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Deep learning‑based robust 
automatic non‑invasive 
measurement of blood pressure 
using Korotkoff sounds
Ji‑Ho Chang1 & Il Doh2,3*

This paper proposes a method that automatically measures non-invasive blood pressure (BP) based 
on an auscultatory approach using Korotkoff sounds (K-sounds). There have been methods utilizing 
K-sounds that were more accurate in general than those using cuff pressure signals only under well-
controlled environments, but most were vulnerable to the measurement conditions and to external 
noise because blood pressure is simply determined based on threshold values in the sound signal. 
The proposed method enables robust and precise BP measurements by evaluating the probability 
that each sound pulse is an audible K-sound based on a deep learning using a convolutional neural 
network (CNN). Instead of classifying sound pulses into two categories, audible K-sounds and others, 
the proposed CNN model outputs probability values. These values in a Korotkoff cycle are arranged 
in time order, and the blood pressure is determined. The proposed method was tested with a dataset 
acquired in practice that occasionally contains considerable noise, which can degrade the performance 
of the threshold-based methods. The results demonstrate that the proposed method outperforms a 
previously reported CNN-based classification method using K-sounds. With larger amounts of various 
types of data, the proposed method can potentially achieve more precise and robust results.

Blood pressure (BP) is one of the primary vital signs in the human body and is one of the most important physical 
quantities, not only for a clinical diagnosis of hypertension but also for personal healthcare. Although the most 
accurate BP measurement method is to insert a pressure probe into an artery, this invasive method is limited 
in use due to the high risk of bleeding and infection. Thus, non-invasive blood pressure (NIBP) measurement 
methods have been proposed, such as the auscultatory and the oscillometric methods. When using the ausculta-
tory method, a cuff is wrapped around the subject’s upper limb and an observer listens to the Korotkoff sounds 
(K-sounds) using a stethoscope. This method has served as the gold standard for BP measurements for more 
than 100 years in  clinics1. Nonetheless, a well-trained observer is necessary for this method, which motivates 
the development of the oscillometric method. This method measures the BP by analyzing cuff pressure oscil-
lations without any observer, and it has been applied to automated BP monitoring devices. The cuff pressure 
oscillations are caused by the pressure difference between internal artery pressure and surrounding cuff pressure. 
However, because this oscillometric method does not use K-sounds, the results inherently demonstrate consid-
erable differences from those by the auscultatory method. Even with an automated BP device that had passed a 
standardized validation assessment (ISO 81060-2:2018)2, the difference occasionally reaches 20  mmHg3, which 
is unsatisfactory considering that a 5 mmHg error can double or halve the number of hypertensive  patients4.

To improve the accuracy of BP measurements, automated methods using K-sounds have been  proposed5–11. 
Rather than the cuff pressure oscillation, K-sounds was recorded by a microphone attached to skin and ana-
lyzed to determine BPs. The results demonstrated small deviations from the auscultatory reference under a 
well-controlled environment. However, most of these methods are based on the threshold of the sound pressure 
from a stethoscope. That is, the cuff pressure when the sound pressure exceeds the threshold is determined as 
the systolic blood pressure (SBP), and the cuff pressure when the sound pressure decreases below the threshold 
is the diastolic blood pressure (DBP). These methods are vulnerable to the measurement conditions and  external 
noise, and the results can therefore be degraded in actual BP measurement environments. One study proposed a 
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method robust to external noise, but two microphones were necessary, and validation for subjects under various 
noisy environments is  required8.

Recently, a deep learning-based method that uses acoustic signals was  proposed12. In this method, a convolu-
tional neural network (CNN) model was used to classify the sound signals as K-sounds or other sounds. When 
two consecutive pulses were assessed as K-sounds initially, the cuff pressure at the first pulse was regarded as 
the SBP. When no additional K-sounds appeared, the cuff pressure at the moment was the DBP. This study dem-
onstrated that a deep learning method could precisely detect K-sounds in spite of the difference in the contact 
pressure between the microphone and the skin. However, the reference SBP and DBP values were from playback 
of the recorded audio, which was very likely to differ from the values from observers using a stethoscope. More 
importantly, there was no decision rule for the determination of BPs from the classified K-sounds12 and they were 
determined individually. Accurate decision of BPs from the classified K-sounds was very vulnerable to various 
external noises and, there was no robust decision rule so far.

The present study proposes a deep learning-based automated measurement method using K-sounds, yet the 
present study aimed to improve the performance and the robustness by taking the human response to K-sounds 
into consideration. A curve presumed that reflected the human response was utilized to assign a probability 
value to each pulse, and was then applied to determine the SBP and DBP. In addition, augmentation methods 
were employed to prevent the CNN model from over-fitting. Each pulse was converted into an image of multiple 
band-pass-filtered signals instead of spectrograms to increase the frequency resolution and to contain the phase 
information.

For validation of this method, 277 measurement sets from 43 subjects were collected in practice, meaning 
that various noise signals were included. These sets contain 10,743 pulses in total. These datasets were split into 
the training set, the validation set, and the test set to apply hold-out  validation13. The test set was prepared to 
meet the conditions for a standardized validation as much as  possible2. The CNN was trained with the training 
set, and the estimated BP values for the test set were compared with other methods, i.e., the auscultatory method 
and a deep learning-based classification method.

Background
BP measurement by the auscultatory method. When the cuff is pressurized above the BP, the artery 
is collapsed and no blood can flow. When the cuff pressure decreases below the SBP, blood starts to overcome 
the cuff pressure and flow intermittently. That is, when the cuff pressure is deflated, the cuff signal fluctuates with 
the blood pulses, which induces local peaks in the cuff pressure as well as the sound signal (K-sounds). K-sounds 
are likely produced by harmonic oscillations of the artery wall, acting as a spring-mass-damper, as it closes and 
opens with each blood pulse when the cuff pressure is between SBP and DBP. When the cuff pressure is lowered 
to the DBP, blood flows without any obstruction and the Korotkoff sounds disappear. When using this method, 
an observer listens to the K-sounds using a stethoscope to find the critical cuff pressure values at the moment the 
K-sounds appear and disappear, which correspond to SBP and DBP, respectively.

The spectral characteristics of K-sounds have long been  studied14–18, and the effects of several parameters on 
BP measurements and the variations were recently  investigated19,20. These studies demonstrated that the spectral 
characteristics differs from person to person and considerably depend on the measurement conditions and the 
phase of the K-sounds. This implies some difficulty in deriving an analytical model for K-sounds.

Automated BP measurement by the oscillometric method. As the cuff pressure deflates, a small 
amount of pressure oscillation (typically less than 3 mmHg) is observed due to the intermittent blood flow in the 
artery. When the using oscillometric method for BP measurements, this cuff pressure oscillation, which overlaps 
the overall decrease of the cuff pressure, is extracted and analyzed. Unlike the auscultatory method, there are 
no critical points for the determination of the SBP and DBP because the oscillation appears even when the cuff 
pressure is beyond the range between SBP and DBP. Hence, the cuff pressure oscillation amplitude is analyzed 
to estimate the auscultatory SBP and DBP. In amplitude-based algorithms, the SBP and DBP are determined 
relative to the maximum amplitude, as shown in Fig. 1b. Otherwise, derivative algorithms determine the points 
at which the slope of the oscillogram becomes the maximum and minimum of the SBP and DBP,  respectively21. 
Although this method has been widely applied to automated BP measurements because no observer is required 
for K-sounds, the accuracy is inherently low as K-sounds are not utilized.

Automated BP measurement based on the K‑sounds. To overcome the limitations of the oscil-
lometric method, K-sounds have been used for automated BP measurements. When using these methods, a 
microphone is installed onto a stethoscope, which is placed under the cuff on the upper arm, and sound from 
the artery is recorded. The SBP and DBP are determined by detecting the K-sounds.

Threshold based methods. Most of these methods are based on the thresholds of processed values from acoustic 
signals, showing good results under well-controlled conditions. For example, Regueiro-Gomez and Pallas-Areny 
defined an indicator called the ratio of spectral energy dispersion (RSED) and detected peaks that have the maxi-
mum  RSED7. Sebald et al. calculated intensity of individual pulses, and 50% and 30% of the plateau were deter-
mined correspondingly as the SBP and the  DBP8. Park et al. determined SBP and DBP points when there was 
an abrupt jump or drop in the total power values of the pulses; the resultant mean and standard deviation of the 
difference from the auscultation method were 2.0 ± 3.3 (mean ± standard deviation) and 3.1 ± 4.0 mmHg for the 
SBP and DBP,  respectively9. In other  work10, all peaks that exceed an amplitude threshold seem to be determined 
as audible K-sounds, although it is not clear because the decision rule was not stated in detail. The results were 
1.2 ± 1.7 mmHg for the SBP error and 0.7 ± 1.2 mmHg for the DBP error for 45 measurements (15 subjects × 3 
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times). Hong et al. applied a human hearing threshold; each peak is filtered to four octave frequency bands that 
contains the main components of the K-sounds (center frequency: 31.5, 63, 128, and 250 Hz), and when the 
magnitude in at least three bands exceed the hearing threshold, the peak is assessed as an audible K-sound. The 
mean differences in the SBP and DBP were 0.3 ± 2.0 and 1.2 ± 2.2 mmHg,  respectively11.

However, if external noise is recorded together with the K-sound, the performance can be significantly 
degraded because noise signals before the SBP or after the DBP can exceed the threshold, and accordingly distort 
the SBP and the DBP values.

Deep learning‑based method. Deep learning-based methods can be good alternatives to determine BPs. Deep 
learning had shown better or at least comparable performance to humans in many applications, such as vision 
and signal processing. Although it has chance to show incorrect results due to an inadequate  training22, deep 
learning has the potential to differentiate K-sounds and noise signals using the characteristics of the signals, as 
humans do.

Pan et al. utilized a deep learning method to analyze variations in K-sounds20. Their results showed that 
K-sounds could be consistently identified during the period between the SBP and the DBP, whereas there can 
be considerable variations in the systolic and diastolic components.

In addition, these authors proposed a deep learning-based method that utilizes K-sounds12. A simple CNN 
was designed and trained to identify the K-sounds. The effects of the stethoscope position and the contact 
pressure on the measured BPs were found to be insignificant, implying that their deep learning-based method 
can successfully identify K-sounds in spite of the differences in certain measurement conditions. As the deci-
sion rule, when at least two consecutive pulses are determined as K-sounds, the cuff pressure at the first pulse 
is obtained as the SBP. The DBP is ascertained when no pulse is assessed as the K-sound. The mean differences 
between the proposed method and the auscultatory method are 1.4 ± 2.4 and 3.3 ± 2.9 mmHg for the SBP and 
DBP, respectively. However, this decision rule is also vulnerable to external noise; moreover, as mentioned in 
“Introduction”, there were too few subjects. Furthermore, the BPs through the auscultatory method were not 
determined according to a standard  protocol2, and inconsistencies at the systole and diastole components were 
not considered in the design of the deep learning model.

In the present study, a model similar to that proposed in earlier  work12 is employed as a baseline model. The 
details are given in “Proposed method”.

Fundamentals of the CNN. The CNN was initially proposed for processing images, speech and time 
 series23. Unlike traditional models of pattern recognition in which hand-designed feature extractors obtain rel-
evant information from the input, the CNN optimizes feature extractors when training the model. These feature 
extractors are termed filters or kernels. Through nonlinear processing in several layers, the feature maps are 
finally mapped into multiple independent neurons of the last layer, which are then linked to probabilities of 
specific classes to which the inputs belong. Several CNN models such as VGGnet, Resnet, Densenet, and effi-
cient net, have been  designed24–28 and the performance capabilities have been shown to increase in general as the 
number of layers and the numbers of neurons  increase24.

To determine whether or not an acoustic signal contains K-sounds, a simple way to design the CNN model 
would be to sort the classes into two categories: K-sound and others, as in earlier  work12. However, because 
there are substantial uncertainties in the systole and diastole  components20, this strategy can lead to inconsistent 
training datasets with the model, which can then affect the performance. Alternatively, a CNN model can be 
designed to output a probability value between 0 and 1; when this value approaches 1, the signal is more likely 
to contain K-sounds.

Figure 1.  Blood pressure data collection system using a stethoscope and data acquisition board: (a) data 
acquisition system and stethoscope connected to a microphone, and (b) LabVIEW-based data acquisition 
software.
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Data acquisition and proposed method
In the present study, a CNN model that outputs a probability value was designed. To train the model, pulses at 
the systole or diastole phases were labeled with a probability value between 0 and 1 based on a curve that reflects 
the human response, aiming to take the human response in consideration. Data acquisition for this study is 
described in the first subsection, and details of the proposed methods are given in the following subsections.

Data acquisition. From 42 healthy subjects aged 20 to 60, the cuff and the microphone signals were 
recorded. This study was approved by the Institutional Review Board of KRISS (IRB 200428-04) and informed 
consent forms were obtained from the subjects. All methods were performed in accordance with the relevant 
guidelines and regulations. A commercially available NIBP device was used to control the cuff pressure for 
the BP measurements. Reference BP measurement was performed in accordance with the ISO 81060-22. Two 
observers listened to Korotkoff sounds using a double stethoscope to measure the BPs independently. Their aver-
age BP values were used as the reference BPs only if the difference was within 4 mmHg. To obtain cuff pressure 
and K-sound, a pressure sensor (UNIK5000) and a microphone (GLAS 46BL) were used, respectively. The cuff 
pressure was measured to extract oscillometric waveform and obtain time frame for K-sounds acquisition. Like 
conventional auscultatory blood pressure measurement, chest piece of the stethoscope was placed outside the 
cuff over the brachial artery. And the contact force between chest piece of stethoscope and skin was adjusted 
using a stretchable band so that the diaphragm was in contact with the skin and did not press excessively. The 
diaphragm of the chest piece was facing the skin and confirmed that the head was turned so that there was an 
open-air passage between the diaphragm and connecting tubing. As shown in Fig. 1, a 24 bit data acquisition 
board (NI 9232) was used to collect the signals from each sensor. The sampling frequency was 2560 Hz for both 
the cuff pressure and the sound pressure.

The measurement was conducted from April to September of 2020. The total numbers of subjects, Korotkoff 
cycles, and beats are presented in Table 1. The beats generated by periodic motion of heart were recognized from 
the cuff pressure, and Korotkoff cycle was the sound signals at the time frame of each beat between SBP and DBP. 
Without the time frame for K-sound, training for CNN would be very inefficient. All segments were divided 
into the training set, validation set, and test set. Data from 10 subjects were included both in the training and 
test sets, which was admittedly inevitable due to the limited number of subjects. However, the data in the test 
set were not included in the training set. Data from the subject wearing various clothing with sleeves was also 
collected to diverse the training data. Data for which the SBP or DBP values by two subjects have a difference 
exceeding 4 mmHg were excluded for the test set, though they were still used for training by taking the mean 
value of the two. For the test set, we attempted to match the blood pressure distribution in an earlier study, but 
admittedly we were not able to acquire data for which the SBP exceeded 160 mmHg. The other distributions 
were matched, as presented in Table 2.

Preprocessing. Sound pressure signals were acquired by a microphone mounted on a stethoscope. Local 
peaks in the microphone signals were extracted according to the local peaks in the cuff signal. When the cuff 
pressure was deflated, the cuff signal fluctuated with the blood pulses, which induced local peaks in the cuff 
signal as well as the sound signal. In this study, the local peaks in the cuff signal were detected after high-pass 
filtering at 4 Hz and low-pass filtering at 6.67 Hz, corresponding to the maximum blood pulse of 400 divided by 
60 s. A time segment that was 0.4 s long, centered at a local peak in the cuff pressure signal was extracted. 0.4 s 
was optimal length of time frame to obtain K-sound. Shorter times resulted in partial loss of the sound signal, 
and longer times reduced computational efficiency. Figure 2 shows an example of a cuff pressure oscillation for 
peak extraction. The detected peaks are marked as circles.

In many deep learning methods, time signals are often transformed into spectrograms by the short-time 
Fourier transform (STFT). However, because the length of each segment is short and most of the energy of the 
K-sounds is concentrated at a low frequency, the frequency resolution of spectrograms may be too low. For 
example, if the length of each frame is 0.04 s, the frequency resolution is 25 Hz. Thus, in the present study, we 

Table 1.  Number of subjects, Korotkoff cycles, and beats.

Number of subjects Number of Korotkoff cycles Number of beats

Training and validation set 33 217 7,892 (training) + 456 (validation)

Test set 20 60 2,395

Total 43 (10 in common) 277 10,743

Table 2.  Blood pressure distribution in the test set.

SBP Number in test set (%) DBP Number in test set (%)

≤  100 (5%) 7 (11.7%)  ≤ 60 (5%) 5 (8.3%)

≤ 140 (20%) 12 (20.0%) ≤  85 (20%) 12 (20.0%)

≥ 160 (5%) 0 (0.0%) ≤  100 (5%) 4 (6.7%)



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23365  | https://doi.org/10.1038/s41598-021-02513-7

www.nature.com/scientificreports/

used band-pass-filtered signals. That is, we designed 50 band-pass filters with a 10 Hz bandwidth with a low cutoff 
frequency from 25 to 515 Hz (high cutoff frequency from 35 to 525 Hz) and filtered the microphone signals. As 
the sampling frequency was 2,560 Hz, this results in an image of 50 by 1,024 for a segment of 0.4 s. This image 
has a finer frequency resolution, and the phase information is preserved. In what follows, this type of image is 
referred to as the band-pass-filtered signal stack.

Figure 3 demonstrates a microphone signal and its images by band-pass filtering. Figure 3 (top) shows a 
microphone signal together with the cuff pressure oscillation for peak extraction. Figure 3  (bottom) shows the 
band-pass-filtered signal stack. This image was sent to the CNN model as the input image.

Human‑response‑based labeling. In binary classification problems, two labels, 0 and 1, are assigned 
to input signals. For example, in earlier  work12, if a segment in a microphone signal contains K-sounds, 1 is 
assigned as the label, and if not, 0 is assigned. However, during the systole and diastole phases, there are substan-
tial variations of the K-sounds20. Moreover, human subjects can respond late or early when deciding on the SBP 
and the DBP. To take this effect into account, we assumed that the distribution of K-sound probability would be 
1 at the between SBP and DBP and 0 at the outside. Near SBP and DBP, the probability would change linearly as 
shown in Fig. 4. We also assumed that subjects could respond up to one second late for the SBP in general, while 
responding both early or late up to 1 s for the DBP. That is, a probability curve y is

where tSBP and tDBP are the time instances when the SBP and the DBP were determined, respectively. This prob-
ability curve has not been proved to be optimal, but finding the best fitting probability curve is out of the scope 
of this study. Figure 5 presents examples of input signals and the corresponding labels. The first and the second 
pulses have values of 0 and 1, respectively, but the third pulse has a value in between those two, at 0.633.

CNN model and augmentation. A typical CNN model called Resnet 18 is utilized in this  study25. To 
adapt this model to the present task, a layer that converts the number of output features to one was added to the 
last layer, and the first convolution layer was changed so that the input size would be equal to that of the band-
pass-filtered signal stacks. A sigmoid activation function was applied to the output. The model is trained such 
that the binary cross entropy in Eq. (2) is reduced, as shown below:

Here yn is the true value and ŷn is the predicted value for the n th input. When ŷn is either 0 or 1, during the 
training, the mean squared error between the output value and the true value is monitored:

Data augmentation is known to be effective to prevent neural networks from  overfitting26–29. We added white 
noise to the input images and applied a circular shift along the time axis as well as a  cutout28 during the training. 
The amplitude of the white noise, randomly chosen, was in range of 0–0.1 of the root mean squared value of the 
input signal to prevent the DNN from overfitting. The time shift was also randomly chosen in the range of − 97.7 
to 97.7 ms. For the cutout, a rectangular region was selected in the input, and values were replaced by a value of 
0.05. The size of the region was 30% of the input, 15 by 307. The position of the region was randomly selected.

Decision rule of BPs. To compute the SBP and the DBP from sound signal (Fig. 6a), output probability 
values were arranged in the time domain, as shown in Fig. 6b. These values are denoted as y(t = tn) where n is 
the index indicating the order of the signals, n = 1 to N. Subsequently, by comparing these values with the prob-
ability label curve in Fig. 4, tSBP and tDBP can be calculated. To estimate tSBP, a value tn is first assumed to be equal 

(1)y(t, tSBP , tDBP) =
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Figure 2.  Cuff pressure oscillation for peak extraction.
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Figure 3.  An example of a time signal (top left), the band pass filters (bottom left), the band-pass-filtered 
signals in waveforms (bottom right) and the band-pass-filtered signal stack in color (top right).

Figure 4.  Determining probability labels.

Figure 5.  Examples of band-pass-filtered signal stacks and labels.
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to tSBP, and ten consecutive values of the label curve around tSBP, y(t = tn-5, tSBP = tn, tDBP), y(t = tn-4, tSBP = tn, tDBP), 
…, y(t = tn+4, tSBP = tn, tDBP) are obtained. Then, the mean squared error (MSE) for the SBP is calculated as

That is, the predicted probability values are compared only with the onset part of the label curve. Note that 
tDBP was set to be tN not to affect the MSE value. When n + n′ is smaller than 1, ŷn+n′ is not defined, and thus 
excluded in the calculation. Likewise, the mean squared error for the DBP is

where tSBP, which was set to be t1, does not affect this MSE value. The probability values were compared only 
with the offset part of the label curve.

Figure 6c shows the inversion of the MSE values, 1/ε2SBP[n] and 1/ε2DBP[n] . The point tn where the MSE is the 
smallest is determined as tSBP (the maximum in Fig. 6c. This process is repeated for all possible tDBP values. The 
cuff pressure values at these time instances, tSBP and tDBP, are obtained as the SBP and the DBP, respectively, as 
shown in Fig. 6d).

This decision method was validated with the training set. Although the mean error and the standard deviation 
of the SBP and the DBP were small, it was found nonetheless that the performance can be improved further by 
thresholding the probability values by 0.9. That is, the predicted probability values that exceed 0.9 were replaced 
with 0.9, and the label curve was multiplied by 0.9.

Results
Baseline method. A simple CNN method similar to what was used in earlier  work12 is employed here as 
the baseline method. After resampling at 2 kHz, a time segment of one second was converted into the magnitude 
of a spectrogram with 87% overlap. The length of a frame was 60 ms, which leads to 16.7 Hz for the frequency 

(4)ε2SBP[n] =
1

10

4
∑

n′=−5

{

ŷn+n′ − y
(

t = tn+n′ , tSBP = tn, tDBP = tN
)}2

(5)ε2DBP[n] =

4
∑

n′=−5
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ŷn+n′ − y
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t = tn+n′ , tSBP = t1, tDBP = tn
)}2

(6)ŷn =
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ŷn, ŷn < 0.9

0.9, ŷn ≥ 0.9

Figure 6.  Blood pressure decision: (a) sound signal, (b) K-sound probability values, (c) prediction of tSBP and 
tDBP, and (d) SBP and DBP decisions.
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resolution. The size of the input was 60 by 116 and an example image is shown in Fig. 7. The magnitude is 
expressed on the dB scale, where the reference value was 1 Pa. The same CNN model was designed as shown 
in Fig. 8. Although not stated in the aforementioned  study10, the ReLU activation  function13 was applied before 
max pooling and average pooling because it improved the performance.

The random search strategy was applied to find the best combination of  parameters30. Three parameters, 
the learning rate, the batch size, and the weight decay, were randomly chosen to build 200 parameter sets. The 
learning rate was chosen in the range of  [10–5 to  10–2], the chosen batch size was in the range  of25,28, and the 
range for the weight decay was  [10–6,  10–3]. When the validation accuracy increased, the model was saved. When 
there is no improvement in the validation accuracy during 100 epochs, the learning stopped, and the model was 
considered to be the best with the given parameter set.

Among the 200 best models, the best model was that with the highest validation accuracy, 92.9%. For this 
model, the test accuracy rate was 93.5%. The SBP and the DBP were determined in the same manner used in the 
aforementioned  study12: when at least two consecutive beats are identified as K-sounds, the cuff pressure at the 
moment of the first beat is the SBP, and when beats no longer appear, the cuff pressure at that moment is the DBP.

The mean error + standard deviation (baseline BP – auscultatory BP) was − 1.7 ± 4.9 mmHg for the SBP and 
− 1.2 ± 2.8 mmHg for the DBP. The baseline model performed more accurately than the oscillometric method. 
Figure 9a shows the measured SBPs and DBPs with this method.

Proposed method. The same random search strategy was applied to find the best model with the proposed 
method. The same ranges of the parameters were assigned, and 200 parameter sets were chosen. Instead of 100 
epochs, when there is no improvement for 50 epochs, learning stopped because it took more time for process-

Figure 7.  Input spectrogram for the baseline method of the signal shown in Fig. 3.

Figure 8.  Structure of the CNN model of the baseline method.
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ing otherwise. In addition, the validation accuracy was replaced by the validation MSE to select the best model. 
That is, among the 200 best models, the best model chosen was that with the smallest validation MSE, which was 
0.039 in this case. With this model, the test MSE was 0.035.

In the proposed method, SBP and DBP were determined according to the decision rule described in Sec-
tion III. As shown in Fig. 9b, the mean and the standard deviation (proposed BP – auscultatory BP) were 
0.2 ± 3.1 mmHg for the SBP and 0.7 ± 2.5 mmHg for the DBP.

Compared to results of the baseline model, the proposed model has a smaller mean and a smaller standard 
deviation as summarized in Table 3. With the baseline model, twelve samples had SBP errors exceeding 5 mmHg, 
while six samples had DBP errors that exceeded 5 mmHg. In contrast, with the proposed model, only three and 
five samples had SBP and DBP errors that exceeded 5 mmHg.

Figure 9.  Predicted SBP and DBP: (a) baseline method; (b) proposed method.

Table 3.  Comparison between baseline and proposed methods.

Method

SBP DBP

Average ± standard 
deviation (mmHg)

Number of case 
exceeding 5 mmHg error

Average ± standard 
deviation  (mmHg)

Number of case 
exceeding 5 mmHg error

Baseline method − 1.7 ± 4.9 12 − 1.2 ± 2.8 6

Propose method 0.2 ± 3.1 3 0.7 ± 2.5 5
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Discussion
Since we used practical signals, it was not possible to control the signal-to-noise ratio (SNR). Instead, the SNR 
values can be approximately calculated. The noise level can be estimated as the root-mean-square (RMS) values 
of the signal before tSBP, and the signal level can be estimated as the RMS of the peak values between tSBP and tDBP. 
We obtained the SNR values, and the mean was 7.93 dB with the standard deviation of 5.27 dB. The minimum 
was − 2.9 dB. and the maximum was 18.5 dB. For example, the SNR of the sound signal shown in Fig. 5 was 
calculated as 8.2 dB.

We calculated the SBP and the DBP errors for 26 sound signals that have lower SNR values than the mean 
value. The results were shown in Table 4. The prediction errors with the proposed methods decrease for the low 
SNR signals, and the number of cases exceeding 5 mmHg error was 0 both for the SBP and the DBP.

To analyze the results in a qualitative way, we observed three cases as shown in Fig. 10. The SNR was 7.43, 
16.4, and 14.8 dB, respectively. The first row shows sound signals. The second row shows the probability predicted 
by the baseline model (‘x’) with the true values (‘●’) by the auscultatory method. The predicted range of the 
K-sounds is indicated by the dashed arrow line. The third row is that by the proposed model.

In the first case, the SNR of the first case was below the average, and the true BPs are 97 and 67.5 mmHg cor-
respondingly for the SBP and the DBP. The baseline model has − 22.11 mmHg for the SBP error because three 
consecutive values that occurred before tSBP mislead. In contrast, the proposed model has only − 1.91 mmHg 
for the SBP error in spite of four consecutive high values before the tSBP. This was possible by the decision rule 
based on the MSE.

In the second case, the true BPs are respectively 147 and 104 mmHg for the SBP and the DBP, and the base-
line model has 10.58 for the DBP error because a peak occurred after tDBP. In contrast, the proposed model has 

Table 4.  Prediction errors for low SNR signals.

Method

SBP DBP

Average ± standard 
deviation (mmHg)

Number of case 
exceeding 5 mmHg error

Average ± standard 
deviation (mmHg)

Number of case 
exceeding 5 mmHg error

Baseline method 1.4 ± 5.7  7 0.3 ± 2.0  1

Propose method − 0.1 ± 2.0  0 − 0.3 ± 1.8  0

Figure 10.  Sound signal (top) and predicted probability with the baseline (middle) and the proposed model 
(bottom) in three noisy cases.
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2.00 mmHg for the DBP error because the probabilities were small after tDBP, and only one peak does not affect 
the decision. Even if the peak after the tDBP has a high probability value, the MSE must have been large, and 
consequently the peak could not have affected the decision.

These two cases imply that the decision rule of the baseline method can be sensitive to external noise signals, 
whereas the proposed method is more immune to these signals.

Nonetheless, both methods failed in the third case in terms of the SBP errors that exceed 10 mmHg. Even 
after the systolic pulse, some pulses were not assessed as K-sounds, and the SBP was determined to be lower 
than the true value. This issue was also reported  earlier12 as the auscultatory gap. After the first systolic pulse, a 
few next pulses have occasionally small amplitudes, and are almost inaudible. To overcome this issue, it would 
be helpful to add relatively noisier data to the training set so that the CNN model can detect K-sounds even 
with the small amplitudes.

Conclusion
In this work, a CNN model that automatically identifies audible Korotkoff sounds associated with cuff pressure 
oscillation was proposed. To improve the performance, a labeling curve was proposed based on the human 
response that provides the probability of each pulse in the training set and determines the blood pressure for 
the test set. In addition, the band-pass-filtered signal stacks were used as the input images.

The results were evaluated with a test set that contains noisy data. Compared to the baseline model, the pro-
posed model achieved more precise BP prediction results in terms of the mean and standard deviation values of 
the error from BP values measured by the auscultatory method. With larger amounts of various types of data, 
the proposed method can potentially achieve more precise and robust results.
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