architectures, the training target was the target
task output ŷ . Under the lowest level of simulated mismatch (5%), the spiking ADS network showed the smallest
degradation of network response (MSE drop 0.0094→0.0109; p ≈ 8× 10−14 , U test). The spiking ADS network
also showed the smallest mismatched variance in MSE, reflecting that all mismatched networks responses were
close to the desired target response (MSE std. dev. ADS 0.0076; Reservoir 11.4; FORCE 0.0244; BPTT 0.0105;
p < 1× 10−2 in all cases, Levene test). The spiking Reservoir architecture fared the worst, with large degradation
in MSE for even 5% mismatch (MSE drop 0.0157→1.2523; p ≈ 4× 10−51 , U test). At 10% simulated mismatch,
comparable with deployment on mixed-signal neuromorphic devices, our spiking ADS network architecture
maintained the best MSE (ADS 0.0161; Reservoir 6.19; FORCE 0.301; BPTT 0.308), performing significantly
better than all other architectures (p < 1× 10−6 in all cases, U test). At 20% simulated mismatch the performance
of all architectures began to degrade, but our spiking ADS architecture maintained the best MSE (ADS 0.0470;
Reservoir 10.5; FORCE 0.953; BPTT 0.565; p < 5× 10−2 in all cases, U test).

We compared the effect of quantisation noise on the four architectures, examining 6-2 bits of weight precision
(Fig. S2; see “Methods”). Note that no architectures were trained using quantisation-aware methods, making this

a Nominal b Mismatch c Quantisation d Thermal noise e Neuron death

Target dynamics x̂
Recon. dynamics x̃

200 ms

ŷrate
ỹspiking
ytarget

400 ms

MSE Perturbed
MSE Original

Figure 4. Our trained spiking networks are robust to device mismatch and other sources of noise. Each column
shows (top to bottom) the raw signal input; the ANN and reconstructed dynamics; the spiking activity of the
ADS network; and the task output and target signals. (a) The trained ADS network reproduces the ANN internal
and target signals with high accuracy. (b) In the presence of simulated mismatch in a mixed-signal silicon
implementation of LIF neurons (20%; see “Methods”), the ADS network compensates well for the resulting
frozen parameter noise. (c) Frozen weight noise introduced by quantisation of weights to 4 bits is compensated
by the ADS spiking network. (d) The spiking network also compensates well in the presence of simulated
thermal noise (σ = 5%). (e) The balanced fast recurrent feedback connections �f permit the ADS spiking
network to compensate for sudden neuron death (40% of spiking neurons silenced between vertical bars).

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

a direct test of inherent robustness to quantisation noise. The Reservoir architecture broke down for any quantisa-
tion level (chance task performance accuracy ≈ 50%). The FORCE architecture performed well down to 5 bits
(median accuracy 85%), beyond which MSE increased and performance decayed to chance level at 3 bits (med.
acc. 50%). Both the ADS spiking network and BPTT architectures maintained good performance down to 4 bits
of precision (med. acc. ADS 81%; BPTT 87%), decaying to chance level at 2 bits (med. acc. ADS 52%; BPTT 54%).

We compared the effect of thermal noise of the four architectures, simulated as membrane potential noise
(Fig. S4; see “Methods”). The FORCE architecture was most robust to thermal noise, performing best at all noise
levels (higher accuracy, p < 5× 10−2 ; lower MSE, p < 1× 10−3 except for highest level of noise; U test). All
other architectures degraded progressively with increasing noise levels. Our spiking ADS network architecture
showed the smallest degradation in general over increasing noise levels (MSE 0.0083-0.115; acc. 82–67%). The
BPTT architecture also fared well, while dropping in accuracy for the largest noise level (med. acc. 56%).

Power comparison for mixed‑signal and traditional implementations. We estimated and com-
pared the power requirements between a direct implementation of the recurrent non-spiking network dynamics
on commodity and ASIC hardware, against our mixed-signal spiking implementation of the network dynamics.
We performed the power comparison for the real-time audio processing task outlined above, for varying recur-
rent network dimensions. Computation on the DYNAP-SE1 processor occurs continuously in real-time, with no
clock. We selected the slowest clock speeds for the commodity hardware that are sufficient to support real-time
operation.

We estimated the power requirements for an ultra-low-power digital microcontroller from ST Microelectron-
ics (STM32L552xx)47 (see Table S1). When operating at a 16MHz clock frequency and efficiently implementing
only the recurrent dynamics required by a N̂ = 64-neuron non-spiking RNN, the low-power MCU was estimated
to require 260µW when simulating with a time-step dt = 10ms , increasing to 1130µW for dt = 1ms . For the
equivalent spiking network with N = 768 spiking neurons the DYNAP-SE1 processor requires 288µW when
fabricated at 180 nm process, and 38µW when fabricated at 65 nm process. For larger non-spiking RNNs, the
DYNAP-SE1 processor has an increasing energy advantage over the low-power MCU.

We also considered the implementation of the non-spiking RNN on an ultra-low-power ASIC, EIE48. When
implementing the dynamics required by a N̂ = 64-neuron non-spiking RNN, the ASIC required 11µW when
simulating with a time-step dt = 10ms , increasing to 105µW for dt = 1ms . The ASIC displays a power advan-
tage when simulating dynamics for extremely small RNNs with N̂ < 35 , or with large time-steps dt = 10ms and
N̂ < 200 . For larger networks and with more accurate temporal dynamics, the mixed-signal SNN implementa-
tion using our approach is more energy-efficient. For further details of the power estimations see “Methods”
and Table S1.

Figure 5. Under simulated deployment, our method is more robust to mismatch than standard training
approaches. Shown are the distributions of errors (MSE) between the non-spiking teacher RNN and
final trained SNN response for 10 random initialisations of training for each architecture and 10 random
instantiations for each level of mismatch. Dashed black line: baseline network with no mismatch (δ = 0%) for
each architecture. See text for statistical comparisons.

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

Discussion
We propose a method for supervised training of spiking neural networks that can be deployed on mixed-signal
neuromorphic hardware without requiring per-device retraining or calibration. Our approach interprets the
activity of a non-spiking RNN as a teacher dynamical system. Using results from dynamical systems learning
theory, our spiking networks learn to copy the pre-trained RNN and therefore perform arbitrary tasks over
temporal signals. Our method is able to produce spiking networks that perform both simple and complex non-
linear temporal detection and classification tasks. We show that our networks are considerably more robust
to several forms of parameter and state noise, compared with several other common techniques for training
spiking networks.

Our networks are by design robust to common sources of network and parameter variation, both intra- and
inter-chip, which must be compensated for when deploying to mixed-signal neuromorphic hardware. For levels
of mismatch measured directly from neuromorphic devices, we show that common SNN network architectures
break down badly. Usual approaches for compensating for mismatch-induced parameter variation on neuro-
morphic hardware employ either on-device training49–53 or per-device calibration14,15,53–55, entailing considerable
additional expense in hardware complexity or testing time. In contrast, our method produces spiking networks
that do not require calibration or retraining to maintain performance after deployment. As a result, our approach
provides a solution for cost-efficient deployment of event-driven neuromorphic hardware.

The coding scheme used by our spiking networks has been shown to promote sparse firing38. For mixed-signal
neuromorphic hardware, power consumption is directly related to the network firing rate. Our method therefore
produces networks that consume little power compared with alternative architectures that use firing-rate encod-
ing or do not promote sparse activity18,23,32.

Our approach to obtain high-performing SNNs is at heart a knowledge-transfer approach, relying on copying
the dynamics of a highly-performing non-spiking RNN. This two-step approach is needed because the learning
rule for our SNN requires a task to be defined in terms of a dynamical system, and is not able to learn the dynam-
ics of an arbitrary input–output mapping (see Supplementary Methods). Consequently, our spiking networks can
only perform as well as the pre-trained non-spiking RNN, and require multiple training steps to build a network
for a new task. Nevertheless, training non-spiking RNNs is efficient when using automatic differentiation, just-
in-time compilation and automatic batching56, and can be performed rapidly on GPUs. Our approach trades off
between training time on commodity hardware, and immediate deployment on neuromorphic hardware with
no per-device training required.

The robustness of our spiking ADS networks comes partially from the fast balanced recurrent feedback
connections, which ensure sparse encoding and compensate in real-time for encoding errors38,39. These weights
also degrade under noise, but can be adapted in a local untrained fashion using local learning rules that are
compatible with HW implementation57.

Our supervised training approach is designed for temporal tasks, where input and target output signals evolve
continuously. This set of tasks encompasses real-time ML-based signal processing and recognition, but is a poorer
fit to high-resolution frame-based tasks such as frame-based image processing. These “one-shot” tasks can be
mapped into the temporal domain by serialising input frames58 or by using temporal coding schemes59. We found
anecdotally that temporal discontinuities in input and target time series made training our ADS networks more
difficult, with the implication that a careful matching between task and network time constants is important.

Our approach builds single-population recurrent spiking networks, in contrast to deep non-recurrent net-
work architectures which are common in 202160. Recurrent spiking networks such as Liquid State Machines
(LSMs) have been shown to be universal function approximators61, but RNNs do not perform the progressive
task decomposition that can appear in deep feed-forward networks62. Interpretability of the internal state of
recurrent networks such as ours is therefore potentially more difficult than for deep feedforward architectures.

Neuromorphic implementation of spiking neural networks has been hailed as the next generation of com-
puting technology, with the potential to bring ultra-low-power non-von-Neumann computation to embedded
devices. However, parameter mismatch has been a severe hurdle to large-scale deployment of mixed-signal
neuromorphic hardware, as it directly attacks the reliability of the computational elements — a problem that com-
modity digital hardware generally does not face. Previous solutions to device mismatch have been impractical, as
they require expensive per-device calibration or training prior to deployment, or increased hardware complex-
ity (and therefore cost) in the form of on-device learning circuits. We have provided a programming method
for mixed-signal neuromorphic hardware that frees application developers from the necessity to worry about
computational unreliability, and does not require per-device handling during or after deployment. Our approach
therefore removes a significant obstacle to the large-scale and low-cost deployment of neuromorphic devices.

Methods
We trained and simulated ANNs and SNNs using Rockpool63, an open-source Python package for machine
learning of SNNs. We implemented a liquid state machine SNN18; spiking FORCE network32; and a BPTT-trained
 SNN23 using Jax56 and custom-written forward-Euler solvers. Parameters for all architectures are given in the
Supplementary Material. Code to generate all models, analysis and figures in this paper are available from https://
github. com/ synse nse/ Robust- Class ifica tion- EBN.

Temporal XOR task. We created signals of a total duration of 1 second, of which the first two thirds were
dedicated to the input and the last third to the target (Fig. 2). During the input time-frame, two activity bumps
were created on a single input channel representing the binary inputs to the logical XOR operation. The bumps
had varying length (uniformly drawn between 66–157 ms) and magnitude ±1 , and were smoothed with a Gauss-
ian filter to produce smooth activity transitions. In the final third of the signal we defined a target bump of

https://github.com/synsense/Robust-Classification-EBN
https://github.com/synsense/Robust-Classification-EBN

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

magnitude ±1 , indicating the true output of the XOR operation. The target bump was also smoothed with a
Gaussian filter. We trained a rate network (N̂ = 64) to high performance on the XOR task, then subsequently
trained a spiking model (N = 320) to follow the dynamics of the trained rate network . We used a fixed learning
rate η = 1× 10−5 and fixed error feedback rate k = 75 during SNN training. Output classification from both
networks was determined by the network output passing the thresholds ±0.5.

Speech classification task. We drew samples from the “Hey Snips” dataset44, augmented with noise sam-
ples from the DEMAND dataset45, with a signal-to-noise ratio of 10 dB . Each signal had a fixed length of 5 s and
was pre-processed using a 16-channel bank of 2nd-order Butterworth filters with evenly-spaced centre frequen-
cies ranging 0.4–2.8 kHz. The output of each filter was rectified with abs(·) , then smoothed with a 2nd order
Butterworth low-pass filter with cut-off frequency 0.3 kHz to provide an estimate of the instantaneous power in
each frequency band. The rate network for the speech classification task (N̂ = 128) was trained for 1 epoch on
10 000 samples to achieve roughly the same performance as the spiking network trained with BPTT. We trained
spiking networks (N = 768 ; τmem = 50ms ; τfast = 1ms ; τslow = 70ms) for 5 epochs on 1000 training samples,
validated on 500 validation samples and 1000 test samples. To perform a classification we integrated the output
of the network when it passed a threshold of 0.5. We then applied a subsequent threshold on this integral, deter-
mined by a validation set, to determine the final prediction. We used a fixed learning rate η = 1× 10−4 and a
decaying step function for the error feedback factor k (from 200–25 in 8 evenly-spaced steps).

Spiking neuron model and initialisation. We used an LIF neuron model with a membrane time con-
stant τmem = 50ms ; reset potential Vreset = 0 ; resting potential Vrest = 0.5 ; and spiking threshold Vthresh = 1 .
The membrane potential dynamics for the neuron model were given by

with input current Iinp ; fast and slow recurrent post-synaptic potentials (PSPs) Ifast and Islow ; error current
Ie = kDTe ; and noise current η . Output spikes from a neuron are given by o(t) = V > Vthresh . Synaptic dynam-
ics were described by

with input synaptic weights W; synaptic time constants τsyn = 1ms and 70ms for fast and slow synapses, respec-
tively; and simulation time step �t . Feed-forward and decoding weights were initialised using a standard normal
distribution scaled by the number of input/output dimensions (N̂). Fast balanced recurrent feedback connections
were initialised and rescaled according to the threshold and reset potential, as described in Ref.38. The spiking
network was simulated using a forward Euler solver with a simulation time step of 1ms.

Non‑spiking network. The dynamics of a neuron in the non-spiking RNN were described by

with input c(t); encoding weights F̂ ; recurrent weights �̂ ; non-linearity f (·) = tanh(·) ; bias b; and noise term
ǫ . Time constants τ were initialised with linearly spaced values (10− 100ms). The trainable parameters in this
network are the time constants τ ; the encoding and recurrent weights F̂ and �̂ ; and the biases b. No noise was
applied during training or inference (ǫ = 0).

Measurements of parameter mismatch. Using recordings from fabricated mixed-signal neuromor-
phic chips we measured levels of parameter mismatch (i.e. fixed substrate noise pattern) present in hardware. In
particular, for DYNAP-SE2, a neuromorphic processor which emulates LIF neuron, AMPA and NMDA synapse
models with analog circuits, we measured neuron and synaptic time constants, and synaptic weights for individ-
ual neuron units, by recording and analysing the voltage traces produced by these circuits. We observed levels of
mismatch in the order of 10–20% for individual parameters, with widths of the distributions being proportional
to the means (see Fig. S1).

Power estimates. Since the input and output weighting differs between the spiking and non-spiking net-
work, and comprises only a small portion of the parameters, we limited our power comparison to the recur-
rent portion of the network. Updating the recurrent dynamics for the non-spiking rate network requires
multiply-accumulate operations for the recurrent input rt = �̂f (xt) (neglecting the transfer function f (·));
multiply-accumulate operations for the Euler solver update xt+1 = xt + ẋt ∗ dt/τ ; and accumulate operations
for ẋt = −xt + it + b+ rt . With N̂ = 64 neurons, these amount to 8576 OPs, with MACs counted as two OPs.
With a time-step of dt = 1ms , this corresponds to 8.58GOPS (Giga-OPs per second). We estimated the power
to implement our RNN on non-neuromorphic NN accelerators by using previously reported power as GOPS/W.
We examined only chips with published data for total power, and where we could identify the fabrication node
for the published chip. We re-scaled power estimates to normalise against the fabrication node, providing esti-
mates for 65 nm nodes in all cases. For the ultra-low-power microcontroller (STM32L552xx), we assumed that
the MCU switched to a low-power sleep mode once the dynamics for a given time-step were computed. This

τmem
∂V

∂t
= Vrest − V + Iinp + Ifast + Islow + Ie + ηn

τsyn
∂I∗

∂t
= −I∗ + (Wo(t)τsyn)/�t

τj ẋj = −xj + F̂cj(t)+ �̂f (x)+ bj + ǫj

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

permits the MCU to save power when only a portion of computing resources is required to simulate real-time
dynamics.

Again neglecting synaptic operations required for input and output, we estimate the energy for routing a single
recurrent spike on the DYNAP-SE1 mixed-signal neuromorphic processor as 3.3 nJ . We found that the firing rate
of the spiking population is upper-bounded by approximately 3Hz per neuron during simulation. For the spiking
recurrent population with N = 768 , this corresponds to energy usage of 7.6µW dynamic power consumption.
Static power consumption for the DYNAP-SE1 processor is estimated at 30µW . Table S1 compares the energy
consumption of running the ANN on an efficient ASIC48, and a low-power general purpose MCU64 to the energy
consumption of the DYNAP-SE1 using the spiking network with 12 times more neurons.

Simulated mismatch. To simulate parameter mismatch in mixed-signal neuromorphic hardware we
derived a model where the values for each parameter follow a normal distribution with the standard deviation
depending linearly on the mean. The mismatched parameters �′ are obtained with �′ ∼ N (�, δ�) where δ
determines the level of mismatch. We considered three levels of mismatch: 5, 10 and 20%.

Quantisation noise. We introduced quantisation noise by reducing the bit-precision of all weights
post-training to 2, 3, 4, 5 and 6 bits. The weights were quantised by setting Ws

disc
= ρ⌊W/ρ⌉ where

ρ = (max(Ws
full)−min(Ws

full))/(2
b − 1) and ⌊.⌉ is the rounding operator.

Simulated thermal noise. Thermal noise is inherent in neuromorphic devices and can be modeled by
Gaussian noise on the input currents. We applied three different levels of thermal noise (σ = 0.01, 0.05, 0.1) that
was scaled according to the difference between Vreset and Vthresh to assure equal amounts of noise for neuron
model and network architecture.

Neuron silencing. We created four network instances grouped into two pairs: One pair was trained with
the fast recurrent feedback connections �f as described above, and the other pair with �f = 0 . We then clamped
40% of the neurons of one instance of both pairs to Vreset while evaluating 1000 test samples.

Benchmark network architectures. We investigated the robustness to simulated noise for four differ-
ent learning paradigms, including the FORCE method32, BPTT23 and reservoir computing18. All parameters for
these methods are given in Supplementary Material.

Statistical tests. All statistical comparisons were double-sided Mann–Whitney U tests unless stated oth-
erwise.

Data availability
Code to generate all models, analysis and figures in this paper are available from https:// github. com/ synse nse/
Robust- Class ifica tion- EBN.

Received: 7 September 2021; Accepted: 22 November 2021

References
 1. Corradi, F. & Indiveri, G. A neuromorphic event-based neural recording system for smart brain–machine-interfaces. IEEE Trans.

Biomed. Circ. Syst. 9, 699–709 (2015).
 2. Moradi, S., Ning, Q., Stefanini, F. & Indiveri, G. A scalable multi-core architecture with heterogeneous memory structures for

dynamic neuromorphic asynchronous processors (dynaps). CoRR (2017). arXiv: 1708. 04198
 3. Cassidy, A. S. et al. Truenorth: A high-performance, low-power neurosynaptic processor for multi-sensory perception, action,

and cognition (2016).
 4. Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73. https:// doi. org/ 10. 3389/ fnins. 2011. 00073 (2011).
 5. O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T. & Pfeiffer, M. Real-time classification and sensor fusion with a spiking deep belief

network. Front. Neurosci. 7, 178. https:// doi. org/ 10. 3389/ fnins. 2013. 00178 (2013).
 6. Schemmel, J. et al. A wafer-scale neuromorphic hardware system for large-scale neural modeling. In 2010 IEEE International

Symposium on Circuits and Systems (ISCAS), 1947–1950 (2010).
 7. Davies, M. et al. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).
 8. Painkras, E. et al. Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State

Circ. 48, 1943–1953 (2013).
 9. Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 16291636 (1990).
 10. Pelgrom, M., Duinmaijer, A. & Welbers, A. Matching properties of MOS transistors. IEEE J. Solid-State Circ. 24, 1433–1440 (1989).
 11. Tuinhout, H. & Wils, N. Parametric mismatch characterization for mixed-signal technologies. In 2009 IEEE Bipolar/BiCMOS

Circuits and Technology Meeting, 107–114 (2009).
 12. Qiao, N. & Indiveri, G. Scaling mixed-signal neuromorphic processors to 28 nm FD-SOI technologies. In 2016 IEEE Biomedical

Circuits and Systems Conference (BioCAS), 552–555 (2016).
 13. Indiveri, G. & Sandamirskaya, Y. The importance of space and time for signal processing in neuromorphic agents: The challenge

of developing low-power, autonomous agents that interact with the environment. IEEE Signal Process. Mag. 36, 16–28 (2019).
 14. Neftci, E. & Indiveri, G. A device mismatch compensation method for VLSI neural networks. In 2010 Biomedical Circuits and

Systems Conference (BioCAS), 262–265 (2010).
 15. Aamir, S. A. et al. An accelerated lif neuronal network array for a large-scale mixed-signal neuromorphic architecture. IEEE Trans.

Circ. Syst. I Regul. Pap. 65, 4299–4312 (2018).

https://github.com/synsense/Robust-Classification-EBN
https://github.com/synsense/Robust-Classification-EBN
http://arxiv.org/abs/1708.04198
https://doi.org/10.3389/fnins.2011.00073
https://doi.org/10.3389/fnins.2013.00178

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

 16. Sheik, S., Chicca, E. & Indiveri, G. Exploiting device mismatch in neuromorphic vlsi systems to implement axonal delays. In IEEE
International Joint Conference on Neural Networks (IJCNN) 2012, Proceedings of the International Joint Conference on Neural
Networks, 1–6 (IEEE, 2012). https:// doi. org/ 10. 5167/ uzh- 75361.

 17. Yao, E., Hussain, S., Basu, A. & Huang, G.-B. Computation using mismatch: Neuromorphic extreme learning machines, 294–297
(2013).

 18. Maass, W., Natschlager, T. & Markram, H. Real-time computing without stable states: A new framework for neural computation
based on perturbations. Neural Comput. 14, 2531–2560. https:// doi. org/ 10. 1162/ 08997 66027 60407 955 (2002).

 19. Eliasmith, C. A unified approach to building and controlling spiking attractor networks. Neural Comput. 17, 1276–1314. https://
doi. org/ 10. 1162/ 08997 66053 630332 (2005).

 20. Neckar, A. et al. Braindrop: A mixed-signal neuromorphic architecture with a dynamical systems-based programming model.
Proc. IEEE 107, 144–164 (2019).

 21. Dalgaty, T. et al. In situ learning using intrinsic memristor variability via Markov chain Monte Carlo sampling. Nat. Electron. 4,
151–161. https:// doi. org/ 10. 1038/ s41928- 020- 00523-3 (2021).

 22. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Commun. ACM 60,
84–90. https:// doi. org/ 10. 1145/ 30653 86 (2017).

 23. Werbos, P. J. Backpropagation through time: What it does and how to do it. Proc. IEEE 78, 1550–1560 (1990).
 24. Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508.

https:// doi. org/ 10. 3389/ fnins. 2016. 00508 (2016).
 25. Neftci, E. O., Augustine, C., Paul, S. & Detorakis, G. Event-driven random back-propagation: Enabling neuromorphic deep learning

machines. Front. Neurosci. 11, 324. https:// doi. org/ 10. 3389/ fnins. 2017. 00324 (2017).
 26. Bellec, G. et al. A solution to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 11, 3625. https://

doi. org/ 10. 1038/ s41467- 020- 17236-y (2020).
 27. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking neural networks. CoRR (2019). arXiv: 1901. 09948
 28. Gerstner, W., Lehmann, M., Liakoni, V., Corneil, D. & Brea, J. Eligibility traces and plasticity on behavioral time scales: Experimen-

tal support of Neohebbian three-factor learning rules. Front. Neural Circ. 12, 53. https:// doi. org/ 10. 3389/ fncir. 2018. 00053 (2018).
 29. Wunderlich, T. C. & Pehle, C. Eventprop: Backpropagation for exact gradients in spiking neural networks (2020). arXiv: 2009. 08378
 30. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support error backpropagation

for deep learning. Nat. Commun. 7, 13276. https:// doi. org/ 10. 1038/ ncomm s13276 (2016).
 31. Kaiser, J., Mostafa, H. & Neftci, E. Synaptic plasticity dynamics for deep continuous local learning (Decolle). Front. Neurosci. 14

(2020). https:// doi. org/ 10. 3389/ fnins. 2020. 00424
 32. Nicola, W. & Clopath, C. Supervised learning in spiking neural networks with force training. Nat. Commun. 8, 2208. https:// doi.

org/ 10. 1038/ s41467- 017- 01827-3 (2017).
 33. Gilra, A. & Gerstner, W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network. eLife 6

(2017).
 34. Markram, H., Gerstner, W. & Sjöström, P. J. Spike-timing-dependent plasticity: A comprehensive overview. Front. Synapt. Neurosci.

4, 2 (2012).
 35. Brader, J. M., Senn, W. & Fusi, S. Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural

Comput. 19, 2881–2912 (2007).
 36. Gaier, A. & Ha, D. Weight agnostic neural networks. In Advances in Neural Information Processing Systems, 5364–5378 (2019).
 37. Bourdoukan, R., Barrett, D. G. T., Machens, C. K. & Denève, S. Learning optimal spike-based representations. In Proceedings of

the 25th International Conference on Neural Information Processing Systems, Vol. 2, NIPS’12, 2285–2293 (Curran Associates Inc.,
2012). http:// dl. acm. org/ citat ion. cfm? id= 29993 25. 29993 90

 38. Boerlin, M., Machens, C. K. & Denève, S. Predictive coding of dynamical variables in balanced spiking networks. PLoS Comput.
Biol. 9, 1–16 (2013). https:// doi. org/ 10. 1371/ journ al. pcbi. 10032 58

 39. Denève, S. & Machens, C. K. Efficient codes and balanced networks. Nat. Neurosci. 19, 375–382. https:// doi. org/ 10. 1038/ nn. 4243
(2016).

 40. Denève, S., Alemi, A. & Bourdoukan, R. The brain as an efficient and robust adaptive learner. Neuron 94, 969–977 (2017). http://
www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0896 62731 73041 78

 41. Alemi, A., Machens, C. K., Denève, S. & Slotine, J.-J. E. Learning nonlinear dynamics in efficient, balanced spiking networks using
local plasticity rules. In AAAI, 588–595 (2018). https:// www. aaai. org/ ocs/ index. php/ AAAI/ AAAI18/ paper/ view/ 17438

 42. Brendel, W., Bourdoukan, R., Vertechi, P., Machens, C. K. & Denève, S. Learning to represent signals spike by spike. PLoS Comput.
Biol. 16, e1007692 (2020).

 43. Calaim, N., Alexander Dehmelt, F., Gonçalves, P. J. & Machens, C. K. Robust coding with spiking networks: A geometric perspec-
tive. bioRxiv (2020).

 44. Coucke, A. et al. Efficient keyword spotting using dilated convolutions and gating. CoRR (2018). arXiv: 1811. 07684.
 45. Thiemann, J., Ito, N. & Vincent, E. DEMAND: A collection of multi-channel recordings of acoustic noise in diverse environments

(2013). https:// doi. org/ 10. 5281/ zenodo. 12271 21. Supported by Inria under the Associate Team Program VERSAMUS.
 46. Barrett, D. G., Denève, S. & Machens, C. K. Optimal compensation for neuron loss. eLife 5, e12454 (2016). https:// doi. org/ 10. 7554/

eLife. 12454
 47. STM32L552xx Ultra-low-power Arm® Cortex®-M33 32-bit MCU+TrustZone®+FPU, 165 DMIPS, up to 512 KB Flash memory,

256 KB SRAM, SMPS (2020). https:// www. st. com/ resou rce/ en/ datas heet/ stm32 l552cc. pdf
 48. Han, S. et al. Eie: Efficient inference engine on compressed deep neural network. In 2016 ACM/IEEE 43rd Annual International

Symposium on Computer Architecture (ISCA), 243–254 (2016)
 49. Fusi, S., Annunziato, M., Badoni, D., Salamon, A. & Amit, D. J. Spike-driven synaptic plasticity: Theory, simulation, VLSI imple-

mentation. Neural Comput. 12, 2227–2258. https:// doi. org/ 10. 1162/ 08997 66003 00014 917 (2000).
 50. Cameron, K. & Murray, A. Minimizing the effect of process mismatch in a neuromorphic system using spike-timing-dependent

adaptation. IEEE Trans. Neural Netw. 19, 899–913 (2008).
 51. Mitra, S., Fusi, S. & Indiveri, G. Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI.

IEEE Trans. Biomed. Circ. Syst. 3, 32–42 (2009).
 52. Pfeil, T., Scherzer, A., Schemmel, J. & Meier, K. Neuromorphic learning towards nano second precision. In The 2013 International

Joint Conference on Neural Networks (IJCNN), 1–5 (2013).
 53. Wunderlich, T. et al. Demonstrating advantages of neuromorphic computation: A pilot study. Front. Neurosci. 13, 260. https:// doi.

org/ 10. 3389/ fnins. 2019. 00260 (2019).
 54. Costas-Santos, J., Serrano-Gotarredona, T., Serrano-Gotarredona, R. & Linares-Barranco, B. A spatial contrast retina with on-chip

calibration for neuromorphic spike-based AER vision systems. IEEE Trans. Circ. Syst. I Regul. Pap. 54, 1444–1458 (2007).
 55. Neftci, E., Chicca, E., Indiveri, G. & Douglas, R. A systematic method for configuring VLSI networks of spiking neurons. Neural

Comput. 23, 2457–2497. https:// doi. org/ 10. 1162/ NECO_a_ 00182 (2011).
 56. Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs (2018). http:// github. com/ google/ jax
 57. Büchel, J., Kakon, J., Perez, M. & Indiveri, G. Implementing efficient balanced networks with mixed-signal spike-based learning

circuits (2020). arXiv: 2010. 14353
 58. Le, Q. V., Jaitly, N. & Hinton, G. E. A simple way to initialize recurrent networks of rectified linear units (2015). arXiv: 1504. 00941

https://doi.org/10.5167/uzh-75361
https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1162/0899766053630332
https://doi.org/10.1038/s41928-020-00523-3
https://doi.org/10.1145/3065386
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1038/s41467-020-17236-y
http://arxiv.org/abs/1901.09948
https://doi.org/10.3389/fncir.2018.00053
http://arxiv.org/abs/2009.08378
https://doi.org/10.1038/ncomms13276
https://doi.org/10.3389/fnins.2020.00424
https://doi.org/10.1038/s41467-017-01827-3
https://doi.org/10.1038/s41467-017-01827-3
http://dl.acm.org/citation.cfm?id=2999325.2999390
https://doi.org/10.1371/journal.pcbi.1003258
https://doi.org/10.1038/nn.4243
http://www.sciencedirect.com/science/article/pii/S0896627317304178
http://www.sciencedirect.com/science/article/pii/S0896627317304178
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17438
http://arxiv.org/abs/1811.07684
https://doi.org/10.5281/zenodo.1227121
https://doi.org/10.7554/eLife.12454
https://doi.org/10.7554/eLife.12454
https://www.st.com/resource/en/datasheet/stm32l552cc.pdf
https://doi.org/10.1162/089976600300014917
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1162/NECO_a_00182
http://github.com/google/jax
http://arxiv.org/abs/2010.14353
http://arxiv.org/abs/1504.00941

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:23376 | https://doi.org/10.1038/s41598-021-02779-x

www.nature.com/scientificreports/

 59. Thorpe, S., Delorme, A. & Van Rullen, R. Spike-based strategies for rapid processing. Neural Netw. 14, 715–725 (2001). http://
www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0893 60800 10008 31

 60. Sengupta, S. et al. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl. Based
Syst. 194, 105596 (2020). http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0950 70512 03007 1X

 61. Maass, W. & Markram, H. On the computational power of circuits of spiking neurons. J. Comput. Syst. Sci. 69, 593–616 (2004).
http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S0022 00000 40004 06

 62. Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digital Signal Process.
73, 1–15 (2018). http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1051 20041 73023 85

 63. Muir, D., Bauer, F. & Weidel, P. Rockpool documentation. https:// doi. org/ 10. 5281/ zenodo. 40453 45 (2019).
 64. ST. STM32L552xx and STM32L562xx advanced Arm®-based 32-bit MCUs (2020). https:// www. st. com/ resou rce/ en/ refer ence_

manual/ dm003 46336- stm32 l552xx- and- stm32 l562xx- advan ced- arm- based- 32- bit- mcus- stmic roele ctron ics. pdf

Acknowledgements
This project has received funding in part by the European Union’s Horizon 2020 ERC project NeuroAgents
(Grant No. 724295); from the European Union’s Horizon 2020 research and innovation programme for ECSEL
grants ANDANTE (grant agreement No. 876925), TEMPO (grant agreement No. 826655), and SYNCH (grant
agreement No. 824162); and from “Fondo di Ateneo per la ricerca 2020” (FAR2020) of the University of Sassari
(grant to S. Solinas).

Author contributions
D.R.M. and G.I. conceived and designed the research. J.B. and D.R.M. developed software and simulations. J.B.,
S.S. and D.Z. performed experiments and collected data. J.B. and D.R.M. analysed and interpreted the data. J.B.
and D.R.M. drafted the manuscript. D.R.M., J.B., D.Z., S.S. and G.I. performed critical revision of the manuscript.
D.R.M. approved the final version for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 021- 02779-x.

Correspondence and requests for materials should be addressed to D.R.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://www.sciencedirect.com/science/article/pii/S0893608001000831
http://www.sciencedirect.com/science/article/pii/S0893608001000831
http://www.sciencedirect.com/science/article/pii/S095070512030071X
http://www.sciencedirect.com/science/article/pii/S0022000004000406
http://www.sciencedirect.com/science/article/pii/S1051200417302385
https://doi.org/10.5281/zenodo.4045345
https://www.st.com/resource/en/reference_manual/dm00346336-stm32l552xx-and-stm32l562xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00346336-stm32l552xx-and-stm32l562xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://doi.org/10.1038/s41598-021-02779-x
https://doi.org/10.1038/s41598-021-02779-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Supervised training of spiking neural networks for robust deployment on mixed-signal neuromorphic processors
	Results
	Temporal XOR task.
	Wake-phrase detection.
	Training considerations.
	Robustness to noise sources.
	Device mismatch.
	Quantisation noise.
	Thermal noise.
	Sudden neuron failure.

	Comparison with alternative architectures.
	Power comparison for mixed-signal and traditional implementations.

	Discussion
	Methods
	Temporal XOR task.
	Speech classification task.
	Spiking neuron model and initialisation.
	Non-spiking network.
	Measurements of parameter mismatch.
	Power estimates.
	Simulated mismatch.
	Quantisation noise.
	Simulated thermal noise.
	Neuron silencing.
	Benchmark network architectures.
	Statistical tests.

	References
	Acknowledgements

