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Minimalist module analysis for fault 
detection and localization
Zhijiang Lou1, Youqing Wang2, Shan Lu1* & Pei Sun1

Traditional multivariate statistical-based process monitoring (MSPM) methods are effective data-
driven approaches for monitoring large-scale industrial processes, but have a shortcoming in 
handling the redundant correlations between process variables. To address this shortcoming, this 
study proposes a new MSPM method called minimalist module analysis (MMA). MMA divides process 
data into several different minimalist modules and one more independent module. All variables in 
the minimalist module are strongly correlated, and no redundant variables exist; therefore, the 
extracted feature components in one minimalist module will not be disturbed by noise from the other 
modules. This study also proposes new monitoring indices and a fault localization strategy for MMA, 
and simulation tests demonstrate that MMA achieves superior performance in fault detection and 
localization.

Multivariate statistical-based process monitoring (MSPM)  methods1–4, e.g., principal component analysis 
(PCA)5, 6, partial least squares (PLS)7, 8, and canonical correlation analysis (CCA)9, 10, are effective data-driven 
approaches for monitoring large-scale industrial processes. The main idea of MSPM is analyzing the correla-
tion between process variables and extracting the feature components for the construction of statistical indices.

MSPM has been a research hotspot for many years, and a large number of relevant studies are published each 
year. In recent years, studies have focused on improving the existing methods to deal with process characteristics 
such as nonlinear, non-Gaussian, and dynamic features. For example, Ge et al.11 combines the multivariate linear 
Gaussian state-space model with MSPM for handling the dynamic feature during a process; Du et al.12 proposed 
the Gaussian distribution transformation (GDT)-based monitoring method for handling the non-Gaussian 
feature; and Lou et al.13 combined artificial neural networks with PCA, and proposed a new neural component 
analysis for handling nonlinear features. Meanwhile, Zhou et al.14 proposed a nonlinear key performance indica-
tor (KPI) strategy for the PLS algorithm.

Because MSPM can compress the high-dimensional data into two or three statistical indices, it is a convenient 
tool for detecting the abnormal condition in the whole process object. To address the fault localization problem, 
the contribution plot  method15, 16 was proposed for MSPM, which calculates the contribution of each variable 
of the original data set and picks the variables with high contributions as fault sources. Most studies on MSPM 
use the contribution plot as a basic algorithm  tool17, 18, and a few studies have proposed improved versions of 
the MSPM method that cannot use the traditional contribution plot directly (examples include the kernel  PCA19 
and robust  PCA20).

However, according to actual simulation test results, MSPM is insensitive to specific faults, and the contribu-
tion plot method may mistakenly diagnose normal variables as a fault source. The reason for this phenomenon 
is that the traditional MSPM methods are based on the correlations between all process variables, and some 
correlations can be deduced by others, which means that these correlations are redundant. As such, the feature 
components extracted by traditional MSPM methods contain information from many process variables, and 
hence, are also disturbed by noises from these variables; therefore, traditional MSPM methods are insensitive to 
specific faults. In addition, the redundant correlations may mislead the contribution plot method, which results 
in incorrect localization of faults.

For handling these problems, multiblock MSPM methods, such as consensus PCA (CPCA)21, multiblock PLS 
(MBPLS)18, and hierarchical PLS (HPLS)22, are proposed for reducing the number of variables and improving 
the interpretability of multivariate models. The main idea of multiblock MSPM methods is dividing the process 
variables into several blocks and combining the monitoring result of each block. However, block division is still 
an open problem in academic and engineering fields. Though Slama had given a general guideline “blocks should 
correspond as closely as possible to distinct units of the process where all the variables within a block or process 
unit may be highly coupled, but where there is minimal coupling among variables in different blocks”18, this rule 
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is inappropriate for large-scale industrial processes, because (a) in large-scale industrial processes, variables in 
different process units are still highly coupled; (b) variables in the same unit may be unrelated. In addition, for 
multiblock MSPM methods, one variable only belongs to one block, as such, the rest blocks may lose key input 
variables, which causes large model error. For example, for model in Fig. 1, it’s hard to divide the process vari-
ables into two or more blocks: when x3 is allocated to block 2, then blocks 1 loses information of x3 . Besides, it’s 
difficult to divide the blocks with traditional data-driven method, and hence many multiblock MSPM methods 
demand the process prior knowledge for block  division23.

To eliminate the influence of the redundant correlations among process data, this paper proposes a novel 
MSPM method called minimalist module analysis (MMA). All variables in the minimalist module are strongly 
correlated, and no redundant variables exist. As shown in Fig. 1, MMA just analyzes the correlations between 
variables in the same module, and hence the extracted feature components are not disturbed by the noise from 
the other modules. In addition, the modularization analysis results can provide more useful information for 
fault localization.

The difference between MMA and the multiblock MSPM methods are as follows: first, for MMA, each vari-
able may belong to more than one modules ( x1 belongs to two modules in Fig. 1), so each module represents one 
complete correlation without information loss; second, for MMA, module division is based on statistics analysis 
rather than the process prior knowledge, which is consistent with the data-driven feature of MSPM; third, each 
module only contain one correlation in MMA, and each block in the multiblock MSPM methods may contain 
more than one correlations.

The main innovations of this study are as follows. First, we propose a modularization method based on 
singular value decomposition (SVD)24 and particle swarm optimization (PSO)25, which can divide the process 
variables into different minimalist modules and an independent module. Then, we propose new monitoring 
indices for each module. In addition, we propose a new fault localization strategy for MMA.

According to a survey  paper1, PCA is the most commonly used MSPM method. As such, this paper focuses on 
the comparison of MMA and PCA; our conclusion is also applicable to other algorithms, such as PLS and CCA. 
The simulation tests in a mathematical model and the Tennessee Eastman (TE)  process26 show that MMA can 
successfully obtain the minimalist modules; moreover, it achieves much better performance than the traditional 
MSPM methods in fault detection and fault localization.

The remainder of this paper is organized as follows. In “Methods” section, we briefly review some concepts 
of classical PCA and the contribution plot method, and assess the defects of these methods. “Minimalist module 
analysis (MMA)” section then proposes MMA for process monitoring, and introduces some details. “Simulation 
study of MMA” section analyzes the characteristics of MMA, and compares this method with PCA by conducting 
tests on a mathematical model. “Fault detection in the Tennessee Eastman process” section compares MMA with 
other improved MSPM methods in the TE process. Lastly, “Conclusions” section summarizes the contributions 
of this paper, and discusses some directions for future studies.

Figure 1.  The traditional multivariate statistical-based process monitoring (MSPM) methods, multiblock 
MSPM, and minimalist module analysis.
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Methods
Principal component analysis (PCA). PCA decomposes the data matrix X ∈ Rn×s (where n is the num-
ber of samples, and s is the number of variables) into a transformed k subspace of reduced dimensions as follows:

where T ∈ Rn×k refers to the score matrix, which is an orthogonal matrix; P ∈ Rs×k refers to the loading matrix, 
and it is orthonormal; and E ∈ Rn×s is the residual matrix. To obtain the loading matrix P , one should firstly 
calculate the covariance matrix:

Then, � can be presented by singular value decomposition (SVD) as follows:

where � =
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0 �2 0 0

0 0
. . . 0

0 0 0 �s











 ( �1 ≥ �2 ≥ · · · �s ≥ 0 ) is a diagonal matrix. Matrix P is actually columns of P0 associ-

ated with the k largest eigenvalues, and k is determined by cumulative percent variance (CPV)27 as follows:

where ε is a parameter usually set to 85%. When CPV is larger than ε , we take k as the number of the principal 
components (PCs).

Then, two statistics are constructed to monitor the new process data sample x ∈ R1×s as follows:

where x̂ = TPT = xPPT and �k=
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0 0
. . . 0
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 (�1 ≥ �2 ≥ · · · �k ≥ 0) . The thresholds for the two indices, 

δT2 and δSPE , can be found in  reference28.

Contribution plot. The contributions to SPE are calculated as follows:

where xj and x̂j are the jth columns of x and x̂ , respectively. The contributions to T2 are calculated as follows:

where Pi is the ith column of P, and Pj,i is the element in the jth column and ith row.
The role of the contribution plots to fault isolation is to indicate which of the variables are related to the fault 

rather than to reveal the actual cause of it. In general, variables with a higher contribution have a closer relation-
ship with the fault source. The thresholds of and can be obtained by kernel density  estimation29.

Drawback of PCA and contribution plot method. Theorem The redundant variables introduce extra 
noise into the principal components (PCs).
Proof Assume X1 ∈ Rn×s are the variables belonging to a minimalist module, which can be full-rank decom-
posed as

where T0 ∈ Rn×s and P0 ∈ Rs×s Matrix X2 ∈ Rn×s′ are the redundant variables that can be presented as the linear 
combination of X1 as follows:

where R ∈ Rs×s′ . is the linear transformation matrix, and W ∈ Rn×s′ is noise belonging to X2. In this paper, we 
assume that each measurement variable contains independent sensor noise, and hence, rank(W) = s′.

Taking X =
[

X1 X2

]

 , one obtains

(1)X = TPT + E = X̂ + E,

(2)� =
1

n− 1
XTX

(3)� = PT0�P0,

(4)CPV =

k
∑

i=1

�i/

s
∑
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(5)

{

T2 = xP(�k)
−1PTxT

SPE = (x − x̂)(x − x̂)T
,

(6)ConSPEj = (xj − x̂j)(xj − x̂j)
T ,

(7)ConT2
j =

k
∑

i=1

(

xj − x̂j
)

Pj,i�
−1
i PTi x

T ,

(8)X1 = T0P
T
0 ,

(9)X2 = X1R +W,
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Part T0P
T
0

[

I R
]

 can be full-rank singular value decomposed as

where T1 ∈ Rn×(s+s′) , rank(T1) = rank(T0), and P1 ∈ R(s+s′)×(s+s′) . Hence, one obtains

Taking P1 =
[

P′1 ∈ Rs×(s+s′)

P′′1 ∈ Rs′×(s+s′)

]

,

Because part 
(

T1+WP′′1

)

 is non-orthogonal in most situations, we introduce another orthonormal matrix 
Q ∈ R(s+s′)×(s+s′) , which makes

It should be noted that when 
(

T1+WP′′1

)

 is orthogonal, then Q = I.
PCA picks the k largest components of T2 as PCs, and we denote them as Tk ∈ Rn×k . Then,

where Qk ∈ R(s+s′)×k is the corresponding k columns of Q . Taking �=P′′1Qk ∈ Rs′×k , and because P′′ and Qk are 
parts of orthonormal matrices P1 and Q , one obtains �  = 0(rank(�)  = 0 ) unless the exceptionally rare situation 
that all columns of Qk belong to the column set of P′T1  . As rank(W)+rank(�) > s′ , one obtains WP′′1Qk �= 0.

As such, Tk is influenced by W, and the redundant variables X2 introduce extra noise W into the principal 
components (PCs). This finishes the proof. Based on the Theorem, one finds that PCA is not good at handling 
process data with redundant variables.

As for the contribution plot method, according to Eqs. (6) and (7), it is based on the difference between x and 
x̂ . As shown in Fig. 2, when a fault occurs in a specific variable xj , (a) according to equation T=xP , the relevant 
principal components are faulty; (b) according to equation x̂=TPT , most reconstructed variables are faulty. As 
such, in a practical engineering application, it is hard to locate the source fault by the contribution plot method 
because too many variables’ contribution indices alarm the fault.

Section summary. In sum, to eliminate the noise disturbance in the redundant variables, and to improve 
the fault localization ability, we develop a new monitoring algorithm based on the minimalist module and pro-
pose a corresponding fault localization strategy in “Minimalist module analysis (MMA)” section.

Minimalist module analysis (MMA)
The content of this section is listed in Fig. 3 below.

Minimalist module division. Traditional PCA approaches focus on the k largest eigenvalues in matrix � , 
and the important information contained in the residual part is not used. When ε is very small (e.g., 0.05), one 
obtains �j ≈ 0

(

j = k + 1.k + 2, . . . , s
)

 . Taking Pr as the columns of P0 associated with the s-k smallest eigenval-
ues, one obtains

(10)X = T0P
T
0

[

I R
]

+
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0 W
]

.
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T
0
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T
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[
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]

=
(
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0 W
]
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)

PT1 .

(13)X =
(
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PT1 .

(14)
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T
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�
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�

Q
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(15)Tk=
(
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)
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Figure 2.  Fault propagation from original data to reconstructed data.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23571  | https://doi.org/10.1038/s41598-021-02676-3

www.nature.com/scientificreports/

We assume X =
[

x1 x2 x3
]

 , and Pr=

[

P1,1 P1,2
P2,1 P2,2
P3,1 P3,2

]

 . Then,

Through the transformation of Eq. (17), one obtains

As such, one then obtains

Unlike Pr , some elements of P̃r are 0, and hence Eq. (19) can describe the relationship between x2 and x3 
without considering x1. In Eq. (19), variable set 

[

x2 x3
]

 is a minimalist module.
The flow of minimalist module division is as follows:

(a) Find a transformation matrix Ŵ ∈ R(s−k)×(s−k) that maximizes the number of 0 elements in P̃r = PrŴ . This 
paper addresses this optimization problem by using the particle swarm optimization (PSO)30 algorithm as 
described below.

Step 1 Set num = 1.
Step 2 Take the numth column of Pr as �1 and the remaining s − k − 1 columns as �2 . Solve the following 

optimization function by PSO:

where ��1 −�2Ŵnum�β denotes the number of elements in interval [−β ,β] ( β is close to 0, such as 0.01).
Step 3 If num = s − k , go to step 4; else, num = num + 1 and go to step 2.
Step 4 Ŵ = I−

[

Ŵ1 Ŵ2 . . . Ŵs−k

]

.

(b) Calculate P̃r=PrŴ , adjust each column of P̃r to unit variance, and set all elements in interval [−ββ] to 0.
(c) Take the variables corresponding to non-zero element parameters in the ith ( i = 1, 2, . . . , s − k ) column 

of P̃r as the ith minimalist module (MMi).

(16)XPr ≈ 0.

(17)
{

x1P1,1+x2P2,1+x3P3,1 ≈ 0

x1P1,2+x2P2,2+x3P3,2 ≈ 0
.

(18)

(

x1P1,1+x2P2,1+x3P3,1
)

P1,2−
(

x1P1,2+x2P2,2+x3P3,2
)

P1,1

=x2
(

P2,1P1,2−P2,2P1,1
)

+x3
(

P3,1P1,2−P3,2P1,1
)

≈ 0.

(19)















P̃r =

�

0

P2,1P1,2−P2,2P1,1
P3,1P1,2−P3,2P1,1

�

= Pr

�

P1,2
−P1,1

�

XP̃r ≈ 0

(20)Minimize
Ŵnum

(

��1 −�2Ŵnum�2−��1 −�2Ŵnum�β
)

,

Figure 3.  Content of this “Minimalist module analysis (MMA)” section.
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Remark The form of the minimalist module is not unique, e.g. through the transformation of Eq. (17), one 
also obtains.

and hence variable set 
[

x1 x2
]

 is also a minimalist module. As such, the result of PSO may be different each time.

Independent module. Each variable in the minimalist module is strongly correlated with other variables. 
As such, some variables, such as x8 and x9 in Fig. 3, are not included in the minimalist module group. Thus, these 
variables belong to the independent module.

Monitoring indices construction. Each minimalist module can be monitored by the PCA algorithm 
independently. We assume that X̃i ∈ Rn×s̃ are data belonging to MMi. Then, rank

(

X̃i

)

∈ s̃ − 1 because each 
minimalist module represents one independent correlation, and hence the number of PCs for each minimalist 
module is fixed as s̃ − 1 . The monitoring indices of each module are calculated as

and

where T2
i  and SPEi , and δT2

i
 and δSPEi are the T2 and SPE indices and the corresponding thresholds for MMi, 

respectively. Different from the traditional SPE index, SPEi divides T2
Mi

 to eliminate the impact of T2
Mi

 on SPEi.
The indices for the whole process are

and

where γ is a positive value (e.g., 
√
s − k ). As such, when some minimalist module detects the fault, then these 

two indices are much larger than their normal values. The threshold for both indices is s − k.
As for the variables in the independent module, they can be monitored by the T2 index, which is denoted as T2

I .

Fault localization. For MMA, the fault localization rules are different for T2
M , SPEM , and T2

I  indices.

(a) For the T2
M index, when T2

Mi
 is normal, then all related variables are normal. For example, in the math-

ematical model in Fig. 3, when T2
M1

 and T2
M2

 are faulty, and T2
M3

 and T2
M4

 are normal, then one gets that: 
(a) variables related to MM1 and MM2, i.e., x1 , x2 , x3 , x4 , and x5 , may be faulty; (b) all variables related to 
MM3 and MM4, i.e., x1 , x4 , x5 , x6 , and x7 , are normal; (c) x3 must be faulty because it is the only common 
variable shared by MM1 and MM2, and x2 may also be faulty because we have no more information for 
judging it.

(b) For the SPEM index, when SPEMi is faulty, then the correlation between all variables in MMi maybe faulty. 
For example, in the mathematical model in Fig. 3, one obtains SPEM1

=(x1+x2 − x3)
2 ≈ 0 ; when the correla-

tion between x1 , x2 , and x3 changes to x1 − x2 = x3 or x1 + 2 ∗ x2 = x3 , then SPEM1
= (x1 + x2 − x3)

2 �= 0 
and SPEMi alarms the fault.

(c) When a fault occurs in variables not belonging to the minimalist module, such as x8 and x9 , then they can 
only be handled with the detection result of the independent module, i.e., the contribution ConT2

j .

Simulation study of MMA
This section aims to study the performance of MMA through simulation tests, and compare it with PCA and 
mutual information–multiblock PCA (MI-MBPCA)31. MI-MBPCA employs mutual information to divide the 
block automatically and hence it does not need the process prior knowledge for block division. The test model 
is shown below:

(

x1P1,1+x2P2,1+x3P3,1
)

P3,2−
(

x1P1,2+x2P2,2+x3P3,2
)

P3,1

=x1
(

P1,1P3,2−P1,2P3,1
)

+x2
(

P2,1P3,2−P2,2P3,1
)

≈ 0,

(21)T2
Mi
=T2

i

/

δT2
i
,

(22)SPEMi=
(

SPEi
/

T2
Mi

)/

δSPEi ,

(23)T2
M=

s−k
∑

i=1

(

1+ γ ∗ sign
(

T2
Mi

− 1
))

T2
Mi
,

(24)SPEM=

s−k
∑

i=1

(

1+ γ ∗ sign
(

SPEMi − 1
))

SPEMi ,
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Random variables Ni and ωi follow the standard Gaussian distribution, and ωi indicates the process noise. 
Approximately 10,000 normal observations are produced for offline modeling.

After data normalization, the training data are adjusted to zero-mean and unit-variance. Then the normalized 
data are processed by MMA. The matrix P̃r is obtained as follows:

P̃r=

























0 0.53 0 0.39

0 0.50 0 0

0 −0.68 0.60 0

0.69 0 0.39 0

0 0 −0.70 0.45

0 0 0 −0.80

−0.72 0 0 0

0 0 0 0

0 0 0 0

























.

Thus, MMA successfully obtains four minimalist modules: {x1 x2 x3} , {x3 x4 x5} , {x1 x5 x6} , and 
{x4 x7} . Then, the independent module is {x8 x9}.

And MI-MBPCA divides the process variables into the following 5 blocks: {x1} , {x2 x3 x5 x6} , {x4 x7} , 
{x8} , {x9} , which is not consistent with the process model because x1 is correlated with both x3 and x6 but they 
do not belong to same block.

To compare the monitoring performance between MMA, PCA and MI-MBPCA, five test data sets are gener-
ated. Each data set contains 960 samples, and the fault occurs at the 160th sample point. The occurred faults are 
of the following five types:

Fault 1: a step change with amplitude of 5 in x1;
Fault 2: term N2 in the expression of x2 changes to 3 ∗ N2;
Fault 3: a step change with amplitude of 0.2 in x3;
Fault 4: term x3 + x4 in the expression of x5 changes to x3 + 2 ∗ x4;
Fault 5: a step change with amplitude of 5 in x8.
The detection results are listed in Table 1. The false alarm rate is calculated as the number of faults detected before 160

160
 

and the detection rate is calculated as the number of faults detected between 161 and 960
800

 . In this study, all control limits are 
based on a probability of 99% and the best result is marked in bold.

As shown in Table 1, the performance of MMA is better than that of PCA and MI-MBPCA for all five faults. 
Because MMA divides the whole process data into several minimalist modules and an independent module, 
and the noise in each variable will not disturb the unrelated modules, MMA is more robust to process noise 
than PCA. For MI-MBPCA, because each variable only belongs to one block and the rest blocks may lose key 
information, the models of blocks maybe biased. One interesting finding in Table 1 is that MMA can successfully 
detect faults 3 and 4 while PCA fails. The reason for this phenomenon is that PCA monitors the complex cor-
relations between all variables together while MMA monitors each strong correlation (one minimalist module) 
independently; therefore, MMA is very sensitive to changes in specific correlations.

The fault localization results of the two algorithms for faults 3 and 5 are shown in Figs. 4 and 5, respectively. 
In Fig. 4, for PCA, ConSPE3 , ConSPE5 , and ConSPE6 alarm the fault, and we cannot locate the fault source. For 
MI-MBPCA, because x6 is influenced by x5 , both variables alarm the fault and we cannot locate the fault source. 















































x1 = N1 + 0.01× ω1

x2 = N2 + 0.01× ω2

x3 = x1 + x2 + 0.01× ω3

x4 = N3 + 0.01× ω4

x5 = x3 + x5 + 0.01× ω5

x6 = x5 + x1 + 0.01× ω6

x7 = x4 + 0.01× ω7

x8 = N4 + 0.01× ω8

x9 = N5 + 0.01× ω9

.

Table 1.  False alarm rates (%) and detection rates (%) of the principal component analysis (PCA) method, the 
mutual information–multiblock PCA (MI-MBPCA), and the minimalist module analysis (MMA) method.

Method PCA MI-MBPCA MMA

Index T
2 SPE DR T

2

I
T
2

M
SPEM

False alarm rate 1.9 3.1 0.6 1.9 1.9 0.0

Detection rate

 Fault 1 95.8 5.3 89.3 0.8 99.0 0.4

 Fault 2 29.8 1.3 12.5 0.8 38.4 0.4

 Fault 3 1.3 0.8 0.1 0.8 1.9 93.8

 Fault 4 1.1 4.7 5.25 1.4 1.5 90.3

 Fault 5 33.9 94.6 95.8 97.8 1.0 0.4
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For MMA, all ConT2
i  and T2

Mi
 indices are normal, which means that all variables in the independent module are 

normal and all variables in the minimalist modules fluctuate within the normal range; because SPEM2
 signals a 

fault alarm, one finds that the correlations between x1 , x2 , and x3 are changed.
In Fig. 5, although a fault occurs in x8 , most ConSPEi indices in PCA signal a fault alarm, and we cannot locate 

the fault source. For MI-MBPCA, it can successfully locate the fault source. However, because MI-MBPCA fails 
in detecting fault 5, and hence the fault localization step is skipped, as such, MI-MBPCA also fails in locating 
the fault source. For MMA, all ConT2

i  and SPEMi are normal, and hence one finds that the fault is not in the 
minimalist modules; only ConT2

8 signals a fault alarm, and hence MMA successfully locates the faulty variable x8.

Fault detection in the Tennessee Eastman process
The Tennessee Eastman (TE)  process32 simulation is the most widely used simulation model to test the MSPM 
methods, which is outlined in Fig. 6. The TE process uses 12 manipulated variables, 22 continuous process meas-
urements, and 19 composition measurements sampled less frequently to simulate a classical chemical process. 
Because the 19 composition measurements are difficult to measure in real time and one manipulated variable, i.e., 
the agitation speed, is not manipulated, this study only monitors the other 22 measurements and 11 manipulated 
variables, as listed in Table 2. Twenty-one programmed faults that are introduced in the TE process are listed 
in Table 3. In this study, 960 normal samples are adopted as training data to construct the monitoring models. 
Each testing data set contains 960 samples, and fault occurs at the 161st sample.

In this section, we compare MMA with PCA, MI-MBPCA, Deep principal component analysis (DePCA)34, 
and kernel dynamic PCA (KDPCA)35; the latter two methods are improved versions of PCA. The detection results 
of the four methods are listed in Table 4. The false alarm rate is calculated as the the number of faults detected before 160

160
 , 

and the detection rate is calculated as the number of faults detected between 161 and 960
800

 . In this study, all control limits are 
based on a probability of 99% and the best result is marked in bold.

As shown in Table 4, we find that MMA, MI-MBPCA, and PCA achieve similar false alarm rates, and their 
values are much lower than those of the two improved PCA methods (over 10%). For fault detection rates, MMA 
achieves the best results in 17 of the 21 faults; as for the remaining 4 faults, MMA’s detection rates are not as high 
as those of DePCA only because DePCA sacrifices the false alarm rate. An eye-catching result is obtained in the 
case of fault 5: the detection rates of the compared methods are generally below 50%, whereas MMA achieves a 
100.0% detection rate, which indicates the superiority of MMA. In addition, the performance of MMA in faults 
10, 16, 19, and 20 is much better than that of the other four methods.

As the papers that proposed DePCA and KDPCA did not give a description of the contribution plot con-
struction, we only compare the fault localization ability between PCA, MI-MBPCA, and MMA. The matrix P̃r 
of MMA is shown in Table 5.

Figure 7 shows the fault localization results of fault 4. According to Table 3, fault 4 is a step change in inlet 
temperature of reactor cooling water. As depicted in Fig. 6, the reactor temperature (variable 9 in Table 2) 
changes, and hence the reactor cooling water flow (variable 32 in Table 2) also changes to compensate for the 

Figure 4.  Fault localization for fault 3.

Figure 5.  Fault localization for fault 5.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23571  | https://doi.org/10.1038/s41598-021-02676-3

www.nature.com/scientificreports/

temperature change. For PCA, ConSPE9 , ConSPE32 , and ConT2
32 signal a fault alarm; for MI-MBPCA, about 14 

variables alarm the fault and it fails in locating the fault source; for MMA, T2
M1

 , T2
M6

 , T2
M8

 , and T2
M13

 signal a fault 
alarm based on the fault localization rules presented in “Monitoring indices construction” section, and then one 
finds that variables 9 and 32 are faulty. Both PCA and MMA can locate this fault. Different from the contribu-
tion plot method of PCA, all SPEMi of MMA are normal, which tells the engineers that the correlation between 
variables have not changed, and hence the fault source is the change in amplitude of some variables. Thus, it can 
be seen that, compared with PCA, MMA can provide more useful information for fault localization.

Figure 6.  Schematic of the Tennessee Eastman  process33.

Table 2.  Monitored variables in the Tennessee Eastman  process33.

Variable

1 A feed (stream 1) 18 Stripper temperature

2 D feed (stream 2) 19 Stripper steam flow

3 E feed (stream 3) 20 Compressor work

4 Total feed (stream 4) 21 Reactor cooling water outlet temperature

5 Recycle flow (stream 8) 22 Separator cooling water outlet temperature

6 Reactor feed rate (stream 6) 23 D feed flow valve (stream 2)

7 Reactor pressure 24 E feed flow valve (stream 3)

8 Reactor level 25 A feed flow valve (stream 1)

9 Reactor temperature 26 Total feed flow valve (stream 4)

10 Purge rate (stream 9) 27 Compressor recycle valve

11 Product separator temperature 28 Purge valve (stream 9)

12 Product separator level 29 Separator pot liquid flow valve (stream 10)

13 Product separator pressure 30 Stripper liquid product flow valve (stream 11)

14 Product separator under flow (stream 10) 31 Stripper steam valve

15 Stripper level 32 Reactor cooling water flow

16 Stripper pressure 33 Condenser cooling water flow

17 Stripper underflow (stream 11)
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Conclusions
In this study, a new MSPM called MMA was proposed to overcome the shortcoming of the traditional MSPM 
method in handling the redundant correlations among process variables.

The superiority of MMA was verified by several simulation tests. It achieved much better detection perfor-
mance for five different types of faults on a mathematical model test, and two of which could not be detected by 
PCA and MI-MBPCA. MMA also had a better performance than other improved MSPM algorithms for 17 of 
the 21 faults in the Tennessee Eastman process.

Table 3.  Descriptions of faults in the Tennessee Eastman  process33.

No. Description Type

1 Feed ratio of A/C, composition constant of B (stream 4) Step

2 Composition of B, ratio constant of A/C (stream 4) Step

3 Feed temperature of D (stream 2) Step

4 Inlet temperature of reactor cooling water Step

5 Inlet temperature of condenser cooling water Step

6 Feed loss of A (stream 1) Step

7 Header pressure loss of C—reduced availability (stream 4) Step

8 Feed composite of A, B, and C (stream 4) Random variation

9 Feed temperature of D (stream 2) Random variation

10 Feed temperature of C (stream 4) Random variation

11 Inlet temperature of reactor cooling water Random variation

12 Inlet temperature of condenser cooling water Random variation

13 Reaction kinetics Slow drift

14 Valve of reactor cooling water Sticking

15 Valve of condenser cooling water Sticking

16–20 Unknown Unknown

21 The valvefor stream 4 was fixed at the steady-state position Constant position

Table 4.  False alarm rates (%) and detection rates (%) of the four fault detection methods.

Method PCA DePCA KDPCA MI-MBPCA MMA

Index T
2 SPE ET2 ESPE T

2 SPE DR T
2

I
T
2

M
SPEM

False alarm rate 0.5 1.4 6.1 11.5 11.21 4.05 1.25 0.8 1.3 0.2

Detection rate

 Fault 1 99.1 99.9 99.1 100.0 99.0 99.6 99.9 44.6 100.0 0.0

 Fault 2 98.4 95.8 98.5 98.0 98.3 96.6 98.0 74.4 98.6 0.0

 Fault 3 0.9 2.6 17.6 17.4 0.9 3.1 0.8 1.9 6.6 1.8

 Fault 4 20.9 100.0 78.3 100.0 20.2 99.9 100.0 0.3 100.0 0.9

 Fault 5 24.3 20.9 38.8 45.0 24.0 24.8 23.5 14.0 33.0 100.0

 Fault 6 99.1 100.0 99.4 100.0 98.9 99.9 100.0 93.9 100.0 100.0

 Fault 7 100.0 100.0 100.0 100.0 99.9 99.9 100.0 100.0 45.6 3.6

 Fault 8 96.9 83.6 97.5 98.3 96.8 93.0 97.8 60.8 98.4 3.0

 Fault 9 1.8 1.8 16.9 14.0 1.5 3.1 2.5 1.5 6.0 1.3

 Fault 10 29.9 25.8 57.1 58.1 29.5 27.6 41.8 6.8 88.5 0.1

 Fault 11 40.6 74.9 86.3 85.0 40.5 74.9 82.5 0.9 89.4 1.1

 Fault 12 98.4 89.5 99.6 99.3 98.3 93.4 99.0 66.1 99.6 52.0

 Fault 13 93.6 95.3 94.4 95.1 93.5 95.0 95.4 66.5 95.6 22.9

 Fault 14 99.3 100.0 100.0 100.0 99.1 99.9 99.9 0.3 100.0 0.0

 Fault 15 1.4 3.0 17.8 19.6 1.3 3.4 2.5 1.6 11.6 2.0

 Fault 16 13.5 27.4 43.5 57.4 13.7 27.8 27.1 3.6 91.9 74.1

 Fault 17 76.4 95.4 91.6 94.4 76.5 94.8 93.5 1.0 97.1 0.1

 Fault 18 89.3 90.1 92.1 92.0 89.3 90.3 89.6 88.1 91.0 83.9

 Fault 19 11.0 12.5 68.8 68.9 8.7 21.0 13.8 1.6 90.4 48.3

 Fault 20 31.8 49.8 63.5 61.8 31.2 50.8 57.4 2.4 83.9 81.0

 Fault 21 39.3 47.3 54.6 61.8 35.3 50.1 47.4 39.8 66.3 0.6
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MMA is a completely new method, and hence much work can be done based on it. First, we can combine 
it with the traditional nonlinear, dynamic, robust strategy to improve its fault detection ability. We can also 
combine it with the traditional contribution plot method to improve its fault localization ability. Moreover, we 
can combine it with the key performance  indicator14 monitoring strategy. All of these investigations will be part 
of our future work.

Table 5.  Matrix P̃r for the Tennessee Eastman process. Significant values are in [bold].

Variable

MM

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 − 0.1 0.0 0.3 − 0.3 0.1 0.0 0.0 0.3 0.0 − 0.2 − 0.2 0.3 0.0 0.0

2 0.1 0.0 0.1 0.1 0.3 0.0 0.0 0.0 − 0.2 0.0 0.0 0.2 − 0.1 0.1

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

7 − 0.3 − 0.6 0.2 − 0.3 0.0 0.4 0.0 0.1 − 0.1 0.0 0.0 0.0 0.0 0.4

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

9 0.5 0.0 0.0 0.0 0.0 0.3 0.0 − 0.3 0.0 0.0 0.0 0.0 0.4 0.0

10 − 0.1 0.0 − 0.2 0.0 0.1 0.0 0.0 0.2 0.1 − 0.2 0.0 0.0 − 0.2 0.1

11 0.0 0.1 0.2 0.0 0.1 0.0 0.4 0.2 0.0 − 0.4 0.1 0.3 0.0 0.0

12 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0

13 0.0 0.5 0.3 0.0 0.3 0.0 0.0 − 0.3 − 0.2 0.0 − 0.1 − 0.5 0.4 − 0.1

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15 − 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.4

16 0.5 0.5 − 0.1 − 0.1 − 0.4 0.1 − 0.3 0.4 0.5 0.4 0.0 0.2 − 0.2 0.3

17 0.0 0.0 0.0 0.0 0.0 0.0 − 0.4 0.0 − 0.5 0.0 0.0 0.0 0.0 0.0

18 0.0 0.2 0.0 − 0.2 0.2 0.6 − 0.4 − 0.1 0.0 − 0.1 0.1 0.0 0.1 0.0

19 0.3 0.0 0.6 0.0 − 0.4 − 0.1 − 0.1 0.0 0.0 0.4 0.5 0.0 − 0.2 0.5

20 0.0 0.0 − 0.1 0.6 0.1 − 0.5 0.3 0.0 0.0 − 0.6 0.0 0.1 0.4 − 0.4

21 0.3 0.1 0.2 0.2 0.5 0.0 0.0 0.0 − 0.3 0.0 − 0.2 0.5 0.0 0.0

22 0.1 0.0 0.0 0.1 0.1 0.0 − 0.4 − 0.1 0.0 0.3 − 0.1 0.0 − 0.1 0.0

23 0.0 0.0 0.0 0.2 0.3 − 0.1 0.0 0.0 − 0.1 0.0 − 0.1 0.2 − 0.1 − 0.1

24 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 − 0.1 0.1 0.0 0.0 0.0

25 0.0 − 0.2 − 0.4 0.4 0.0 − 0.1 0.0 − 0.4 − 0.1 0.0 0.4 − 0.2 − 0.1 0.0

26 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

27 0.0 − 0.2 − 0.2 − 0.2 0.0 0.2 0.2 0.0 0.0 0.0 0.2 0.3 − 0.5 0.0

28 0.0 0.0 0.1 0.0 − 0.2 − 0.1 0.0 − 0.1 0.0 0.1 0.0 0.0 0.2 −0.1

29 0.0 0.0 0.0 − 0.1 0.0 0.0 0.0 − 0.2 0.0 0.0 0.0 0.0 0.0 0.0

30 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 − 0.1 0.0 0.0 − 0.4

31 0.0 0.0 − 0.2 − 0.2 0.1 − 0.1 0.0 0.2 0.0 0.2 − 0.6 0.0 0.0 0.0

32 − 0.5 0.0 0.0 0.0 0.0 − 0.3 0.0 0.3 0.0 0.0 0.0 0.0 − 0.4 0.0

33 0.0 0.0 0.0 0.0 0.0 0.0 − 0.4 0.0 − 0.5 0.0 0.0 0.0 0.0 0.0

Figure 7.  Fault localization for fault 4.
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