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Counterfactual time series analysis 
of short‑term change in air 
pollution following the COVID‑19 
state of emergency in the United 
States
Tanujit Dey1,6, Pooja Tyagi2,6, M. Benjamin Sabath2,3, Leila Kamareddine2, Lucas Henneman4, 
Danielle Braun2,5 & Francesca Dominici2*

Lockdown measures implemented in response to the COVID‑19 pandemic produced sudden behavioral 
changes. We implement counterfactual time series analysis based on seasonal autoregressive 
integrated moving average models (SARIMA), to examine the extent of air pollution reduction 
attained following state‑level emergency declarations. We also investigate whether these reductions 
occurred everywhere in the US, and the local factors (geography, population density, and sources 
of emission) that drove them. Following state‑level emergency declarations, we found evidence of 
a statistically significant decrease in nitrogen dioxide  (NO2) levels in 34 of the 36 states and in fine 
particulate matter  (PM2.5) levels in 16 of the 48 states that were investigated. The lockdown produced 
a decrease of up to 3.4 µg/m3 in  PM2.5 (observed in California) with range (− 2.3, 3.4) and up to 11.6 ppb 
in  NO2 (observed in Nevada) with range (− 0.6, 11.6). The state of emergency was declared at different 
dates for different states, therefore the period "before" the state of emergency in our analysis ranged 
from 8 to 10 weeks and the corresponding "after" period ranged from 8 to 6 weeks. These changes 
in  PM2.5 and  NO2 represent a substantial fraction of the annual mean National Ambient Air Quality 
Standards (NAAQS) of 12 µg/m3 and 53 ppb, respectively. As expected, we also found evidence 
that states with a higher percentage of mobile source emissions (obtained from 2014) experienced 
a greater decline in  NO2 levels after the lockdown. Although the socioeconomic restrictions are 
not sustainable, our results provide a benchmark to estimate the extent of achievable air pollution 
reductions. Identification of factors contributing to pollutant reduction can help guide state‑level 
policies to sustainably reduce air pollution.

There is consistent evidence that short- and long-term exposure to fine particulate matter  (PM2.5) and nitrogen 
dioxide  (NO2) increases the risk of mortality, hospitalization, and other adverse health  outcomes1–6,11,12. Fur-
thermore, several studies have provided preliminary evidence that short and long-term air pollution exposure 
increases the risk of hospitalization and death among individuals with COVID-194–10.

The United States mitigates air pollution through a combination of federal, state, and local air pollution 
 regulations13. For example, the federal government sets emissions standards and the NAAQS. They also require 
states to prepare State Implementation Plans (SIPs) that detail emissions reductions strategies for areas that are 
not in compliance with the NAAQS (non-attainment areas). SIPs use air quality models to demonstrate how 
regulating local emissions sources helps a non-attainment area meet the NAAQS. Geographically heterogeneous 
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regulations, emission sources, and meteorology, results in varying air pollution concentrations by geographic 
 location13,14.

Several studies have examined the impact of a sudden intervention on changes in air pollution  (see15 for a 
review). For example, researchers used interrupted time-series designs to quantify the impact of the 1990 Dublin 
coal  ban16 and regression discontinuity to identify the arbitrary spatial impact of the China Huai River  Policy17. 
An important feature of these studies is that they investigated abrupt and localized changes across a relatively 
short time span (Dublin coal ban) and spatial scale (Huai River policy)18. Because of the abrupt nature of these 
interventions, defining a hypothetical experiment in these studies was straightforward.

Similarly, we examined the effect of the abrupt lockdown measures implemented in response to the COVID-
19 pandemic, which produced sudden and significant changes in how society functions, with decreases in road 
traffic, air traffic, and economic  activity19. This provided us with an unprecedented opportunity to implement 
a quasi-experimental design with a well-defined control condition (no pandemic) to estimate the changes in 
air pollution because of the implementation of these extreme measures. In a quasi-experimental design, the 
researcher compares outcomes between a treatment group and a control group, just as in a classical experi-
ment; but treatment status (in our context the COVID-19 related intervention) is determined by politics, an 
accident, a regulatory action, or some other action beyond the researcher’s control (in our context the start of 
the pandemic).  See20 for a discussion of strengths and limitations of a quasi-experimental design. Furthermore, 
the spatial heterogeneity in the extent to which air pollution levels changed because of the lockdown measures 
allowed us to identify factors contributing to these changes.

A number of recent studies have investigated the effect of the COVID-19 pandemic on the levels of different 
air pollutants in the  US21–34,  globally35–39 and for several cities around the  world40–51. Table 1 summarizes stud-
ies that have estimated changes in air pollution levels by comparing air pollution levels during the COVID-19 
pandemic period to historical data both in the US and globally.

Regardless of the emerging literature on this topic, these studies for the most part do not simultaneously 
account for autocorrelation, time trends and seasonality, and meteorological factors. To our knowledge, none 
of these studies attempt to identify state-level factors contributing to heterogeneity in the air pollution declines 
across states for both  PM2.5 and  NO2.

In this study, we had several scientific objectives that distinguish this paper from existing contributions in the 
literature. More specifically, we 1) develop and implement state-of-the-art time series approaches for counterfac-
tual forecasting to predict weekly state-levels of  PM2.5 and  NO2 from January 1, 2020, to April 23, 2020, under 
the hypothetical scenario that the pandemic did not occur. These models account for measured confounding 
(e.g. meteorological factors), unmeasured confounding (e.g. seasonal variation and time trends) and residual 
autocorrelation; 2) properly validate the accuracy of the model fitting and account for the uncertainty in the 
counterfactual forecasts via bootstrap; 3) estimate the weekly state-level deviations and 95% CI between coun-
terfactual (e.g., absent the pandemic) and observed levels of  PM2.5 and  NO2 from January 1, 2020 to April 23, 
2020; 4) assess whether the deviations between the counterfactual values and the observed values start to deviate 
in correspondence to key interventions implemented as a result of the pandemic; 5) assess within each state, 
changes in both  PM2.5 and  NO2; and finally 6) investigate which state-level characteristics, including emissions 
sources, contributed the most to these changes, while adjusting for geography and population density.

Materials and methods
Data acquisition. We gathered and harmonized data from several databases (Table S1). We obtained his-
torical daily monitor data of  PM2.5 and  NO2 concentrations for January 1, 2015 to August 31, 2019 from the US 
EPA Air Quality  System52. We obtained current levels of these air pollutants for August 31, 2019 to April 23, 
2020 from the EPA AirNow application programming  interface53. We linked historical and current monitor data 
within each state. These data were available for 48 states for  PM2.5 and 36 states for  NO2. We obtained daily tem-
perature, humidity, and precipitation data from the University of Idaho’s GRIDMET project, which were then 
aggregated to the state level using Google Earth  Engine54.

We obtained state-level source emissions totals from the National Emissions Inventory for  201455, and gath-
ered information on population density and geographic region classification of the states from the United States 
Census  Bureau56,57. Finally, we accessed the COVID-19 US State Policy  Database58 to extract information regard-
ing the dates of COVID-19 related state interventions, including state-level declaration of emergency, shelter-in-
place orders, and non-essential business closures for each state. All the data sources are publicly available, they 
are summarized in Table S1, and also available on GitHub along with all code necessary to conduct the analysis; 
https:// github. com/ NSAPH/ USA- COVID- state- level- air- pollu tion- SARIMA- analy sis.

Statistical methods. Counterfactual forecasting of air pollution levels starting January 1, 2020. SARIMA 
models are autoregressive models often used to forecast time series where future observations are correlated 
with past  observations59,60. They have the advantage of accounting for the time trend, seasonality, confounders 
(e.g., meteorological variables), and residual autocorrelation. We fitted SARIMA models to historical data using 
weekly state-level air pollution levels (from January 1, 2015, to December 31, 2019) accounting for time trend, 
seasonality, autocorrelation and also accounting for the effect of weather by including temperature, precipitation, 
and humidity as covariates in the model.

The basis of the SARIMA model is a linear regression of a response variable  Yt at time t against the past 
values  (Yt-1,  Yt-2, ….) of Y and the past forecast errors (ɛt-1, ɛt-2, …). A detailed example of this analysis for  NO2 
in California is provided in the supplementary materials, including model validation measures (Figures S1-S5).

We conducted the following analyses separately for  PM2.5 and  NO2 and for each state. The algorithm of the 
model construction and prediction is presented below.

https://github.com/NSAPH/USA-COVID-state-level-air-pollution-SARIMA-analysis
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Table 1.  Summary of published studies examining changes in air pollution attributable to COVID-19 related 
interventions in the US and globally.

Citation Geographic locations
COVID19 related 
intervention Confounding adjustment Statistical approach Results

Berman et al.22
United States (all counties in 
the U.S. with both  NO2 and 
 PM2.5 monitors)

Reduced traffic and mandated 
business closures between 
March 13-April 21. March 
13th being when U.S. reported 
cases exceeded 2000 and the 
first enacted state-wide social 
distancing order

None Two-sided t-tests paired by 
county (α = 0.05)

25.5% reduction (4.8 ppb) in 
 NO2 was observed during the 
COVID-19 period

NO2 decline was statistically 
significant regardless of when 
mandated business closures 
were implemented

11.3% statistically significant 
reduction (0.7 μg/m3) of  PM2.5 
in counties from states that 
instituted early non-essential 
business closures

Gillingham et al. 28 (Com-
mentary) United States (785 monitors) Shutdowns Weather and seasonality Global polynomial and a two-

step local regression

PM2.5 concentrations have 
decreased by around -0.5 μg/
m3 since the start of the 
shutdowns

Estimated 11% NOx decrease 
in daily local emissions

There is insufficient evidence 
to prove that there was a 
significant decrease in  PM2.5 
concentrations in the U.S

Goldberg et al.24 20 cities in North America
COVID-19 Physical distancing 
measures (lockdown) (15 
March to 30 April post-
covid-19 period)

Solar zenith angle and mete-
orological conditions over 
very short time scales

Average differences

Adjusted for seasonality and 
meteorology,  NO2 had a 
median drop of 21.6% before 
and after COVID‐19 physical 
distancing

Karaer et al. 25 Florida COVID-19 social distancing 
behaviors (March 2020)

Population density and 
income

A cross-correlation based 
dependency analysis

The decrease in  NO2 concen-
trations and vehicle miles trav-
elled (VMT) started 2 weeks 
before the official stay-at-home 
order and resulted in 54.07% 
and 59.68% decrease in  NO2 
and VMT by the end of the 
month, respectively

Miech et al. 27 Phoenix
COVID-19 Stay at home 
orders (pre-COVID-19: Jan 
6-March 6 & Post-COVID-19: 
March 13-April 8)

Meteorological parameters 
(horizontal wind speed, 
temperature, precipitation, 
and planetary boundary layer 
height)

Linear regression model

No uniform decrease was 
found in CO or  NO2 across the 
three sites studied

There was a significant 
decrease (45%) in  PM10 at all 
the sites compared to the past 
two years

Parker et al. 26 Southern California
Stay-At-Home orders (19 
March-30 June of the last 
5 years)

Meteorological differences Average differences

Concentrations of  PM2.5 and 
 NOx showed an overall reduc-
tion (10–45% and 13–40%, 
respectively) across the basin 
in 2020

O3 concentrations decreased 
(9 ppb or 22%) in the western 
part of the basin and increased 
(8 ppb or 15%) in the down-
wind areas

Venter et al. 36 34 countries Lockdown (Jan 1- May 15) Meteorological variability Linear regression models

11 μg/m3 reduction in  NO2 (on 
average 60% reduction)

12 μg/m3 reduction in  PM2.5 
(on average 31% reduction)

4 μg/m3a increase in  O3 (4% 
increase)

Fu et al.35 20 selected major cities around 
the world

Lockdown (lockdown period 
in each city compared to same 
period in the past 3 years)

Meteorological variability ANOVA and Tukey’s HSD 
tests

NO2 decreased significantly 
in all cities relative to the past 
3 years

PM2.5 decreased in all cities and 
found a significant decrease 
in 9 cities relative to each of 
the 3 years

Benchrif et al. 50 21 selected cities around the 
world Lockdown None Descriptive statistics

PM25 and NO2 concentrations 
declined considerably in dif-
ferent cities during lockdown 
period

Hammer et al.51 China, Europe, and North 
America Lockdown (Jan – Apr 2020) None Descriptive statistics and 

simulation study

PM2.5 concentrations decreased 
in all study locations compared 
to same period during 2018 
and 2019
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1. We created 1,000 time series bootstraps using Box-Cox and Loess-based  decomposition61 to separate the time 
series into the trend, seasonal, and remainder part. The remainder is then bootstrapped. We used historical 
data from January 1, 2015, to December 31, 2019 (see Figure S2 for an example of  NO2 in California).

2. For each bootstrapped time series, we:

• Fit SARIMA  models59–61 adjusting for meteorological factors, namely temperature, precipitation, and 
humidity (see Figure S3 for an example of  NO2 in California).

• From the fitted SARIMA models, we predict air pollution counterfactual levels (absent the pandemic) 
during a 16-week period from January 01, 2020, to April 23, 2020 (see Figure S4 for an example of  NO2 
in California).

3. For each state and for each week, we average the predicted air pollution counterfactual levels across all 
bootstrap replicates. We denote these averages by Cpred

i,j , where i = 1, 2, . . . , 16 , and j indicates the state (see 
Figure S4 for an example of  NO2 in California).

4. For each state j and for each week i, we estimate the weekly differencesδi,j = Cobs
i,j − C

pred
i,j , i = 1, 2, . . . , 16 , 

between the observed values (under pandemic conditions) and the predicted (assuming that the pandemic 
did not occur) (see Figure S5 for an example of  NO2 in California). The quantification of the statistical uncer-
tainty of these weekly differences using the bootstrap replicates is called “bagged SARIMA” (see Figures S4 
and S5 for an example of  NO2 in California).

The data and code for the analysis is available at https:// github. com/ NSAPH/ USA- COVID- state- level- air- 
pollu tion- SARIMA- analy sis.

Model assessment. To assess the overall predictive performance of the SARIMA model, we repeated the same 
procedure of model building and prediction as described in the algorithm above, this time training the model 
based on the data from January 1, 2015 to December 31, 2018, and predicting for a 16-week period from Janu-
ary 01, 2019 to April 23, 2019. This allows us to assess model fit and evaluate our modeling approach absent the 
pandemic. The main goal of implementing this assessment is to find out the model’s performance in prediction 
absent the pandemic and compare its predictive performance using the average prediction error as defined 
below during the pandemic.

Average prediction error (APE) for state j:

as defined in Step 4 of algorithm above.
We used the R package auto.arima to select model coefficients with the best predictive capability based on 

bias-corrected Akaike Information Criterion (AIC)62,63 and then used the mean absolute scaled error (MASE) 
to evaluate the fit of the  model64.

Estimating air pollution changes attributable to state‑level emergency declarations. In step 2 described above, we 
start the counterfactual forecasting for the period January 01, 2020, to April 23, 2020 without any consideration 
regarding the date of the intervention (such as the declaration of the state emergency). After the forecasting was 
complete, we then chose the declaration of the state of emergency as the intervention because it most closely 
visually aligned with the onset of deviations from the forecasted pollutant concentrations. Other interventions, 
including the timing of non-essential business closures and shelter-in-place orders, were considered visually 
(see Figures S7 and S8 in the supplementary material, the differences between these interventions are less than 
two weeks).

We use  Tint, j to denote the date of the state intervention (declaration of the state of emergency) for each state 
j. For each state and for each of the two pollutants  (PM2.5 and  NO2), we estimated the parameter �j denoting the 
change in pollutant concentrations following the state intervention compared to before by calculating:

where �before,j is the median of the weekly deviations, δi,j , (as defined in step 4 above) for the weeks before the date 
of the declaration of the state emergency  (Tint,j) and �after,j  is the median of these weekly deviations, δi,j , for the 
weeks after  Tint,j. Because of the good fit of the SARIMA model to the historical data (Figure S6), and because the 
counterfactual forecasting is agnostic to the date of the state level emergency (see Figures S4, S5 for an example 
of  NO2 forecasting in California), we argue that negative estimated values of �j indicate that air pollution levels 
declined because of the state-level emergency. We note that since the state of emergency was declared at differ-
ent dates for different states, and the total length of the prediction period was 16 weeks in 2020, therefore the 
period "before" the state of emergency in our analysis ranged from 8 to 10 weeks and the corresponding "after" 
period ranged from 8 to 6 weeks.

To identify the states with the most pronounced discrepancy between the pattern of change in  PM2.5 and 
 NO2, we calculated the ratio (ρj) for each state j, defined as:

I f ρj < 0 the two pollutants changed in opposite directions (i.e., one increased while the other decreased), 
and the larger the magnitude of ρj , the larger the discrepancy between the pollutants’ patterns of change.

APEj = 1/16

16∑

(i=1)

δ(i,j), where δ(i,j) = Cobs
(i,j) − C

pred
(i,j)

(1)�j = �before,j −�after,j

(2)ρj = �NO2,j/�PM2.5,j

https://github.com/NSAPH/USA-COVID-state-level-air-pollution-SARIMA-analysis
https://github.com/NSAPH/USA-COVID-state-level-air-pollution-SARIMA-analysis
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Regression modeling to identify state‑level factors contributing to heterogeneity in the air pollution across states. In 
this part of the analysis, our goal is to quantify the associations between the change in pollutant concentrations 
during the forecasting period January 01, 2020 to April 23, 2020 and several sources of pollutants along with a 
few geographical variables. The estimated �j (as defined in Eq. 2) is the outcome for each state for each of the 
two pollutants, separately. We have used the following independent variables: the proportion of emissions from 
fire sources, stationary sources, and mobile sources (obtained from 2014); population density; and region of 
the state.Note that the NEI reports four sources of emission: fire, mobile, stationary and biogenic; we used only 
three of these (fire, stationary, and mobile sources) as predictors in the regression model and therefore, their 
proportions do not sum to 1. Instead of using a regular multivariable linear regression model, we chose to use 
a weighted multivariable linear regression (WMLR) model. The reasons behind using this model are: (1) this 
model can incorporate the covariance matrix of errors which is quite beneficial for the heteroscedastic data, 
which is a feature of these data sets (2) because of the variability in pollutants concentrations across states, the 
WMLR are more robust to the outliers than regular regression models. Lastly, based on the pairwise correlation 
assessments, besides the main effect of the predictors in the models, we also included all two-factor interaction 
terms of the predictors. This model not only quantifies better associations between the outcome and the covari-
ates; the goodness of fit performances, using the regular  R2 and adjusted  R2, are better for these models with the 
interaction terms compared to models without the interaction terms.

Results
Short‑term change in air pollutants following the COVID‑19 state of emergency. For most 
states, the differences between the SARIMA counterfactual predictions (i.e., assuming the pandemic did not 
occur) and the observed pollutant values were close to zero during the period before the state-level emergency 
declaration (Figs. 1, 2), but there were significant deviations following the intervention lockdown measures.

We found evidence of a statistically significant decrease in  NO2 concentrations following the declaration of 
a state of emergency in 34 of the 36 states that were investigated (Fig. 1 and Tables S2-a, S3). The change in  NO2 
following the declaration of a state of emergency �j calculated using Eq. 2, ranged from -0.6 ppb to 11.6 ppb 
across the states, with an average change of 3.1 ppb and standard deviation 2.4 ppb.

We also found evidence of a statistically significant decline in  PM2.5 concentrations in 16 of the 48 states that 
were studied, including New York and other states in the Northeast and West Coast (Figs. 2, 3, Tables S2-b, S4, 
and Figure S9). The change in  PM2.5 following the declaration of a state of emergency ranged from -2.3 µg/m3 to 
3.4 µg/m3 across the states, with an average change of 0.3 µg/m3 and standard deviation 1.3 µg/m3.

In Figures S10 and S11 we show the difference between actual and predicted levels of  NO2 and  PM2.5, respec-
tively for all states. Even though the date of the lockdown was not incorporated into the SARIMA model for 
counterfactual forecasting, the observed values were closer to the predicted values of  NO2 before the state of 
emergency declarations compared to after the state of emergency declarations. For  PM2.5 the differences before 
and after the state of emergency declarations are not as large.

To quantify how well the SARIMA models can predict for a given period, as described in the Methods sec-
tion we compared the predictive performances of the models during the same period for 2019 (no pandemic) 
compared to the main analysis for 2020 (pandemic). We assessed how the APE behaves for both 2019 and 2020 
for each state. From Figs. 4 and 5, except for a few states, the APEs are higher for 2020 compared to 2019 for each 
pollutant model. In addition to using the APE, we also summarize information regarding the model evaluation 
in the supplementary materials. Figure S3 shows that, for example, the SARIMA model has excellent goodness 
of fit for the historical data for  NO2 in California.

We also found that MASE for the fitted models was less than 1 unit for each pollutant in each state (Figure S6), 
indicating that the SARIMA model outperformed one-step naïve forecasts, which use the value at time ‘t’ to 
predict the outcome at t + 1.

Figure 6 shows the estimated ρj defined as the ratio of the estimated �j  for  NO2 divided by the estimated �j  
for  PM2.5. More than one-third of the states (13 states) had ρ < 0 , i.e., these states experienced a decrease in  NO2 
and a simultaneous increase in  PM2.5. The contrast between the pattern of change of  NO2 and  PM2.5 following 
state-level emergency declarations suggests that dominating sources of these two pollutants are different in those 
states. It is also noticeable from Fig. 6 that, for these 13 states the changes in  PM2.5 are not statistically significant 
(Table S2-b) and in 3 states (CO, GA, WA), the  NO2 changes are not significant either (Table S2-a). We see more 
states with statistically significant changes in  NO2, than  PM2.5, following state-level emergency declarations.

State‑level factors may explain the heterogeneity in air pollution declines across states. To 
ascertain which state-level factors might explain the heterogeneity in the extent to which the air pollution 
declined across states, we fit a weighted multivariable linear regression model with the estimated �j (for each 
pollutant separately) for each state as the dependent variable, and geography, population density and sources 
of emission as predictors accounting for the main effect and their corresponding two-factor interactions. For 
the  PM2.5 pollutant model, all the proportions of annual emissions from a state’s stationary (e.g., industrial pro-
cesses), mobile (e.g., road and air traffic), and fire sources (e.g., agricultural field burning) (Table S5, from 2014) 
are not statistically significant and have negative associations with the change in  PM2.5 concentration (Table S6). 
In contrast, the proportion of annual emissions from mobile sources and stationary sources were statistically 
significantly associated with the change in  NO2 concentration (Table S6).
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Figure 1.  (a) Weekly deviations between observed  NO2 concentrations and counterfactual predictions (e.g., 
absent the pandemic) for each state. The counterfactual predictions were made for 16 weeks from January 1 
to April 23, 2020. The blue vertical line marks the date of the declaration of a state of emergency in each state. 
(b) Boxplots of the weekly deviations for the weeks before (pink) and for the weeks after (blue) the date of the 
declaration of a state of emergency in each state.
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Figure 2.  (a) Weekly deviations between observed  PM2.5 concentrations and counterfactual predictions (e.g., 
absent the pandemic) for each state. The predictions were made for 16 weeks from January 1 to April 23, 2020. 
The blue vertical line marks the date of the declaration of a state of emergency in each state. (b) Boxplots of the 
weekly deviations for the weeks before (pink) and for the weeks after (blue) the date of the declaration of a state 
of emergency in each state.
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Figure 3.  Median change in  PM2.5 following the state-level emergency declaration for each state ( �j ). A 
negative estimated value of �j indicates that air pollution levels declined as a result of the state-level emergency 
declaration. This figure was created using open source software R 4.1.0 (https:// cran.r- proje ct. org/). The base US 
map was used by using the R package: rnaturalearthhires (). The source code (Rcode_PM25_USmap_figure3.R) 
to recreate this figure, please visit our GitHub page: https:// github. com/ NSAPH/ USA- COVID- state- level- air- 
pollu tion- SARIMA- analy sis.

Figure 4.  Average prediction error for each state during the same prediction period (January 1 to April 23) for 
2019 (no pandemic, red) and 2020 (pandemic, blue) for the  NO2 pollutant model (the circles are connected by 
the dotted line for improved visualization, no other intention is associated in this connection).

https://cran.r-project.org/
https://github.com/NSAPH/USA-COVID-state-level-air-pollution-SARIMA-analysis
https://github.com/NSAPH/USA-COVID-state-level-air-pollution-SARIMA-analysis
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Discussion
Following the declaration of a state of emergency, we found that  NO2 concentrations showed a statistically sig-
nificant decline in 34 of the 36 states included in this analysis. In contrast,  PM2.5 concentrations declined in only 
16 of 48 states included in this analysis. These 16 states are in the Northeast and on the West Coast. Furthermore, 
as expected, we found that the proportion of a state’s annual emissions from mobile sources and stationary 
sources are statistically significant factors in  NO2 changes in response to the state emergency declaration. For 
 PM2.5 reductions, all three sources—mobile, stationary, and fire—were not statistically significant predictors 
and have negative associations with the changes in  PM2.5 concentrations. We concluded that state of emergency 
declarations implemented in response to the COVID-19 pandemic predominantly affected mobile sources (e.g., 
cancelled flights and reduced traffic)65 and stationary sources and led to a decline in  NO2. However, because the 
major sources of  PM2.5 are stationary (e.g., industrial fuel combustion), these were less affected by state-level 
emergency declarations (Table S5).

Figure 5.  Average prediction error for each state during the same prediction period (January 1 to April 23) for 
2019 (no pandemic, red) and 2020 (pandemic, blue), for the  PM2.5 prediction model (the circles are connected 
by the dotted line for improved visualization, no other intention is associated in this connection).

Figure 6.  Ratio of the estimated �j  for  NO2 divided by the estimated �j for  PM2.5 (ρ). A negative ratio implies 
that the change in  NO2 following the declaration of the state of emergency was in the opposite direction of the 
corresponding changes for  PM2.5 (i.e., one pollutant increased while the other decreased). For example, in KY, 
we found a decline in  NO2 but an increase in  PM2.5 following the state-level emergency declaration.
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SARIMA models have some advantageous features compared to other statistical approaches. Recent 
 studies22,23,29,36 have used t-tests22, a robust difference  approach23, linear  regression36, and synthetic control 
 methods66 to study the changes in US air pollution attributable to the COVID-19 shutdown. Bekbulat et al. 
used temporal correction in their robust differences  approach23 (not peer-reviewed on August 03, 2020) and 
Venter et al. included meteorological factors in their  regression36. The latter was a global study of air pollution 
changes during the pandemic, which found that a decline in  NO2 in the United States occurred on a national level. 
However, these methods do not directly incorporate the correlations between observed pollutant concentrations, 
and trends and seasonality in the data. We accounted for both factors using SARIMA models. Any contribu-
tion to the data from generally decreasing air pollution trends and weather seasonality must be removed to best 
estimate the effect of pandemic-related extreme measures on air pollution. By further combining SARIMA with 
bootstrapping, we were able to quantify the uncertainty in the estimated mean predictions.

We note that our counterfactual predictions of pollutant concentrations assume that the trend and seasonality 
during the last five years (i.e., the training period for the model) persisted during the prediction period (Janu-
ary 1, 2020, to April 23, 2020). Another assumption was that the relationship between meteorological variables 
used in the SARIMA model (temperature, humidity, and precipitation) and the pollutant concentrations were 
the same in both the training and prediction  periods67,68. While in California for  NO2 (see Figures S1 to S5) we 
see smaller differences between predicted and observed concentrations before the state of emergency, in some 
states this was not the case, and we see differences between the predicted and observed for the entire January 
2020—April 2020 period. We would not expect the model’s predictive capability to affect the estimation of the 
pollutant concentrations before and after the state intervention differently. Therefore, where we observed sig-
nificant deviations from the predicted concentrations following the state intervention, we can be confident that 
it is due to the intervention and not due to the model’s predictive capability. Additionally, we fit an additional 
SARIMA model to predict the same prediction period for the previous year of 2019 (January 1, 2019, to April 
23, 2019). In comparing the behaviour of the APEs, we find that APEs are higher for 2020 compared to 2019, 
except for a few states, for each of the pollutant models.

In contrast to other studies (see for  example22), we did not a priori divide our data into pre- and post‒
COVID-19 periods. We used January 1, 2015, to December 31, 2019 as historical data and then used the SARIMA 
model to predict the counterfactual pollutant levels during the 16-week period from January 1, 2020 to April 23, 
2020, under the hypothesis that neither the pandemic nor the state emergency declaration occurred. In other 
words, first we predict air pollution levels for the whole study period of 16 weeks. We then looked a posteriori 
to determine if the  NO2 or  PM2.5 declines coincided with state-level emergency declarations (see Figures S1-S5 
for example of  NO2 in California).

By identifying the maximum decline in the median pollutant concentrations following state-level emergency 
declaration, we found that the extreme measures taken during the pandemic led to a change of  PM2.5 of up to 
3.4 µg/m3 (in California) and a change of  NO2 of up to 11.6 ppb (in Nevada). These weekly-averaged values 
represent a substantial fraction of the annual mean NAAQS values of 12 µg/m3 and 53 ppb, respectively. Based 
on the national regression model, there is significant potential to reduce  NO2 concentrations by reducing mobile 
and stationary sources of  NO2 emissions, provided the same level of change can be sustained throughout the 
annual cycle. But these associations were not seen in the  PM2.5 regression model. In Table 1, we summarized 
the published evidence from similar studies in the US. For example, Berman el al 2020, examines all the coun-
ties in the US for both  PM2.5 and  NO2. They found a 25.5% reduction (4.8 ppb) in  NO2 during the COVID-19 
period and a 11.3% statistically significant reduction (0.7 μg/m3) of  PM2.5 in counties from states that instituted 
early non-essential business  closures22. However, the statistical analysis of this study relies on t-tests and does 
not account for confounding or residual autocorrelation. Overall, among studies summarized in Table 1, there 
is consistent evidence of a decline of  NO2 for most of the  locations22,24–26, whereas the evidence of declines in 
 PM2.5 is weaker (see for  example26,28). In addition, one relevant pre-print study found that  PM2.5 concentrations 
during lockdown are 10% (0.54 μg/m3) higher than expected post-covid, but 11% (0.73 μg/m3) lower than pre-
covid, with 31% decrease in  NO2 levels in 3 major  cities23. Another relevant pre-print study found a nationwide 
average increase of 1.36 μg/m3 in  PM2.5 following official lockdown  orders66.

With respect to studies outside the US, a recent study investigated the effect of lockdown in urban China, 
using difference-in-difference approach; they found a decline of 14 µg/m3 in locked-down cities compared to 
cities that did not implement a  lockdown69. The cities in that study had baseline  PM2.5 concentrations four times 
higher than the safe limits set by the World Health Organization, which may have been partly responsible for a 
larger decline after lockdown compared to what we observed in the United States. Another study used baseline 
regression to estimate the impact of lockdown on 44 cities in Northern China and found a 5.93% decrease in 
 PM2.5 and a 24.67% decrease in  NO2 concentrations during  lockdown40. Others have used paired t-tests and the 
autoregressive moving average (ARMA) model to quantify the impact of the COVID-19 lockdown in 41 cities 
in India on pollution levels, and found a 19% decrease in  NO2 compared to the same period in  201945.

Our study results support the effectiveness of state-level actions to reduce ambient levels of  PM2.5 and  NO2, 
and specifically, that restrictions on stationary and mobile sources of air pollution could decrease  NO2 emissions 
even further in states where mobile sources constitute a larger proportion of annual emissions. In contrast,  PM2.5 
concentration reduction may not be as easily achieved through these sources alone. In states where changes in 
 PM2.5 and  NO2 exhibited opposite trends (one increased while the other decreased), lowering the emission of 
 NO2, by decreasing mobile source emissions for example, may not necessarily decrease  PM2.5 concentrations.

Study limitations. The models were fit separately for  PM2.5 and  NO2 and we did not account for correlation 
between the two pollutants. We relied on state-level concentration averages and the 2014 emissions inventory. 
While our study would benefit greatly from a more recent emissions inventory (or spatial emissions estimates 
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during the interventions), to our knowledge, such data is not currently available publicly. With respect to fire 
emissions, we note that although we only have data from 2014, regions with higher areas burned in 2014 have 
larger propensity to have higher areas burned in  202070. Trading finer spatial resolution in the monitoring data—
not averaging to the state level—may reveal important sub-state variability in lockdown impacts. Monitor data 
was obtained from EPA AirNow and has not undergone quality control by the EPA. We didn’t remove outlier 
observations, however we averaged hourly measurements by day and by state, which would have minimized the 
impact of outliers. Our approach also does not consider the spatial correlations between pollutant concentra-
tions, which may help explain concentration changes in non-local pollutants such as  PM2.5. Wind speed was 
not included in the SARIMA model, adjusting for wind speed could have improved the predictions even more. 
Finally, data were available for 36 states for  NO2 and 48 states for  PM2.5, which limited the number of observa-
tions in the weighted regression model. Finally, even though we have accounted for the interactions between 
the predictors in the weighted least squares regression models, we need to consider adjusting for other potential 
predictors which could improve the prediction.
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