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Procalcitonin metabolomics 
in the critically ill 
reveal relationships 
between inflammation intensity 
and energy utilization pathways
Hirotada Kobayashi1, Karin Amrein2, Jessica A. Lasky‑Su3 & Kenneth B. Christopher4*

Procalcitonin is a biomarker of systemic inflammation and may have importance in the immune 
response. The metabolic response to elevated procalcitonin in critical illness is not known. The 
response to inflammation is vitally important to understanding metabolism alterations during 
extreme stress. Our aim was to determine if patients with elevated procalcitonin have differences 
in the metabolomic response to early critical illness. We performed a metabolomics study of the 
VITdAL‑ICU trial where subjects received high dose vitamin  D3 or placebo. Mixed‑effects modeling 
was used to study changes in metabolites over time relative to procalcitonin levels adjusted for age, 
Simplified Acute Physiology Score II, admission diagnosis, day 0 25‑hydroxyvitamin D level, and 
the 25‑hydroxyvitamin D response to intervention. With elevated procalcitonin, multiple members 
of the short and medium chain acylcarnitine, dicarboxylate fatty acid, branched‑chain amino acid, 
and pentose phosphate pathway metabolite classes had significantly positive false discovery rate 
corrected associations. Further, multiple long chain acylcarnitines and lysophosphatidylcholines had 
significantly negative false discovery rate corrected associations with elevated procalcitonin. Gaussian 
graphical model analysis revealed functional modules specific to elevated procalcitonin. Our findings 
show that metabolite differences exist with increased procalcitonin indicating activation of branched 
chain amino acid dehydrogenase and a metabolic shift.

Procalcitonin is a 116-amino acid polypeptide detectable in the blood of healthy adults that rapidly increases 
1000-fold with severe critical  illness1,2. The release of procalcitonin from parenchymal tissue into circulation is 
stimulated by microbial toxins and modulated by the immune  response3,4. Procalcitonin is a commonly used 
biomarker of severity of systemic inflammation in infection, sepsis, trauma, surgery, cardiogenic shock, autoim-
mune disease and severe COVID-195,6. Although published data suggested that procalcitonin has a greater role 
in inflammation than previously thought, the metabolic response to procalcitonin has not been  evaluated7–11. 
Examining the role of procalcitonin in the metabolic response to inflammation can provide a more nuanced 
understanding of the immune system during the extreme stress of early critical illness.

Procalcitonin may have a detrimental role in the host response to inflammation in critical illness. Procalci-
tonin is shown to enhance the inflammatory response and stimulate the surface expression of CD16 on human 
neutrophils and CD14 on  lymphocytes7,8. In experimental studies, procalcitonin exposure leads to endothelial 
barrier function impairment and hepatocyte  dysfunction9,10. Further, experimental models of sepsis show the 
presence of procalcitonin worsens illness severity and  outcomes11.

Metabolomic studies performed on blood collected early in critical illness show a profound disturbance 
of metabolic homeostasis that reflects illness severity and is predictive of adverse  outcomes12. But such work 
has not addressed the metabolic response to  inflammation13. Therefore, we performed a cohort study on the 
associations between increased procalcitonin levels and changes in metabolites during critical illness. We used 
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global metabolomic profiling to capture a diverse range of metabolites that are measured in plasma, reflecting 
multiple metabolism pathways. We hypothesize that there is a specific metabolomic profile that represents a 
response to elevated procalcitonin in critical illness. We measured the abundance of 983 metabolites from 1187 
plasma samples over three time points in 419 critically ill subjects collected during the VITdAL-ICU  trial14,15. We 
determined the effect of increased procalcitonin on changes in individual metabolites and metabolic pathways 
over time. Further, we analyzed grouping of specific functionally related metabolites that change in unison with 
increased procalcitonin.

Results
In the analytic cohort (N = 419), we found the median [interquartile range] of procalcitonin at day 0 was 0.66 
[0.17, 2.79] µg/L, at day 3 was 0.35 [0.12, 1.43] µg/L and at day 7 was 0.21 [0.09, 0.73] µg/L. Baseline characteris-
tics of the cohort were balanced between subjects grouped by procalcitonin level for age, SAPS II score, 25(OH)
D level at day 0, intervention status and the absolute change in 25(OH)D level at day 3. Differences existed with 
respect to sex, C-reactive protein, Day 0 total bilirubin and creatinine, ICU type, and admission diagnosis cate-
gory (Table 1, Supplementary Table S1). The overall 28-day mortality of the 419 subject analytic cohort was 22.6%.

Single time point data. We utilized mass spectrometry methods by Metabolon, Inc to investigate circulat-
ing changes in metabolites associated with increased procalcitonin. In day 0 plasma samples (N = 419), signifi-
cant crude differences exist in 591 individual metabolites (q-value threshold of 0.05) in subjects with or without 
procalcitonin ≥ 0.5 μg/L notable for increases of branched-chain amino acids (BCAAs), short and medium chain 
acylcarnitines, dicarboxylate fatty acid pathways and decreases in long-chain acylcarnitines, lysophosphatidyl-
choline and sphingomyelin metabolites (Supplementary Data S1). Regarding differences in metabolomic profiles 
of subjects with or without procalcitonin ≥ 0.5 μg/L at day 0, the OPLS-DA model had acceptable predictability 
(Q2 value 0.427). Confirmation of the stability and robustness of the OPLS-DA model was shown by the permu-
tation test (Q2 intercept of − 0.214, p-value ≤ 0.05) with a negative permutation Q2 intercept indicating model 
validity (Supplementary Table S2). The cross-validation procedure showed that the groups with or without pro-
calcitonin ≥ 0.5 μg/L were significantly separated (CV-ANOVA p-value < 0.001). The ROC analysis showed the 
predictive ability of the OPLS-DA model was excellent (AUC = 0.92). Further, the model showed good classifica-
tion performance with 83.1% of cases with procalcitonin ≥ 0.5 μg/L were correctly classified (sensitivity of 85.6%, 
specificity of 79.8%).

Multiple time point data. In the repeated measure metabolomics data, mixed-effects modeling of 1187 
plasma samples collected at day 0, 3 and 7 from 419 VITdAL-ICU trial subjects (Model 1), 250 metabolites had 
significantly positive associations with procalcitonin. The metabolites were dominated by increases in BCAAs, 
short and medium-chain acylcarnitines, dicarboxylate fatty acids, phosphatidylethanolamines, and polyamines 
(Table 2, Fig. 1, Supplementary Data S2). One-hundred nineteen metabolites had a significant negative asso-
ciation with procalcitonin, including multiple representatives of the lysophosphatidylcholine, and long-chain 
acylcarnitine pathway metabolites (Table 3, Fig. 2, Supplementary Data S2). The rain plots show highlighted 
metabolites that are significantly increased (Fig. 1) or decreased (Fig. 2) in subjects with increased procalcitonin. 
Similar metabolite patterns were observed in mixed effects models restricted to the 603 day 0, 3 and 7 samples 

Table 1.  Analytic cohort characteristics by Day 0 procalcitonin levels.

Characteristic

Day 0 procalcitonin

Total P-value< 0.50 µg/L ≥ 0.50 µg/L

No 180 239 419

Age years Mean (SD) 63.1 (15.5) 65.4 (14.2) 64.4 (14.8) 0.11

Female No. (%) 76 (42) 73 (31) 149 (36) 0.013

SAPS II Mean (SD) 32.3 (16.5) 34.2 (14.5) 33.4 (15.4) 0.22

C-reactive protein Day 0 Mean (SD) 87.0 (74.5) 152.3 (90.8) 124.2 (90.1) < 0.001

Day 0 25(OH)D Mean (SD) 14.6 (6.3) 13.4 (10.4) 13.9 (8.9) 0.19

Vitamin  D3 Intervention No. (%) 79 (44) 127 (53) 205 (49) 0.061

Change in 25(OH)D Day 0 to Day 3 Median [IQR] 2.8 [− 0.4, 25.1] 3.3 [0.1, 12.2] 3.1 [0, 16.7] 0.34

Total Bilirubin Day 0 Mean (SD) 0.8 (0.9) 2.1 (3.3) 1.6 (2.6) < 0.001

Creatinine Day 0 Mean (SD) 1.0 (0.7) 1.7 (1.1) 1.4 (1.0) < 0.001

ICU < 0.001

Anesthesia ICU No. (%) 27 (15) 53 (22) 80 (19)

Cardiac surgery ICU No. (%) 27 (15) 95 (40) 122 (29)

Medical ICU No. (%) 29 (16) 60 (25) 89 (21)

Neurological ICU No. (%) 88 (49) 18 (8) 106 (25)

Surgical ICU No. (%) 9 (5) 13 (5) 22 (5)

28-day mortality No. (%) 25 (14) 70 (29) 95 (23) < 0.001
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Table 2.  Metabolites significantly increased with increased Procalcitonin over days 0–7. Using repeated 
measures data (day 0, 3 and 7), the association between relative quantitation of each individual metabolite 
noted above and Procalcitonin levels over time were determined utilizing linear mixed-effects models 
correcting for age, sex, baseline 25(OH)D, absolute increase in 25(OH)D, SAPS II, admission diagnosis, plasma 
day and an individual subject-specific random-intercept. All significant mixed-effects associations have false 
discovery rate adjusted p-value (q-value) < 0.05. BCAA is Branched-Chain Amino Acids inclusive of Leucine, 
Isoleucine and Valine. For the Acylcarnitines sub pathway: a capital C is followed by the number of carbons 
within the fatty acyl group attached to the carnitine. A colon followed by a number is one or more unsaturated 
carbons in the acylcarnitine ester (i.e. C10:1 is a monounsaturated C10 acylcarnitine). DC following the 
carbon number is a dicarboxylic acylcarnitine. a Putative identification (Level 2) where predictive or externally 
acquired structure evidence is present when a reference standard does not exist.

Metabolite β coefficient metabolite p-value − log10p q-value Super pathway Sub pathway

3-Hydroxybutyrylcarni-
tine (C3-DC) 4.17 1.19 E−04 3.92 6.78 E−04 Lipid Short-chain acylcarnitine

Succinylcarnitine (C4) 4.22 7.58 E−04 3.12 3.17 E−03 Energy Short-chain acylcarnitine

Tiglyl carnitine (C5) 4.42 9.86 E−05 4.01 5.89 E−04 Amino acid Short-chain acylcarnitine

2-Methylbutyroylcarni-
tine (C5) 3.73 4.04 E−04 3.39 1.86 E−03 Amino acid Short-chain acylcarnitine

Adipoylcarnitine (C6-
DC) 4.42 1.50 E−05 4.82 1.20 E−04 Lipid Short-chain acylcarnitine

3-Methyladipoylcarnitine 
(C7-DC) 3.08 4.32 E−03 2.36 1.45 E−02 Lipid Short-chain acylcarnitine

Octanoylcarnitine (C8) 4.09 3.83 E−04 3.42 1.79 E−03 Lipid Medium-chain acylcar-
nitine

Suberoylcarnitine (C8-
DC) 3.19 5.57 E–−04 3.25 2.45 E−03 Lipid Medium-chain acylcar-

nitine

cis-4-Decenoylcarnitine 
(C10:1) 4.12 7.12 E−04 3.15 2.99 E−03 Lipid Medium-chain acylcar-

nitine

Decanoylcarnitine (C10) 3.94 6.74 E−04 3.17 2.86 E−03 Lipid Medium-chain Acylcar-
nitine

3-Methyladipate 5.74 7.40 E−09 8.13 1.91 E−07 Lipid Fatty acid, dicarboxylate

Adipate 3.00 4.31 E−03 2.37 1.45 E−02 Lipid Fatty acid, dicarboxylate

3-Hydroxyadipatea 2.91 1.89 E−03 2.72 7.03 E−03 Lipid Fatty acid, dicarboxylate

2-Hydroxyadipate 2.77 3.30 E−03 2.48 1.15 E−02 Lipid Fatty acid, dicarboxylate

heptenedioate (C7:1-
DC)a 3.08 1.83 E−03 2.74 6.83 E−03 Lipid Fatty acid, dicarboxylate

Suberate (C8-DC) 4.26 9.47 E−05 4.02 5.80 E−04 Lipid Fatty acid, dicarboxylate

Dodecanedioate (C12) 3.41 3.01 E−04 3.52 1.46 E–03 Lipid Fatty acid, dicarboxylate

Dodecenedioate (C12:1-
DC)a 2.69 4.47 E−03 2.35 1.50 E−02 Lipid Fatty acid, dicarboxylate

Hexadecanedioate (C16) 3.43 2.75 E−04 3.56 1.35 E−03 Lipid Fatty acid, dicarboxylate

Octadecadienedioate 
(C18:2-DC)a 3.81 2.86 E−04 3.54 1.40 E−03 Lipid Fatty acid, dicarboxylate

Octadecenedioate 
(C18:1-DC)a 3.09 1.50 E−03 2.83 5.82 E−03 Lipid Fatty acid, dicarboxylate

Octadecanedioate (C18) 2.51 7.54 E−03 2.12 2.32 E−02 Lipid Fatty acid, dicarboxylate

Eicosanodioate (C20-DC) 4.77 6.57 E−04 3.18 2.80 E−03 Lipid Fatty acid, dicarboxylate

Methylsuccinate 7.44 1.87 E−10 9.73 8.31 E−09 Amino acid BCAA metabolism

3-Methylglutaconate 6.46 7.79 E−09 8.11 1.96 E−07 Amino acid BCAA metabolism

2,3-Dihydroxy-2-meth-
ylbutyrate 6.44 2.75 E−09 8.56 8.70 E−08 Amino acid BCAA metabolism

3-Hydroxy-2-ethylpro-
pionate 5.22 1.64 E−04 3.79 8.72 E−04 Amino acid BCAA metabolism

N-Acetylvaline 5.19 6.79 E−04 3.17 2.87 E−03 Amino acid BCAA metabolism

beta-Hydroxyisovalerate 5.16 1.30 E−04 3.89 7.20 E−04 Amino acid BCAA metabolism

N-Acetylisoleucine 4.25 2.35 E−03 2.63 8.50 E−03 Amino acid BCAA metabolism

Ethylmalonate 4.16 1.29 E−03 2.89 5.21 E−03 Amino acid BCAA metabolism

Isovalerylglycine 2.29 1.52 E−02 1.82 4.08 E−02 Amino acid BCAA metabolism

Sedoheptulose 4.78 2.40 E−05 4.62 1.83 E−04 Carbohydrate Pentose metabolism

Arabonate/xylonate 4.37 5.22 E−04 3.28 2.35 E−03 Carbohydrate Pentose metabolism

Ribonate 3.98 3.03 E−03 2.52 1.07 E−02 Carbohydrate Pentose metabolism

Arabinose 3.60 1.31 E−03 2.88 5.26 E−03 Carbohydrate Pentose metabolism

Ribitol 3.26 1.30 E−02 1.89 3.61 E−02 Carbohydrate Pentose metabolism
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from 213 subjects who received placebo (Supplementary Data S3). A q-value threshold of 0.05 was used to iden-
tify all significant mixed effects  associations16.

Metabolic networks and mediation. We next explored procalcitonin-specific relationships between 
metabolites. With Gaussian graphical models (GGMs) we measured pairwise correlations in metabolites that 
have similar effects. The GGM analyses revealed six procalcitonin-specific functional modules at day 0 (Supple-
mentary Table S3). Similar to the mixed effects analyses (Model 1), metabolism of acylcarnitines, polyamines, 
BCAAs, and dicarboxylate fatty acids are prominently featured in the procalcitonin-specific GGM modules. 
Metabolites within in each functional module were increased with increased procalcitonin in unison as well 
as having biological and functional similarity (i.e., in Supplementary Table S3 Module C, 5 of 6 members are 
polyamide metabolites).

To determine the potential mediation of the relationship between metabolite abundance and procalcitonin 
levels we focused on liver function, body mass index and age. Mediation analyses in day 0 data revealed no 
influence of body mass index or age on associations between procalcitonin levels and all 983 metabolites. With 
regard to bilirubin, mediation analyses in day 0 data revealed a significant influence on associations between 

Figure 1.  Rain plot of metabolites significantly increased with increased Procalcitonin. Repeated measures 
metabolomics data (day 0, 3 and 7) relative to procalcitonin level. Correlations between procalcitonin levels and 
individual metabolite abundance at day 0, 3 or 7 were determined utilizing linear regression models correcting 
for age, sex, SAPS II, admission diagnosis, 25(OH)D at day 0 and for absolute change in 25(OH)D level at day 3. 
The magnitude of beta coefficient estimates is shown by a color fill scale and the corresponding significance level 
(− log10(q-value)) is represented by size of the circle. The intensity of the red fill color represents an increase in 
effect size for that metabolite relative to procalcitonin level. All metabolites shown are significant by a q-value 
threshold of 0.05. All respective β coefficients and q-values can be found in tabular form in Supplementary Data 
S3. (A) Short-chain acylcarnitines (B) Medium-chain acylcarnitines (C) BCAA metabolites (D) Dicarboxylate 
fatty acids.
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procalcitonin levels and bilirubin of 171 of the 983 individual metabolites (all p-values were < 0.01 and proportion 
mediated over 10% using 2000 bootstrap samples). One hundred fifty-seven of these mediated metabolites were 
also identified in our mixed-effects analysis as significantly changed with procalcitonin levels (Supplementary 
Data S4).

Finally, to explore mechanistic insights into our observation of increased BCAA metabolites with increasing 
procalcitonin, we present unadjusted metabolite abundance data at day 0, 3 and 7 for subjects with procalci-
tonin < 0.5 μg/L or ≥ 0.5 μg/L (Supplementary Fig. S1). Boxplots show relative abundance of plasma BCAAs, 
branched-chain keto acids, metabolites downstream from branched-chain amino acid dehydrogenase (BCKDH) 
and BCAA-derived carnitines. The abundance of BCAA metabolites downstream from the BCKDH enzyme 
complex increase at days 3 and 7 in subjects with procalcitonin ≥ 0.5 μg/L but not with procalcitonin < 0.5 μg/L 
(Supplementary Fig. S1J–T).

Discussion
The underlying mechanisms of alterations of metabolomic disruption during inflammation remain an enigma. 
Using multiple analytic approaches, our metabolomics study detected groups of metabolites along similar sub-
pathways with strong associations with procalcitonin levels. In the setting of an elevated procalcitonin, our 
data highlight increases in short-chain acylcarnitines, dicarboxylate fatty acids, phosphatidylethanolamines, 
and polyamines and decreases in long-chain acylcarnitines, lysophosphatidylcholines, lysoplasmalogens, and 
sphingomyelins. Further, we illustrate how groups of metabolites with similar procalcitonin associations form 
modules which may have relevance to the biological interpretation of our metabolomics observations. Our data 
suggest that knowledge of such patterns and their biological effects are critical for understanding the role of 
inflammation in general and procalcitonin specifically.

Table 3.  Metabolites significantly decreased with increased Procalcitonin over days 0–7. Using repeated 
measures data (day 0, 3 and 7), the association between relative quantitation of each individual metabolite 
noted above and Procalcitonin levels over time were determined utilizing linear mixed-effects models 
correcting for age, sex, baseline 25(OH)D, absolute increase in 25(OH)D, SAPS II, admission diagnosis, plasma 
day and an individual subject-specific random-intercept. All significant mixed-effects associations have false 
discovery rate adjusted p-value (q-value) < 0.05. For the Acylcarnitines sub pathway: a capital C is followed by 
the number of carbons within the fatty acyl group attached to the carnitine. A colon followed by a number is 
one or more unsaturated carbons in the acylcarnitine ester (i.e. C26:1 is a monounsaturated C26 acylcarnitine). 
GPC is glycerylphosphorylcholine.

Metabolite β coefficient metabolite p-value − log10p q-value Super pathway Sub pathway

Linolenoylcarnitine 
(C18:3)* − 3.58 1.65 E−03 2.78 6.26 E−03 Lipid Long-chain acylcarnitine

Stearoylcarnitine (C18) − 3.68 5.40 E−03 2.27 1.76 E−02 Lipid Long-chain acylcarnitine

Linoleoylcarnitine 
(C18:2)* − 4.16 9.56 E−04 3.02 3.94 E−03 Lipid Long-chain acylcarnitine

Arachidonoylcarnitine 
(C20:4) − 4.41 1.57 E−04 3.80 8.47 E−04 Lipid Long-chain acylcarnitine

Dihomo-linoleoylcarni-
tine (C20:2)* − 3.62 2.78 E−03 2.56 9.98 E−03 Lipid Long-chain acylcarnitine

Dihomo-linolenoylcarni-
tine (C20:3n3 or 6)* − 4.43 2.13 E−04 3.67 1.09 E−03 Lipid Long-chain acylcarnitine

Lignoceroylcarnitine 
(C24)* − 6.03 3.93 E−05 4.41 2.75 E−04 Lipid Long-chain acylcarnitine

Docosapentaenoylcarni-
tine (C22:5n3)* − 2.67 1.12 E−02 1.95 3.25 E−02 Lipid Long-chain acylcarnitine

Adrenoylcarnitine 
(C22:4)* − 2.89 9.64 E−03 2.02 2.84 E−02 Lipid Long-chain acylcarnitine

Docosahexaenoylcarni-
tine (C22:6)* − 3.07 3.79 E−03 2.42 1.29 E−02 Lipid Long-chain acylcarnitine

Cerotoylcarnitine (C26)* − 6.43 3.43 E−06 5.47 3.69 E−05 Lipid Long-chain acylcarnitine

Ximenoylcarnitine 
(C26:1)* − 6.92 1.12 E−07 6.95 1.96 E−06 Lipid Long-chain acylcarnitine

2-Palmitoyl-GPC* (16:0)* − 5.86 8.40 E−06 5.08 7.35 E−05 Lipid Lysophosphatidylcholine

1-Palmitoleoyl-GPC* 
(16:1)* − 5.95 1.37 E−05 4.86 1.12 E−04 Lipid Lysophosphatidylcholine

1-Palmitoyl-GPC (16:0) − 11.80 6.98 E−11 10.16 3.26 E−09 Lipid Lysophosphatidylcholine

1-Linolenoyl-GPC (18:3)* − 3.67 1.49 E−03 2.83 5.82 E−03 Lipid Lysophosphatidylcholine

1-Linoleoyl-GPC (18:2) − 7.97 6.65 E−07 6.18 9.17 E−06 Lipid Lysophosphatidylcholine

1-Oleoyl-GPC (18:1) − 8.74 2.17 E−07 6.66 3.48 E−06 Lipid Lysophosphatidylcholine

1-Lignoceroyl-GPC (24:0) − 6.74 3.39 E−09 8.47 1.02 E−07 Lipid Lysophosphatidylcholine
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To put our findings into context, the known properties of highlighted metabolites are discussed as a guide 
for data interpretation. With increased procalcitonin we find metabolic evidence of mitochondrial dysfunction. 
We find a specific pattern of change in acylcarnitines with increased procalcitonin where short-chain acyl-
carnitines are elevated and long-chain acylcarnitines are decreased. Primarily released from the liver, plasma 
short-chain acylcarnitines (C2–C7) are due to incomplete mitochondrial fatty acid β-oxidation and indicative of 
impaired mitochondrial  function17. We also observe an increase in dicarboxylic fatty acids known to be produced 
by fatty acid omega oxidation when incomplete fatty acid β-oxidation occurs in the setting of mitochondrial 
 dysfunction18. The cytochrome P450 (CYP4F) that catalyzes the first step of fatty acid omega oxidation is known 
to be induced by the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α19. Such circulating dicarboxylic fatty 
acids are shown to increase in response to starvation and critical  illness20. We additionally note that pentose phos-
phate pathway metabolites are increased with elevated procalcitonin which suggests a metabolic shift away from 
fatty acid β-oxidation21. Our observation of increases in plasma short-chain acylcarnitines (C2–C7), dicarboxylic 
fatty acids and pentose phosphate pathway metabolites with increases in procalcitonin may reflect less efficient 
fatty acid β-oxidation thorough impaired mitochondrial bioenergetics associated with increased  inflammation22. 
The mediation of the association between procalcitonin level and metabolite abundance by serum total bilirubin 
underscores the importance of the liver in metabolism, immunity, inflammation and procalcitonin  induction23.

Catabolic stress liberates amino acids into the circulation by endogenous protein breakdown including the 
branched-chain amino acids (BCAA), leucine, isoleucine and  valine24. During inflammation, BCAAs are prefer-
entially transported to the liver over the  muscle25. BCAAs are metabolized to acetyl-CoA or succinyl-CoA when 
mitochondrial fatty acid β-oxidation is incomplete. The irreversible and rate‐limiting step of BCAA catabolism is 
the branched‐chain α‐ketoacid dehydrogenase (BCKDH) complex in the mitochondrial  matrix26. Experimental 
animal data show that BCKDH is rapidly activated by acute nutrient deprivation, circulating BCAA excess, exer-
cise, endotoxin, IL-1β and TNFα27–31. Limited evidence suggests that circulating BCAA excess and mitochondrial 
BCAA catabolism are measurable in healthy humans under exercise stress and also in the critically  ill32–34.

We observe circulating BCAA catabolic metabolites distal to BCKDH are significantly increased with increas-
ing procalcitonin, suggesting BCKDH activation. Further, we find that short-chain acylcarnitines C3 and C5 
are significantly increased with increases in procalcitonin. The C5-acylcarnitines are derived from the BCAA 
metabolites α-methylbutyryl and isovalerylcarnitine. C3-acylcarnitine is produced from propionyl CoA via 
catabolism of BCAA, methionine and  threonine35. Such increases in circulating C5 and C3 acylcarnitines are 

Figure 2.  Rain plot of metabolites significantly decreased with increased Procalcitonin. Correlations between 
procalcitonin levels and individual metabolite abundance at day 0, 3 or 7 were determined utilizing linear 
regression models correcting for age, SAPS II, admission diagnosis, 25(OH)D at day 0 and for absolute change 
in 25(OH)D level at day 3. The magnitude of beta coefficient estimates is shown by a color fill scale and the 
corresponding significance level (−  log10(q-value)) is represented by size of the circle. The intensity of the blue 
fill color represents a decrease in effect size for that metabolite relative to procalcitonin level. All metabolites 
shown are significant by a q-value threshold of 0.05. All respective β coefficients and q-values can be found in 
tabular form in Supplementary Data S3. (A) Lysophosphatidylcholines (B) Long chain acylcarnitines.
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shown to occur following BCAA supplementation in ambulatory  adults36. The observed increases of circulat-
ing short-chain acylcarnitines, dicarboxylate fatty acids and BCAA catabolic metabolites are all indicative of a 
metabolic shift. Experimental evidence in healthy humans supports that such a metabolic shift is an adaptive 
response to endotoxin via alteration of mitochondrial  bioenergetics37.

We find that higher procalcitonin is associated with increased levels of circulating metabolites of polyam-
ine catabolism. Cellular polyamines (spermidine and spermine) are tightly regulated polycations that regulate 
cell growth and  proliferation38. Cellular polyamine synthesis is up-regulated during bacterial infections and 
 inflammation39. During such inflammatory stress, the catabolic enzyme spermidine/spermine N1-acetyltrans-
ferase (SSAT) is induced by TNFα. Induced SSAT increases polyamide catabolism and the exit of intracellular 
polyamine metabolites into the circulation. Such decreases in the concentration of intracellular polyamines 
lead to slower cell growth rates allowing for potential cell repair or increased apoptosis during  inflammation40.

Further, we demonstrate that increased procalcitonin is associated with increases in phosphatidylethanola-
mines and decreases in lysophosphatidylcholine. Phosphatidyl-ethanolamines are present on microparticle sur-
faces of the endothelium and white blood cells are liberated from endothelial cells following exposure to oxidative 
stress and found in plasma following experimental  sepsis41,42. Lysophosphatidylcholines are proinflammatory 
lipids that activate monocytes, macrophages and T cells. Lower levels of lysophosphatidylcholines are reflective 
of endothelial dysfunction and are associated with severity of community-acquired pneumonia and  sepsis43–45. 
The increased phosphatidylethanolamines and decreased lysophosphatidylcholines with increased procalcitonin 
observed in our study may reflect endothelial dysfunction from inflammation or direct procalcitonin exposure 
and indicate dysregulation of the immune response in the setting of more intense inflammation,  respectively9.

The methodology in our study has multiple strengths. Linear mixed-effects models are vigorous analysis tools 
for metabolomics studies with repeated time points and multiple clinical  variables46. Our approach allows for a 
focus on metabolites that change relative to procalcitonin rather than simply change with the course of critical 
illness or trial  intervention47. To limit false positive observations, we conservatively adjusted our mixed-effects 
significance threshold to account for 983 multiple comparisons. The use of the GGM identification algorithm 
enhances our association  analyses48. Further, prior studies show the importance of procalcitonin to the response 
to severe critical illness which increases the relevance and biological plausibility of our  observations3,7,8,11.

Our study does have potential limitations. Despite multivariable adjustment, our use of nonrandomized com-
parisons is subject to bias as subjects with increases in procalcitonin may systematically differ. We performed a 
post-hoc analysis of plasma samples with correction for multiple testing. Thus, our finding should be considered 
hypothesis generating. Our study population is heterogenous and increased procalcitonin may be present for 
different reasons. Further, our study of White critically ill subjects from a single large academic medical center 
may have limited generalizability. Finally, while the highlighted metabolites have known functional and biological 
relevance, the clinical significance of a change in metabolite abundance may be unclear.

Taken together, our data indicate that inflammation is associated with alteration of energy utilization by spe-
cific metabolic pathways in critical illness. Early critical illness represents a state of nutrient deprivation, oxidative 
stress and mitochondrial dysfunction which compromise tissue metabolic needs. Circulating metabolites provide 
an assessment of internal energy states and energy substrate selection. Our findings provide convergent evidence 
that procalcitonin related inflammation alters mitochondrial bioenergetics. Identifying circulating metabolic 
information over time is a first step towards understanding the dynamics of energy utilization in critical illness 
and the metabolomic effects of inflammation.

Methods
Detailed trial and metabolomics methods are presented in Supplementary Methods. Briefly, the VITdAL-ICU 
trial (NCT01130181) randomized 475 critically ill adult subjects to vitamin  D3 or placebo once at a dose of 
540,000 IU followed by 90,000 IU  monthly15. The primary trial outcome was hospital length of stay. Whole blood 
was collected at randomization (day 0), day 3 and day 7. Frozen plasma was available for analysis in 453 trial 
subjects. We excluded 9 subjects who did not have serum procalcitonin measured at day 0 and 25 subjects who 
did not have 25(OH)D measured at day 3.

This study was performed in accordance with the Declaration of Helsinki. At VITdAL-ICU trial enrollment, 
written informed consent was obtained, if possible, directly from the patient or from a legal surrogate. Consent 
included permission for plasma specimens to be saved for future research studies. The post-hoc metabolomics 
study protocol was granted approval by the Mass General Brigham Human Research Committee at the Brigham 
and Women’s Hospital (Protocol # 2015P002766).

Metabolomics data was generated on a total of 1187 plasma samples from 419 subjects at day 0, 401 subjects at 
day 3 and 367 subjects at day 7 were analyzed using four ultra high-performance liquid chromatography/tandem 
accurate mass spectrometry methods by Metabolon, Inc. in  201714. Metabolomic profiling identified 983 plasma 
metabolites. Individual metabolite raw area count data was normalized, underwent cube root transformation 
and then Pareto scaling to generate abundance data that were on the same scale and followed an approximate 
normal distribution.

Our exposure of interest was the individual metabolite abundance. Our primary outcome was serum procal-
citonin measured at the same time as the individual metabolite. The procalcitonin level of < 0.5 μg/L was assigned 
as a cut point indicating severe systemic  inflammation49. Study sample size was determined utilizing equations for 
longitudinal studies with a continuous  response50. We aimed to detect an absolute change in the mean response of 
procalcitonin of 0.5 μg/L over seven days. We determined the within-subject variability of procalcitonin was 4.1 
and the between-subject variability in the rate of change of procalcitonin was 2.0. We utilized an FDR corrected 
alpha of 0.013, a power of 80%, and three repeated measurements of procalcitonin over seven days. To achieve 
80% power, our study requires a study sample of 325 patients.
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For univariate analysis of day 0 data, Student’s t test was used to identify metabolites that are associated with 
a dichotomized procalcitonin measure (procalcitonin < 0.5 μg/L versus procalcitonin ≥ 0.5 μg/L) applying a false 
discovery rate adjusted p-value (q-value) threshold of 0.05 using  MetaboAnalyst16. Day 0 data were also analyzed 
using orthogonal partial least square-discriminant analysis (OPLS-DA), a supervised method to assess the signifi-
cance of classification discrimination (SIMCA 15.0 Umetrics, Umea, Sweden). We performed permutation testing 
to validate the OPLS-DA model. We employed sevenfold cross-validation analysis of variance (CV-ANOVA) to 
determine OPLS-DA model significance. A Receiver Operating Characteristic curve was calculated from class-
belonging values predicted by the OPLS-DA model. We produced a misclassification table of the proportion of 
correctly classified observations (procalcitonin < 0.5 μg/L vs procalcitonin ≥ 0.5 μg/L) in the day 0 data.

For repeated measures data in 419 subjects, the association between relative abundance of individual metabo-
lites (as a continuous exposure) and procalcitonin levels (outcome) at day 0, 3 and 7 were determined utilizing 
linear mixed-effects models correcting for age, sex, baseline 25(OH)D, absolute increase in 25(OH)D at day 
3, SAPS II, plasma day, admission diagnosis and individual subject (as the random-intercept). To identify all 
significant mixed-effects associations we utilized multiple testing correction based on the Benjamini–Hochberg 
procedure to adjust the false discovery rate (FDR) to 0.0551. All mixed-effects models were analyzed using STATA 
16.1MP (College Station, TX). We employed rain plots to visualize effect size and significance relative to proc-
alcitonin  levels52. Rain plots were produced based on hierarchical clustering in R-3.6.2.

To identify procalcitonin-specific modules from metabolite abundance data, we applied Gaussian graphical 
models (GGMs) using the metabolomic data from day 0 using the GeneNet R package, version 1.2.13 in R-3.6.248. 
Modules are identified by reconstruction of pathway reactions derived from metabolomics data. GGMs are deter-
mined utilizing partial pairwise Pearson correlation coefficients following the removal of the effects of all other 
metabolites and  covariates53. We inferred a procalcitonin-specific network (procalcitonin < 0.5 vs ≥ 0.5 μg/L) for 
relative metabolite abundance. We included age, sex, SAPS II, admission diagnosis, and baseline 25(OH)D as 
covariates into the model. Edges between metabolites were allotted if both their Pearson correlations and partial 
correlations remained statistically significant at a q-value threshold of 0.0516.

We finally evaluated a potential mediating effect of bilirubin, age or body mass index on the association 
between procalcitonin and individual metabolite abundance adjusted for age, sex, baseline 25(OH)D, SAPS II 
and admission diagnosis. Analyses were performed on each of the 983 metabolites at day 0 using the R pack-
age  mediation54 to obtain bootstrap p-values (N = 2000 samples) for the mediation effect of age or for bilirubin. 
Significant mediation was present if the p-value was < 0.01 and if ≥ 10% of the association was mediated through 
bilirubin levels, age or body mass  index14,55.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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