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ACP‑MHCNN: an accurate 
multi‑headed deep‑convolutional 
neural network to predict 
anticancer peptides
Sajid Ahmed1,6, Rafsanjani Muhammod1,6, Zahid Hossain Khan1,6, Sheikh Adilina1, 
Alok Sharma2,3, Swakkhar Shatabda1* & Abdollah Dehzangi4,5*

Although advancing the therapeutic alternatives for treating deadly cancers has gained much 
attention globally, still the primary methods such as chemotherapy have significant downsides and 
low specificity. Most recently, Anticancer peptides (ACPs) have emerged as a potential alternative to 
therapeutic alternatives with much fewer negative side‑effects. However, the identification of ACPs 
through wet‑lab experiments is expensive and time‑consuming. Hence, computational methods have 
emerged as viable alternatives. During the past few years, several computational ACP identification 
techniques using hand‑engineered features have been proposed to solve this problem. In this study, 
we propose a new multi headed deep convolutional neural network model called ACP‑MHCNN, for 
extracting and combining discriminative features from different information sources in an interactive 
way. Our model extracts sequence, physicochemical, and evolutionary based features for ACP 
identification using different numerical peptide representations while restraining parameter overhead. 
It is evident through rigorous experiments using cross‑validation and independent‑dataset that ACP‑
MHCNN outperforms other models for anticancer peptide identification by a substantial margin on our 
employed benchmarks. ACP‑MHCNN outperforms state‑of‑the‑art model by 6.3%, 8.6%, 3.7%, 4.0%, 
and 0.20 in terms of accuracy, sensitivity, specificity, precision, and MCC respectively. ACP‑MHCNN 
and its relevant codes and datasets are publicly available at: https:// github. com/ mrzRe searc hArena/ 
Antic ancer‑ Pepti des‑ CNN. ACP‑MHCNN is also publicly available as an online predictor at: https:// 
antic ancer. pytho nanyw here. com/.

Cancer is one of the deadliest diseases in the world. Even though there are several ways of treating some of the 
cancer types, still there is no certain treatment for most of the cancers. Two of the major treatment strategies for 
cancer are radiation therapy and  chemotherapy1,2. However, they are both expensive and have long term nega-
tive side  effects1. In addition, cancer cells can become resistant to the chemotherapeutic  drugs1. Therefore, there 
is a demand for finding new low cost and more effective treatments for  cancer3. Among the newly introduced 
treatment methods for this deadly disease, anticancer peptides (ACP) have gained a lot of attention in the recent 
years as a less toxic and potentially more effective treatment for  cancer3,4.

ACPs are short peptides consisting of 10 to 50 amino acids which are typically derived from antimicrobial 
 peptides5. ACPs perform a wide range of cytotoxic activities against cancer cells while leave benign cells intact 
which is the reason behind their high specificity and low side  effects6. Additionally, ACPs have low production 
cost, they are easy to synthesize and modify, and they have excellent tumour penetration  capabilities7. In the 
past few years, many ACP based treatment options have been tested on a wide variety of cancer cells. However, 
only a few of them have been cleared for further clinical  trials8,9. Hence, rapid identification of potential ACPs 
is important for cancer therapeutic advancement. However, identification of these peptides through wet-lab 
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experiments is relatively costly and time  consuming1. Therefore, there is a demand for fast and accurate compu-
tational methods to tackle this problem. Among different computational methods, machine learning has merged 
as a promising approach to identify ACPs efficiently and effectively.

During the past few years, a wide range of traditional Machine Learning (ML) methods have been proposed 
to identify ACPs. These traditional ML techniques require a set of hand-engineered features to represent protein 
sequences for the classification purpose. Thus, various methods for extracting effective features to represent pro-
teins and peptides in an effective manner that contain significant discriminatory information for the classification 
purpose have been proposed. AntiCP was the first ML model for ACP identification that was proposed  in1. In 
this model, peptide sequences are formulated by amino acid composition (AAC), split AAC (using N-terminal 
and C-terminal residues), dipeptide composition (DPC), and binary profiles features (BPF)1. Afterwards, these 
features are passed as input to a Support Vector Machine (SVM) classifier for separating the ACPs from the 
non-ACPs.

Shortly after that, Hajisharifi et al., proposed two methods for ACP identification using  SVM10. In the first 
method, SVM was employed for separating ACPs from non-ACPs. They used pseudo-amino acid composition 
(PseAAC) method on different combinations of 6 physicochemical properties of the amino acids to extract fea-
tures. In the second method, the binary classification was performed using SVM with a local alignment-based 
kernel method designed for feature extraction from peptide  sequence10. Later on, Chen et al. proposed iACP, 
where gapped dipeptide compositions (g-gap DPC) were used for feature extraction from peptide sequences, 
and SVM with radial basis function (RBF) kernel was used for the classification  purpose3.

More recently, Manavalan et al., proposed MLACP to tackle this problem. To build this model, AAC, DPC, 
atomic composition (ATC) of the sequences, and physicochemical properties of the residues were used for fea-
ture extraction while, SVM and Random Forest (RF) classifiers were used for ACP  identification11. At the same 
time, Akbar et al., proposed iACP-GAEnsc, which used g-gap DPC, reduced amino acid alphabet composition 
(RAAAC), and PseAAC based on hydrophobicity and hydrophilicity of the amino acids (Am-PseAAC) for 
feature extraction. They also proposed an ensemble of different classifiers that combined SVM, RF, Probabilistic 
Neural Network (PNN), Generalized Regression Neural Network (GRNN), and K-nearest Neighbour (KNN) 
classification models for ACP  identification12.

Later on, Xu et al., proposed a hybrid sequence-based model, where the peptides were converted to feature 
vectors through g-gap DPC to tackle this problem. They also used SVM and RF as their employed  classifiers13. At 
the same time Kabir et al., proposed TargetACP, where the peptides were represented using split AAC, correla-
tion factors extracted from PSSM profiles (PsePSSM), and composite protein sequence representation (CPSR). 
They also used SVM, RF and KNN classifiers as their employed  models14.

Most recently, Schaduangrat et al. proposed ACPred, where different combinations of AAC, DPC, PseAAC, 
Am-PseAAC, and physicochemical properties were used for peptide representation. They also used SVM and RF 
classifiers for the ACP identification  prediction4. At the same time, Wei et al., proposed ACPred-FL, where AAC, 
g-gap DPC, BPF, amino acid-specific physicochemical property-based bit vectors and composition-transition-
distribution (CTD) methods were used for feature extraction. Similarly, they used SVM based ensemble model 
as their employed  classifier15.

During the revision stage of this manuscript, Charoenkwan et al. proposed a sequence-based method iACP-
FSCM with an emphasis on model interpretability, where 11 local and global amino acid composition-based 
features were utilized with a weighted-sum-based prediction  mechanism16. Furthermore, Agrawal et al. proposed 
a sequence-based method AntiCP 2.0 along with two ACP identification  datasets17. AntiCP 2.0 has been shown to 
outperform all the existing ACP identification methods with state-of-the-art accuracy. In a recent review article, 
Basith et al.18 (Sir, please fix the citation order) presented a concise summary of 16 ML methods developed so 
far for ACP identification.

Using traditional ML models (SVM, RF, KNN, etc.), the systems’ performances depend on the underlying 
manual feature extraction mechanisms. However, formulating problem-specific optimal feature representation 
for these sequences is not a trivial task and requires significant iterations of trial and error. In recent years, deep 
learning (DL) methods attracted tremendous attention to tackle challenging problems related to biological 
sequences because in many cases, unlike traditional ML algorithms, they do not require manual feature extrac-
tion to represent the input  data15–25. Several DL methods, such as Convolutional Neural Network (CNN)20,26, 
Recurrent Neural Network (RNN)20, word  embedding27,28, and  autoencoder29–31 have been successfully employed 
for feature extraction and classification for DNA, RNA, and protein sequences. Methods such as CNN and RNN 
exploit spatial locality and ordering information of the residues for ensuring that the extracted features retain a 
significant amount of discriminatory information from biological sequences.

However, none of the studies related to ML-based ACP identification explored automated feature extraction 
using DL methods until recently, when ACP-DL was proposed  in32. Although Timmons et al. proposed a deep 
neural network architecture ENNAACT for ACP  identification33, it still operates on manually extracted features 
(AAC, DPC, g-gap DPC among others). To the best-of-our-knowledge ACP-DL is the only DL-based automated 
feature extraction method proposed for this problem, so far. ACP-DL uses bidirectional long-short-term-memory 
(LSTM) recurrent layers for extracting features from peptide sequences followed by a fully-connected layer with 
a sigmoid neuron for classification. ACP-DL extracts features from two one-hot vector-based peptide representa-
tion techniques (binary profile and k-mer sparse matrix) that only depict the presence of a specific amino acid 
or a group of amino acids along different positions of the sequences. As a result, physicochemical properties 
or evolutionary substitution information of the residues, which contain significant information regarding anti-
cancer activities of peptide sequences are not utilized in ACP-DL’s feature representation  process4,12,14,15. As a 
result, although the predictive performance of ACP-DL is quite impressive, there is still room for improvement.

Although recurrent layers are reliable for converting biological sequences into fixed-size features  vectors20, 
convolutional layers have also demonstrated promising performance addressing similar problems. In fact, CNN 
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have been demonstrated as an effective technique for feature extraction and classification for DNA, RNA, pep-
tides, and protein sequences in a wide range of  studies33–41. However, CNN has never been used for ACP clas-
sification task.

In this study, we hypothesize that a new representation technique that depict the residues’ evolutionary 
relationship and their physicochemical characteristics can embellish the feature extraction process for ACP 
identification since this type of information contains signals necessary for elucidating the structure and func-
tion of peptides. With this viewpoint, we are proposing a method called ACP-MHCNN, which consists of three 
jointly trained groups of stacked CNNs for interactive feature extraction from three distinct information sources 
for ACP identification. Our results demonstrate that ACP-MHCNN outperforms the current state-of-the-art 
methods on several well-established ACP identification datasets with a substantial margin. On ACP-500/ACP-
164 benchmark dataset, ACP-MHCNN outperforms ACP-DL by 6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms 
of accuracy, sensitivity, specificity, precision, and Matthews correlation coefficient (MCC), respectively. Our 
model and all its relevant codes and datasets are publicly available at: https:// github. com/ mrzRe searc hArena/ 
Antic ancer- Pepti des- CNN. ACP-MHCNN is also publicly available as an online predictor at: https:// antic ancer. 
pytho nanyw here. com.

Materials and methods
In this section, we represent the benchmarks that are used in this study. We also present our sequence representa-
tion as well as the proposed feature extraction and classification models.

Benchmark datasets. In this study, we use three independent benchmarks to study the effectiveness and 
generality of our proposed method. These benchmarks are namely, ACP-740, ACP-240, and the combination of 
ACP-500 and ACP-164.

ACP-740 dataset was introduced  in32. For constructing ACP-740, initially, 388 experimentally validated 
ACPs (positive samples) were collected, among which 138 were  from3 and 250 were  from29. Correspondingly, 
456 antimicrobial peptides (AMP) without anticancer activity (negative samples) were initially collected, among 
which 206 were  from3 and 250 were  from29. Subsequently, using CD-HIT, 12 positive samples and 92 negative 
samples were removed to ensure that none of the peptide sequence pairs have more than 90% similarity as it 
was done in previous  studies32, which resulted in a dataset with 740 samples (376 positives + 364 negatives). The 
ACP-240 dataset, which was also introduced  in32, consists of 240 samples where 129 experimentally validated 
ACPs are the positive samples, and 111 AMPs without anticancer activity are the negative samples. To avoid 
performance over-estimation due to homology bias, using the same procedure as ACP 740, redundancy reduc-
tion was performed with a 90% threshold to construct ACP-240.

On the other hand, ACP-500 and ACP-164, were constructed  in15, where ACP-500 is used for training and 
validation, while ACP-164 is used as an independent test dataset. For constructing these two datasets, initially, 
3212 positive samples were collected, among which 138 were  from3, 225 were  from1, and 2849 were  from42. The 
initial 2250 negative samples were collected  from1. After performing redundancy reduction using CD-HIT with 
a 90% similarity threshold, 332 positive samples and 1023 negative samples remained. From these remaining 
non-redundant sequences, 250 positive samples and 250 negative samples were randomly selected for construct-
ing ACP-500, whereas ACP-164 contains the remaining 82 positive samples along with 82 randomly selected 
negative samples.

Numerical representation for peptide sequences. Although ACP-MHCNN does not require manual 
feature extraction, it is crucial to encode the sequences in numerical formats since the initial feature extraction 
layer of any DL architecture performs mathematical operations on the input for extracting class-discriminative 
activations. Such information is then passed as input to nodes in the subsequent layers. In this study, we exploit 
three peptide representation methods that are described in the following three sections. Since it has been shown 
 in15,32 that considering k amino acids from the N-terminus of a peptide is sufficient for capturing its anticancer 
activity, we have represented each sequence using its k N-terminus residues. In our experiments, we have set 
k = 15. For sequences having length less than 15, post-padding has been applied as it is explained in details  in43.

Binary profile feature (BPF) representation. In our first representation method, each of the 20 amino acids (A, 
R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V) is represented using a binary one-hot vector of length 20. 
For example, A is represented as [1, 0,…, 0], R is represented as [0, 1,…,0], V is represented as [0, 0, …, 1], and 
so on. This representation encodes each sequence into a k × 20 matrix. Manually extracted short-range sequence 
patterns such as AAC, DPC, split AAC and long-range sequence patterns such as g-gap DPC have been suc-
cessfully employed with traditional ML models for ACP  identification1,3,10–15. We hypothesize that our model’s 
feature detection mechanism can capture both short-range and long-range sequence patterns that distinguish 
the peptides with anticancer activity from BPF representation.

Physiochemical‑based (AAIs) representation. Basak et al., used a numerical representation for proteins for iden-
tifying length 5 conserved peptides through molecular evolutionary  analysis44. The underlying numerical repre-
sentation method proposed  in45 utilized an alphabet reduction strategy where the amino acids are divided into 
non-overlapping groups based on their side chain chemical property. The findings from these two studies have 
implied that amino acid physicochemical properties can facilitate the identification of evolutionarily conserved 
motifs, which are in turn important for maintaining the appropriate structure or function of the molecules. 
When these conserved motifs go through changes in the primary structure level, the amino acid residues are 
usually replaced with the ones with similar physicochemical properties. This phenomenon highlights the signifi-
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cant impact of exploring physicochemical properties for motif identification with respect to similarity among 
the substitute amino acids. Since our model identifies peptides with specific functions, discovering these motifs 
can strengthen our model.

Moreover, hand-engineered features based on amino acid physicochemical properties have been shown to 
improve ACP identification in a series of studies that have used traditional machine learning  models4,10–12,15. 
We hypothesize that our feature extraction mechanism can identify similar features from a peptide represen-
tation based on the amino acids’ physicochemical properties. With these assumptions, our physicochemical 
property-based representation replaces each of the residues in a peptide sequence with a 31-dimensional vector 
(composed of 0/1 elements) that depict various physicochemical properties. As a result, each of the sequences 
is encoded into a k × 31 matrix.

For each amino acid, a unique 31-dimensional vector is formed through the concatenation of a 10-bit vector 
and a 21-bit vector. Elements of the 10-bit vector depict the membership of a specific amino acid in 10 overlap-
ping groups based on its physicochemical properties as it was explained  in15. Elements of the 21-bit vector are 
determined based on membership of a specific amino acid in the 7*3 = 21 groups formed by dividing them into 
3 groups based on 7 physicochemical properties namely, polarity, normalized Van der Waals volume, hydropho-
bicity, secondary structures, solvent accessibility, charge, and polarizability as it was done  in15.

Evolutionary information‑based (BLO62) representation. BLOSUM is a symmetric 20 × 20 matrix constructed 
by Henikoff et al.,  in46, where each entry is proportional to the probability of substitution of a given amino acids 
with another amino acid in a protein (substitution probability in evolutionarily related proteins). Each entry in 
this matrix can be represented using the following equation:

where, pij is the probability of amino acids ‘i’ and ‘j’ being aligned in homologous sequence alignments, fi is the 
probability that amino acid ‘i’ appears in any protein sequence, fj is the probability that amino acid ‘j’ appears in 
any protein sequence, and � is the scaling factor for rounding off the entries in the matrix to convenient integer 
values.

The observed substitution frequency for every possible amino acid pair (including identity pairs) is calcu-
lated from a large number of trusted pairwise alignments of homologous sequences as it is explained  in46. If an 
entry M(i,j) is positive, the number of observed substitutions between amino acids i and j is more than random 
expectation. Thus, these substitutions are conservative (these substitutions occur more frequently than other 
random substitutions in homologous sequences). Therefore, each of the 20 rows of this matrix is a vector con-
taining 20 elements that depict a specific amino acid’s evolutionary relationship with other amino acids. Here, 
we use BLOSUM matrix for retrieving a 20-dimensional vector for each of the 20 amino acids and use these 
vectors for encoding each peptide sequence into a k × 20 matrix. We hypothesize that our feature extraction 
architecture can automatically extract discriminative evolutionary features for ACP identification from this 
sequence representation. Among different BLOSUM matrix variations, we have used BLOSUM62 as the most 
popular one in this study.

Multi‑headed convolutional neural network architecture. CNN is a specialized neural network 
where each neuron in a given layer is connected to a group of neighbouring nodes in the previous layer. These 
layers drastically reduce parameter overhead and extract translation-invariant meaningful features by exploiting 
spatial locality structure in data through local connectivity and weight  sharing47. A convolutional layer usually 
consists of several kernels where each kernel detects some specific local pattern in different input  locations47. 
Since hand-engineered feature extraction methods such as AAC, DPC, g-gap DPC, PseAAC, and PsePSSM uti-
lize ordering of neighbouring residues and their correlation information with respect to evolutionary and phys-
icochemical properties for feature generation from peptide sequences, using convolutional kernels for automati-
cally approximating similar features is a rational choice. Moreover, well-defined ordering among the residues in 
peptide primary structure, the residues’ inherent local neighbourhood structures, and the presence of similar 
patterns (sequence motifs) at different locations across a peptide make these sequences perfect candidates for 
feature extraction through convolutional kernels.

The feature extraction mechanism in our proposed model consists of groups of stacked convolutional lay-
ers. Each convolutional layer group extracts features from a different representation of the peptide sequence. 
Since we have use three representation methods that serve as sources of discriminative information, our model 
contains three parallel layer groups. Each of these groups extract short-range and long-range patterns from a 
unique sequence representation using two stacked convolutional layers with varying number of kernels. The 
number of kernels in the layers and size of these filters are hyperparameters tuned through cross-validation48.

The output feature maps of the second convolutional layer of each of the three groups are flattened, and the 
three resulting vectors are concatenated. The unified vector from this concatenation is passed through a dense 
layer with ReLU (Rectified Linear Unit) activation function for recombining the features extracted from different 
sequence  representations49. It is to be mentioned that each element of the input vector for this dense recombina-
tion layer is calculated from a single information source (BPF or physicochemical or evolutionary representation) 
during forward-propagation. In contrast, elements of this layer’s output vector can be aggregated from multiple 
information sources. Hence, this layer enables seamless interaction between different convolutional groups that 
extract patterns from different representations and facilitates joint feature learning from multiple information 
sources during back-propagation50. These complex non-linear features are then passed as inputs to a dense layer 

(1)M
(

i, j
)

=
1

�
log

pij
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with SoftMax activation  function51, which draws a linear decision boundary on the derived feature space for 
separating the anticancer peptides from peptides without anticancer activity. Figure 1 represents the architecture 
of our proposed model for joint feature extraction from multiple information sources.

Since the tmypraining data is limited for this task, there is a possibility for overfitting when training a deep-
CNN model. To avoid overfitting, we adopt both L2 regularization and dropout methods in the feature extraction 
step to build out  model52. L2 and dropout have been shown to be effective methods to address overfitting issue 
when the number of training samples are  limited52. To be specific, the feature extraction occurs in all layers of the 
three parallel convolutional groups and the dense recombination layer after concatenation. Therefore, here high 
dropout rates (>=0.5) are employed after each of these layers during the training phase to mitigate overfitting. 
These dropout rates are determined through cross-validation. Note that, the three convolutional layer groups that 
extract features from three distinct sequence representations are jointly trained alongside the dense recombina-
tion layer for minimizing cross entropy loss  function53. Therefore, our model can simultaneously interact with the 
three information sources for detecting complex and ambiguous patterns. Optimal values for our model’s weights 
and biases are learned by employing Adam  optimizer50 with a learning rate determined through cross-validation.

ACP-DL, the only deep learning-based architecture proposed to date for anticancer peptide identification, 
employed stacked bidirectional LSTM layers for feature extraction which is an intuitive choice given a recurrent 
model’s capability of capturing global sequence-order  information32. However, the recurrent connections and 
the gates also introduce a large number of parameters that need to be tuned. This can lead to overfitting since the 
number of training instances is limited. Moreover, since only 15 N-terminus amino acids have been considered 
for feature extraction, LSTM’s long-range sequence-order-effect detection capabilities remain underutilized while 
the parameter overhead  remains32. In this study, we do not add any recurrent layer on top of the output feature 
maps from the final convolutional layers to avoid this issue.

Furthermore, it is to be noted that the kernels in the final layer of each convolutional group have an effective 
receptive field of length 6 due to hierarchical relationship between the stacked layers (length 4 kernels to length 
3 kernels)47. This effective receptive field should provide sufficient coverage for extracting both short-range and 
long-range patterns from sub-sequences of length 15. In addition, since we extract features from short sub-
sequences, reducing the temporal dimension of the intermediate feature maps (outputs of the first and second 
convolutional layers of each group) is not required for learning higher order features. Hence, we do not add any 
pooling layers between the feature extraction layers within the convolutional  groups47. The absence of pooling 
layers also reduces potential loss of sequence order information that can be exploited by the kernels in the final 
convolutional layers in the groups for detecting long-range  patterns47.

To analyse the contribution of features extracted from each of the information sources, we carry out experi-
ments using all possible combinations of the three representations. This results in seven models (3C1 + 3C2 + 3C3) 
with 1, 2 or 3 convolutional groups. All these combinations are summarized in Table 1. The performance for our 
architecture using these seven combinations is reported in the following section.

For ACP-740 and ACP-240, our model’s hyperparameters are tuned on ACP-740 through cross-validation, 
and the same model configuration is used for ACP-240. For ACP-500 and ACP-164, hyperparameter tuning is 
performed on ACP-500 through cross-validation. ACP-240 and ACP-164 have been kept untouched during 
hyperparameter tuning to avoid performance overestimation. Table 2 shows detailed hyperparameter configura-
tions for different ACP identification datasets used in this study.

Figure 1.  The general architecture of ACP-MHCNN. We extract BPF, physicochemical, and evolutionary-based 
features. We then feed the extracted features to a multi-headed deep convolutional neural network (MHCNN) 
to predict Anti-Cancer peptides.
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Results and discussion
In this section, we present how we carry out the performance evaluation of our proposed model, our achieved 
results, and then discuss them.

Evaluation metrics. The evaluation metrics that have been used for measuring the performance of our clas-
sification method are Accuracy, Sensitivity, Specificity, Precision, and Matthews correlation coefficient (MCC). 
These metrics are described through the following equations:

(2)Accuracy =
tp+ tn

tp+ tn+ fp+ fn
∗ 100

(3)Sensitivity =
tp

tp+ fn
∗ 100

(4)Specificity =
tn

tn+ fp
∗ 100

Table 1.  Summary of seven combinations of the three sequence representations explored in this study. On the 
First column of the table, we present the name of the combination, on the second column we present the name 
of the representations used to build the given combination, and in the third column we present the number of 
convolutional groups for the given combination.

Combination number Feature encoding technique Number of convolutional layer groups

C1 BPF 1

C2 Physicochemical Properties 1

C3 Evolutionary Information 1

C4 BPF & Physicochemical Properties 2

C5 BPF & Evolutionary Information 2

C6 Physicochemical Properties & Evolutionary Information 2

C7 BPF & Physicochemical Properties & Evolutionary Information 3

Table 2.  Hyperparameter configurations employed for different ACP datasets. In this table, ‘Conv’ = a 
convolutional layer, ‘Dense’ = a fully connected layer, ‘filter’ = number of filters in a convolutional layer, 
‘kernel’ = size of filters in a convolutional layer, ‘drop’ = dropout rate, and ‘units’ = number of neurons in a fully 
connected layer.

ACP-740 and ACP-240 ACP-500 and ACP-164

Convolutional group-1 Convolutional group-1

Conv-1 Conv-

 filter = 10 kernel = 4 drop = 0.8  filter = 16 kernel = 3 drop = 0.7

Conv-2 Conv-2

 filter = 8 kernel = 3 drop = 0.7  filter = 8 kernel = 3 drop = 0.5

Convolutional group-2 Convolutional Group-2

Conv-1 Conv-1

 filter = 10 kernel = 4 drop = 0.8  filter = 16 kernel = 3 drop = 0.7

Conv-2 Conv-2

 filter = 8 kernel = 3 drop = 0.7  filter = 8 kernel = 3 drop = 0.5

Convolutional Group-3 Convolutional Group-3

Conv-1 Conv-1

 filter = 10 kernel = 4 drop = 0.8  filter = 16 kernel = 3 drop = 0.7

Conv-2 Conv-2

 filter = 8 kernel = 3 drop = 0.7  filter = 8 kernel = 3 drop = 0.5

Dense recombination Dense recombination

Dense-1 Dense-1

 units = 8 drop = 0.7  units = 16 drop = 0.6

Dense-2

 units = 8 drop = 0.5
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where, tp is the number of correctly predicted positive instances, tn is the number of correctly predicted nega-
tive instances, fp is the number of incorrectly predicted negative instances, and fn is the number of incorrectly 
predicted positive instances. The range of values for Accuracy, Sensitivity, Specificity, and Precision is 0 to 100 
percent. 100% represents an ideal classifier (totally accurate) and 0% represents the worst possible model (totally 
inaccurate). In addition, MCC has a range from − 1 to + 1. A value of 0 in MCC represent a random classifier 
with no correlation, + 1 represent perfect positive correlation and − 1 represents perfect negative correlation.

Contribution analysis for different sequence representations. For each of the representation com-
binations summarized in Table 1, we have performed experiments on ACP-740 and ACP-240 using fivefold-
cross validation, and the corresponding results are reported in Table 3 and 4, respectively. For ACP-500 and 
ACP-164, we train and tune the models on ACP-500 and test them on ACP-164. The corresponding results are 
reported in Table 5.

(5)Precision =
tp

tp+ fp
∗ 100

(6)MCC =

(

tp ∗ tn
)

−
(

fp ∗ fn
)

√

(

tp+ fp
)(

tp+ fn
)(

tn+ fp
)(

tn+ fn
)

Table 3.  Results achieved using fivefold cross validation for ACP-740 dataset for different input feature 
groups. The STD is also presented in the brackets for each measurement. Bold items indicate the best values 
found by the methods.

Combination Accuracy (STD) Sensitivity (STD) Specificity (STD) Precision (STD) MCC (STD)

C1 76.0 (2.9) 78.9 (7.8) 73.0 (8.1) 75.0 (6.2) 0.52 (0.02)

C2 73.1 (4.8) 74.7 (13.5) 71.3 (11.6) 72.8 (11.6) 0.46 (0.11)

C3 81.1 (3.1) 81.3 (3.7) 80.7 (3.7) 81.3 (4.1) 0.62 (0.05)

C4 76.9 (2.9) 75.7 (7.5) 78.4 (2.9) 78.2 (2.5) 0.54 (0.05)

C5 84.0 (3.7) 87.6 (8.3) 80.3 (4.2) 82.0 (3.7) 0.68 (0.07)

C6 81.8 (3.2) 82.9 (3.3) 81.1 (5.2) 81.8 (4.2) 0.64 (0.07)

C7 86.0 (1.6) 88.9 (3.2) 83.1 (4.4) 84.4 (3.9) 0.72 (0.03)

Table 4.  Results achieved using fivefold cross validation for ACP-240 dataset for different input feature 
groups. The STD is also presented in the brackets for each measurement. Bold items indicate the best values 
found by the methods.

Combination Accuracy (STD) Sensitivity (STD) Specificity (STD) Precision (STD) MCC (STD)

C1 73.5 (3.1) 82.7 (9.9) 63.6 (8.8) 72.9 (9.4) 0.47 (0.06)

C2 71.2 (4.5) 82.3 (11.0) 59.6 (14.9) 70.6 (4.6) 0.43 (0.07)

C3 79.1 (2.1) 84.6 (6.0) 72.7 (6.0) 78.6 (5.9) 0.58 (0.08)

C4 75.1 (4.4) 84.6 (4.4) 63.6 (7.1) 73.3 (6.4) 0.50 (0.08)

C5 79.9 (2.3) 85.4 (5.9) 73.6 (15.8) 79.3 (1.1) 0.60 (0.08)

C6 81.5 (1.9) 83.2 (8.6) 79.6 (9.3) 82.8 (5.8) 0.63 (0.08)

C7 83.0 (1.1) 90.1 (5.1) 75.6 (3.5) 81.1 (3.9) 0.67 (0.04)

Table 5.  Results achieved using independent test for ACP-500/164 dataset. Model trained on ACP-500 and 
tested on ACP-164. Bold items indicate the best values found by the methods.

Combination Accuracy Sensitivity Specificity Precision MCC

C1 83.8 85.4 81.6 82.3 0.67

C2 74.2 77.9 70.6 72.6 0.49

C3 89.0 91.4 86.6 87.2 0.78

C4 85.6 88.7 82.6 83.6 0.71

C5 90.0 93.7 86.3 87.3 0.80

C6 88.4 89.4 86.7 87.1 0.76

C7 91.0 97.6 84.2 86.0 0.82
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As shown in Table 3, for the ACP-740 dataset, among the single-representation combinations (C1, C2, and 
C3), the representation depicting evolutionary information of the amino acid residues (C3) performs better 
compared to BPF and physicochemical-based representations (C1 and C2) on all six performance measures. 
As shown in Tables 4 and 5, similar results are observed for single representation models for ACP-240 and 
ACP-164. These results indicate that when it comes to feature extraction from a single peptide representation, 
evolutionary information contributes the most for separating the ACPs from the non-ACPs compared to BPF 
and physicochemical-based representation.

Among the two-representation combinations (C4, C5, and C6), C5 (BPF + evolutionary), and C6 (physico-
chemical property + evolutionary information) performs better than C4 (BPF + physicochemical property) which 
further underscores the importance of the features extracted from evolutionary information for ACP identifica-
tion. Moreover, C5 and C6 (two-representation combinations containing evolutionary information) perform 
better than C3 (the best performing single-representation combination containing evolutionary information 
only). This aspect of the results manifests that our proposed joint pattern extraction strategy from multiple rep-
resentations through parallel-convolutional-groups can effectively embellish the features learned from a strong 
primary representation (evolutionary information in this case) through potential ambiguity resolution using 
other secondary representations (BPF and physicochemical property-based information in this case).

This hypothesis has been further corroborated by the performance of the all-representation combination (C7) 
on all datasets. As shown in Tables 3, 4, and 5, the model trained on C7 consisting of three parallel convolutional 
groups that extract features from all three representations performs better than the other combinations (C1 to 
C6). Therefore, we use this all-representation combination model to train ACP-MHCNN and compare its per-
formance with state-of-the-art methods in the following subsection. To provide more insight into our achieved 
results, we present receiver operating characteristic (ROC) curves for our achieved results. The ROC curve for 
ACP-740 (using fivefold cross validation), ACP-240 (using fivefold cross validation), and ACP-164 (using ACP-
500 as the training dataset) are shown in Figs. 2, 3, and 4, respectively. The results for ACP-MHCNN when it is 
trained on ACP-740 dataset and tested on ACP-240 and ACP-164 datasets are provided in Table S1.

As shown in these figures, we constantly achieve very high Area Under the Curve (AUC) value. We achieve 
0.90, 0.88, and 0.93 for ACP-740, ACP-240, and ACP-164, respectively. The consistent AUC achieved on these 
three benchmarks using different evaluation methods demonstrates the generality of our proposed model. In 
addition, achieving 0.93 in AUC on ACP-164 which is an independent test set demonstrates the potential of 
ACP-MHCNN on identifying ACP for new unseen samples.

We perform additional experiments to study the performance of our proposed method when full sequences 
are utilized instead of partial sequences. For these experiments, the longest sequence in each dataset was kept 
untouched and rest of the sequences were post-padded accordingly for matching the longest sequence’s  length42. 
These results are reported in Tables 6, 7, and 8, respectively.

By comparing Tables 6 (ACP-740 full sequence), Table 7 (ACP-240 full sequence), and Table 8 (ACP-500/164 
full sequence) with Tables 3 (ACP-740 partial sequence), Table 4 (ACP-240 partial sequence), and Table 5 (ACP-
500/164 partial sequence), respectively, it can be observed that using full sequences degrade our model’s per-
formance for most of the representation combinations. Moreover, for all three datasets, the performance of the 
model with the all-representation combination (C7) degrades significantly (for ACP-240, C7 performs much 
worse compared to C3) when full sequences are used. These observations suggest that using k N-terminus 
sequence performs better than complete sequences for ACP identification task using the current version of our 
model.

One of the potential causes behind performance degradation using full sequence is that the sufficient effective 
receptive field assumptions for long-range pattern extraction discussed in “Multi-headed convolutional neural 
network architecture” no longer holds when long sequences are used. These results have corroborated our deci-
sion of considering only k N-terminus residues for feature extraction.

We also compared ACP-MHCNN with some of the widely used classical Machine Learning classifiers in 
similar studies such as Support Vector Machine (SVM), Random Forest RF, Extra Tree (ET), eXtreme Gradient 
Boosting (XGB), k-Nearest Neighbours (KNN), Decision Tree (DT), Naive Bayes (NB), and Adaptive Boosting 
(AB)54–56. To do this, we convert BPF, Physicochemical Properties, and Evolutionary Information to vector from 
matrix and use to train these classifiers. The result for this comparison on ACP-740, ACP-240, and ACP-500/164 
are shown in Table 9. As shown in this Table, ACP-MHCNN significantly outperform these classifiers. The main 
reason is the ability of ACP-MHCNN to automatically extract related features from the input matrix compared 
to traditional ML models which require further steps to extract relevant information. Such comparison demon-
strates the importance of automated feature extraction to enhance the prediction performance.

Comparison with state‑of‑the‑art methods. In this section, we compare ACP-MHCNN with ACP-DL 
as the state of the art and also the only DL based ACP identification model proposed to  date32. Yi et al., tested 
their proposed ACP-DL on ACP-740 and ACP-240 datasets using 5-fold cross-validation. We use the same 
evaluation strategies and metrics for a fair comparison while estimating our ACP-MHCNN’s performance on 
ACP-740 and ACP-240 datasets. To investigate the generality of ACP-MHCNN even further, we compare it with 
ACP-DL on ACP500/ACP164 dataset as well. In this experiment, ACP-500 is used for training and tuning the 
model, and ACP-164 is used as the independent dataset. During all these experiments, ACP-DL is trained using 
the implementation details available in the accompanying GitHub repository (https:// github. com/ haich engyi/ 
ACP- DL). It is to be noted that, during our experiments, ACP-DL obtained accuracies of 80% and 81.3% on 
ACP-740 and ACP-240, respectively.

Comparison between ACP-MHCNN and ACP-DL on all the datasets is shown in Table 10. As shown in this 
table, ACP-MHCNN outperforms ACP-DL on all datasets for every evaluation metric. To be precise, on ACP-740, 

https://github.com/haichengyi/ACP-DL
https://github.com/haichengyi/ACP-DL
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ACP-MHCNN scores 6.0%, 7.5%, 4.5%, 4.7%, and 0.12 more than ACP-DL in terms of accuracy, sensitivity, 
specificity, precision, and MCC, respectively. Similarly, on ACP-240 ACP-MHCNN scores 1.8%, 6.0%, 4.4% and 
0.02 more than ACP-DL in terms of accuracy, specificity, and MCC, respectively.

ACP-MHCNN also significantly outperforms ACP-DL on the ACP-500/ACP-164 dataset that was used to 
investigate the generalizability of our model. On ACP-500/ACP-164 ACP-MHCNN outperforms ACP-DL by 
6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms of accuracy, sensitivity, specificity, precision, and MCC respectively. 
ACP-MHCNN and its relevant codes as well as the datasets used in this study are all publicly available at: https:// 
github. com/ mrzRe searc hArena/ Antic ancer- Pepti des- CNN. ACP-MHCNN is also publicly available as an online 
predictor at: https:// antic ancer. pytho nanyw here. com.

Additionally, we have trained and tested ACP-MHCNN on two datasets proposed by Agrawal et al. in the 
recently published method AntiCP 2.017. The two datasets are main and alternate and contain their respective 
training and external validation partitions. ACP-MHCNN has substantially outperformed ACP-DL on both 
datasets. These results are shown in Table 11.

Table 11 clearly shows ACP-MHCNN outperforms ACP-DL by a large margin. We also compare ACP-
MHCNN with several existing ACP identification methods on both main and alternate datasets used  in17, and 
the results are shown in Table 12. This comparison shows that ACPred-LAF16, iACP-FSCM57, and AntiCP-2.017 
slightly outperforms ACP-MHCNN, and all outperform other existing methods by significant margin on these 
two specific datasets. It is worth noting that, since AntiCP-2.0 and all of the existing methods reported in Table 12 
are traditional machine learning models while ACP-MHCNN is composed of several convolutional layers with 
much larger effective hypotheses space, the sizes of the training partitions of main and alternate datasets are the 

Figure 2.  ROC curve for ACP-740 dataset for the fivefold cross-validation on the experiment. As shown in 
these figures, we constantly achieve very high Area Under the Curve (AUC) value.

https://github.com/mrzResearchArena/Anticancer-Peptides-CNN
https://github.com/mrzResearchArena/Anticancer-Peptides-CNN
https://anticancer.pythonanywhere.com
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bottleneck for ACP-MHCNN when it comes to generalization capability. In future work, we need to mitigate this 
limitation through some data augmentation scheme or self-supervised pre-training or both.

Conclusion
In this study, we propose a new deep neural network architecture called ACP-MHCNN consisting of parallel 
convolutional groups which jointly learn and combine features from three different peptide representation meth-
ods for accurate identification of ACPs. The architecture extracts sequence-based features from residue-order 
information (using BPF representation), physicochemical property-based features from 31 bit-vector represen-
tation of the residues (elements of these vectors depict various physicochemical properties of the amino acids), 
and evolutionary features from BLOSUM62 matrix-based representation of the peptides.

Although hand-engineered features extracted from these information sources have been successfully 
employed for ACP identification, automatic feature extraction has hardly been explored for this problem. Before 
this study, ACP-DL was the only method that has used deep feature extraction for ACP  identification32. It has 
used recurrent layers for extracting features from two residue-order-based peptide representations and leaves 
significant room for improvement. In the current study, we attempt to address the limitations of ACP-DL by 
improving the sequence representation and feature extraction methods. For sequence representation, we consider 
the residues’ evolutionary and physicochemical characteristics alongside their ordering so that the downstream 
feature extraction layers can embed the sequences in spaces with additional discriminative information. For 
feature extraction, we jointly train three parallel convolutional layer groups so that the combined feature vector 
contains discriminative patterns extracted from three sources. Our method’s performance could improve fur-
ther by incorporating some carefully chosen manually extracted features that have been applied successfully in 

Figure 3.  ROC curve for ACP-240 dataset for the fivefold cross-validation on the experiment. Similar to the 
results reported for ACP-740 dataset, we constantly achieve very high Area Under the Curve (AUC) value.
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different ACP identification methods through a fourth parallel track with fully connected layers. Additionally, 
since the BPF representation is sparse, our feature extraction method could benefit from adding an embed-
ding layer at the beginning of the BPF track. Once more experimental training data is available, we would be 
able to incorporate more parameters in our model without the risk of overfitting and explore these directions. 
Additionally, we would like to employ embedding techniques used in natural language processing (NLP) tasks, 

Figure 4.  ROC curve for ACP-500/164. Here we used ACP-500 as a training dataset and ACP-164 as a testing 
dataset on the experiment.

Table 6.  Results achieved using fivefold cross validation for ACP-740 dataset (Complete sequences utilized 
instead of 15 N-terminus amino acids). The STD is also presented in the brackets for each measurement.

Combination Accuracy (STD) Sensitivity (STD) Specificity (STD) Precision (STD) MCC (STD)

C1 78.2 (1.5) 82.5 (8.2) 74.1 (8.8) 77.2 (6.0) 0.57 (0.03)

C2 71.1 (5.6) 69.9 (16.9) 72.5 (13.7) 73.9 (13.7) 0.44 (0.11)

C3 81.0 (3.3) 81.4 (4.1) 81.7 (3.7) 82.0 (4.5) 0.63 (0.07)

C4 77.1 (3.0) 74.1 (8.0) 80.8 (3.1) 79.9 (2.6) 0.55 (0.06)

C5 82.9 (4.1) 86.7 (9.2) 78.8 (4.7) 80.9 (3.7) 0.66 (0.09)

C6 81.3 (3.8) 81.6 (3.8) 81.2 (5.7) 81.9 (4.3) 0.63 (0.08)

C7 83.2 (1.7) 80.4 (4.5) 84.8 (5.4) 84.9 (4.3) 0.65 (0.03)
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Table 7.  Results achieved using fivefold cross validation for ACP-240 dataset (Complete sequences utilized 
instead of 15 N-terminus amino acids). The STD is also presented in the brackets for each measurement.

Combination Accuracy (STD) Sensitivity (STD) Specificity (STD) Precision (STD) MCC (STD)

C1 75.4 (4.3) 81.6 (8.2) 71.8 (9.2) 76.5 (10.9) 0.53 (0.07)

C2 62.6 (4.8) 77.6 (16.9) 44.5 (15.0) 63.1 (5.6) 0.25 (0.08)

C3 82.1 (4.0) 86.4 (4.1) 78.6 (6.7) 82.3 (6.0) 0.65 (0.09)

C4 79.0 (5.5) 81.9 (8.0) 75.3 (8.2) 79.1 (7.1) 0.57 (0.08)

C5 78.2 (2.8) 84.5 (9.2) 67.0 (13.2) 77.1 (2.2) 0.53 (0.08)

C6 77.0 (4.4) 81.8 (3.8) 70.8 (9.2) 77.2 (5.1) 0.54 (0.09)

C7 78.1 (2.8) 85.6 (4.5) 68.9 (4.5) 76.2 (4.5) 0.56 (0.05)

Table 8.  Results achieved using independent test for ACP-500/164 dataset (Complete sequences utilized 
instead of 15 N-terminus amino acids). Model trained on ACP-500 and tested on ACP-164.

Combination Accuracy Sensitivity Specificity Precision MCC

C1 82.3 86.6 78.1 79.8 0.65

C2 84.0 84.2 82.9 83.1 0.67

C3 84.1 87.8 80.5 81.8 0.68

C4 88.1 90.2 86.6 87.1 0.77

C5 85.0 87.8 81.7 82.7 0.70

C6 86.3 81.7 90.2 89.3 0.72

C7 87.2 87.8 85.4 85.7 0.73

Table 9.  The results achieved for ACP-MHCNN compared to traditional ML models on ACP-740, ACP-240, 
and ACP-500/164 using fivefold cross validation. Bold items indicate the best values found by the methods.

Classifier

ACP-740 dataset ACP-240 dataset ACP-500/164 dataset

Acc Sen Spe MCC Acc Sen Spe MCC Acc Sen Spe MCC

SVM 80.4 77.6 83.2 0.61 68.7 65.1 72.9 0.38 78.0 74.3 81.7 0.56

RF 81.2 79.2 84.8 0.64 71.0 72.0 74.7 0.48 84.1 82.9 85.3 0.68

ET 81.5 78.4 85.9 0.65 72.7 72.8 80.1 0.53 81.0 79.2 82.9 0.62

XGB 81.6 82.4 81.8 0.64 74.2 82.1 74.7 0.57 85.3 86.5 84.1 0.71

KNN 79.3 64.3 75.5 0.40 70.6 91.4 15.3 0.11 68.9 51.2 86.5 0.40

DT 78.4 76.8 70.8 0.48 70.9 75.1 68.4 0.44 78.6 71.9 85.3 0.58

NB 78.2 80.0 73.6 0.54 70.6 75.1 62.1 0.38 71.9 74.3 69.5 0.44

AB 78.1 77.3 78.5 0.56 71.3 79.0 72.0 0.52 79.8 79.2 80.4 0.60

ACP-MHCNN 86.0 88.9 83.1 0.72 83.0 90.1 75.6 0.67 91.0 97.6 84.2 0.82

Table 10.  Comparing the results achieved for ACP-MHCNN to ACP-DL as the state-of-the-art anticancer 
peptide predictor. Bold items indicate the best values found by the methods.

Dataset Model Accuracy Sensitivity Specificity Precision MCC

ACP-740 ACP-DL 80.0 81.4 78.6 79.7 0.60

ACP-740 ACP-MHCNN 86.0 88.9 83.1 84.4 0.72

ACP-240 ACP-DL 81.3 92.0 69.6 76.7 0.64

ACP-240 ACP-MHCNN 83.0 90.1 75.6 81.1 0.67

ACP-500/ACP-164 ACP-DL 84.7 89.0 80.5 82.0 0.62

ACP-500/ACP-164 ACP-MHCNN 91.0 97.6 84.2 86.0 0.82
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such as  Word2Vec58 and  FastText59 for k-mer feature extraction. Since these embeddings are local and preserve 
sequence-order information, sequence representations consisting of these embeddings can be readily added as 
parallel branches to our model. Furthermore, inspired by the success of self-supervised pre-training on NLP 
tasks, several pre-trained models for protein sequences have recently been made publicly available. Among them, 
 UDSMProt60, a LSTM sequence model trained on unlabeled Swiss-Prot protein sequences in a self-supervised 
autoregressive manner has shown remarkable performance on protein-level classification tasks after fine tuning. 
Another convolutional transformation and attention-based model  ProteinBERT61, pre-trained on sequence-
correction and GO annotation prediction tasks, has shown impressive performance on protein-level regression 
tasks after fine tuning. We want to explore the possibility of combining ACP-MHCNN for fine tuning these 
pre-trained models for ACP identification in future work.

The positive effects of these improvements are manifested in the experimental results obtained on well-
established ACP identification datasets, where ACP-MHCNN has significantly outperformed ACP-DL using 
different evaluation measures for every dataset investigated in this study. Hence, we believe our current study’s 
findings add significantly to the existing knowledge on computational method development for ACP identifica-
tion. ACP-MHCNN, its relevant codes, and the datasets used in this study are all publicly available at: https:// 
github. com/ mrzRe searc hArena/ Antic ancer- Pepti des- CNN. ACP-MHCNN is also publicly available as an online 
predictor at: https:// antic ancer. pytho nanyw here. com.
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