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A deep learning model 
for identifying diabetic retinopathy 
using optical coherence 
tomography angiography
Gahyung Ryu 1,2,4, Kyungmin Lee 3,4, Donggeun Park 1,2, Sang Hyun Park 3* & Min Sagong 1,2*

As the prevalence of diabetes increases, millions of people need to be screened for diabetic 
retinopathy (DR). Remarkable advances in technology have made it possible to use artificial 
intelligence to screen DR from retinal images with high accuracy and reliability, resulting in reducing 
human labor by processing large amounts of data in a shorter time. We developed a fully automated 
classification algorithm to diagnose DR and identify referable status using optical coherence 
tomography angiography (OCTA) images with convolutional neural network (CNN) model and 
verified its feasibility by comparing its performance with that of conventional machine learning 
model. Ground truths for classifications were made based on ultra-widefield fluorescein angiography 
to increase the accuracy of data annotation. The proposed CNN classifier achieved an accuracy of 
91–98%, a sensitivity of 86–97%, a specificity of 94–99%, and an area under the curve of 0.919–0.976. 
In the external validation, overall similar performances were also achieved. The results were similar 
regardless of the size and depth of the OCTA images, indicating that DR could be satisfactorily 
classified even with images comprising narrow area of the macular region and a single image slab of 
retina. The CNN-based classification using OCTA is expected to create a novel diagnostic workflow for 
DR detection and referral.

Diabetic retinopathy (DR) is a leading cause of blindness worldwide, and approximately 80% of patients with 
diabetes develop DR within 20 years of  diagnosis1–3. Development of sight-threatening complications of DR can 
be delayed or prevented completely by appropriate treatment involving laser therapy or intravitreal injection of 
anti-vascular endothelial growth factor or  steroids4–7. The success of these therapeutic procedures depends on 
timely recognition especially when the disease progresses to a stage where intervention is required. However, 
despite the significance of this problem and the marked increase in the prevalence of diabetes, the requirement 
for experts and highly trained ophthalmologists results in an expensive and time-consuming  procedure8. In 
addition, the classification of DR severity and early disease detection is often subjective; thus, to a certain extent, 
classification often depends on expert clinical  interpretation9,10.

To address this, several automated methods using machine learning or deep learning techniques were 
proposed. Most studies have applied these learning-based methods to fundus photographs to achieve high 
performance for various DR classification tasks, but models trained using fundus images can be limited due 
to vascular features deep in the retina not being represented in two-dimensional  images11–15. Subsequently, 
automated methods based on optical coherence tomography (OCT) and OCT angiography (OCTA) for DR 
classification were proposed and also showed its  feasibility16–24. However, DR classification method that applies 
deep learning using only OCTA data, not the combined data of OCT and OCTA, has not been published yet. 
Moreover, classification models presented to date have been trained and tested based on incomplete ground 
truths created on the basis of traditional fundus images that rely only on the limited angle of view without 
taking account retinal lesions that may be present outside the imaged area, making it difficult to evaluate its 
performance. As the vascular alterations caused by diabetes are widely distributed, more than 50% of DR lesions 
are known to be located outside seven-standard Early Treatment Diabetic Retinopathy Study (ETDRS)  fields25,26. 
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Previous studies reported that the presence of peripheral retinal lesions may suggest increased DR severity in 
9 to 15% of  eyes26–29.

We present an end-to-end deep convolutional neural network (CNN)-based method to detect DR and identify 
referable status (severe non-proliferative DR or worse) automatically from the OCTA images with more accurate 
ground truths using ultra-widefield (UWF) fluorescein angiography (FA). Further, we investigated the ability of 
the algorithm across different image sizes and retinal slabs to identify the most appropriate mode of OCTA image 
acquisition for DR classification. Moreover, we confirmed the feasibility of the proposed model by quantitative 
comparison of model performance against a machine learning-based classifier that uses handcrafted features 
extracted from OCTA images.

Results
A total of 301 eyes (51 healthy normal, 51 diagnosed with diabetes mellitus (DM) without DR, 53 with mild 
non-proliferative DR, 49 with moderate non-proliferative DR, 48 with severe non-proliferative DR, 49 with 
proliferative DR) were recruited and imaged. After excluding the images with insufficient scan quality, a total 
of 240 datasets, consisting of 40 datasets for each stage of DR, for each of 3 × 3  mm2 and 6 × 6  mm2 scan images 
were obtained. For the external validation, a total of 195 eyes (33 healthy normal, 36 diagnosed with DM without 
DR, 34 with mild non-proliferative DR, 31 with moderate non-proliferative DR, 31 with severe non-proliferative 
DR, 30 with proliferative DR) were further recruited and imaged. After excluding the images with insufficient 
scan quality, a total of 120 datasets, consisting of 20 datasets for each stage of DR, for each of 3 × 3  mm2 and 6 × 6 
 mm2 scan images were obtained.

For the classification task of detecting the onset of DR, the area under the curves (AUC) of our CNN-based 
classifier using 3 × 3  mm2 OCTA images were measured to be 0.950 (with 95% sensitivity and 89% specificity), 
0.966 (with 98% sensitivity and 88% specificity), 0.946 (with 93% sensitivity and 85% specificity), and 0.960 
(with 96% sensitivity and 89% specificity) for only superficial capillary plexus (SCP), only deep capillary plexus 
(DCP), only full-thickness retina, and the combined data, respectively. The AUCs of the CNN-based classifier 
using 6 × 6  mm2 OCTA images were 0.949 (with 96% sensitivity and 91% specificity), 0.937 (with 95% sensitivity 
and 84% specificity), 0.928 (with 91% sensitivity and 90% specificity), and 0.967 (with 97% sensitivity and 93% 
specificity) for only SCP, only DCP, only full-thickness retina, and the combined data, respectively. Conversely, 
the AUCs of the machine learning-based classifier using local features extracted from OCTA images was 0.713 
(with 89% sensitivity and 54% specificity) for the 3 × 3  mm2 images and 0.742 (with 87% sensitivity and 59% 
specificity) for the 6 × 6  mm2 OCTA images (Table 1, Fig. 1). The confusion matrix between the ground truth 
labels and the predictions of the proposed method are illustrated in Supplementary Fig. S1. For the external 
dataset, the performance of the CNN-based classifier remained at a similar level: − 0.02 to − 0.04 AUC, − 3% to 
− 8% sensitivity, and − 2.5% to + 8% specificity for 3 × 3  mm2 OCTA images, and 0 to + 0.02 AUC, 0% to − 2% 
sensitivity, and + 1% to + 9% specificity for 6 × 6  mm2 OCTA images (Table 2).

For the classification task of diagnosing referable DR, the AUCs of the CNN-based classifier using 3 × 3 
 mm2 OCTA images were 0.919 (with 86% sensitivity and 93% specificity), 0.967 (with 91% sensitivity and 98% 
specificity), 0.942 (with 88% sensitivity and 98% specificity), and 0.940 (with 89% sensitivity and 97% specificity) 
for only SCP, only DCP, only full-thickness retina, and the combined data, respectively. The AUCs of the CNN-
based classifier using 6 × 6  mm2 OCTA images were 0.975 (with 95% sensitivity and 98% specificity), 0.975 
(with 94% sensitivity and 99% specificity), 0.970 (with 95% sensitivity and 99% specificity), and 0.976 (with 
96% sensitivity and 98% specificity) for only SCP, only DCP, only full-thickness retina, and the combined data, 
respectively. Conversely, the AUCs of the machine learning-based classification using local features extracted 
from OCTA images were 0.795 (with 66% sensitivity and 86% specificity) for 3 × 3  mm2 images and 0.837 (with 
76% sensitivity and 88% specificity) for 6 × 6  mm2 OCTA images (Table 3, Fig. 1). The confusion matrix between 
the ground truth labels and the predictions of the proposed method are illustrated in Supplementary Fig. S2. For 
the external dataset, the performances of the CNN-based classifier were comparable: − 0 to − 0.05 AUC, − 3% 

Table 1.  Performance of classification task for detecting diabetic retinopathy using the proposed deep 
learning- and machine learning-based classifiers. AUC  area under the curve, CNN convolutional neural 
network, SD standard deviation.

Accuracy, % (SD) Sensitivity, % (SD) Specificity, % (SD) AUC (SD)

3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2

CNN-based classifier

Superficial capillary 
plexus layer 92.9 (4.8) 94.2 (3.6) 95.0 (2.8) 95.6 (1.8) 88.8 (11.2) 91.3 (9.0) 0.950 (0.038) 0.949 (0.031)

Deep capillary plexus 
layer 94.2 (1.9) 91.3 (5.3) 97.5 (4.8) 95.0 (4.5) 87.5 (13.4) 83.8 (10.3) 0.966 (0.047) 0.937 (0.047)

Full-thickness retina layer 90.4 (2.5) 90.4 (2.5) 93.1 (7.4) 90.6 (3.7) 85.0 (20.3) 90.0 (8.3) 0.946 (0.021) 0.928 (0.017)

All 93.8 (3.2) 95.4 (3.4) 96.3 (4.1) 96.9 (2.1) 88.8 (7.4) 92.5 (9.0) 0.960 (0.009) 0.967 (0.029)

Machine learning-based classifier

All 77.5 (2.5) 77.5 (2.5) 89.4 (6.0) 86.9 (5.7) 53.8 (6.5) 58.8 (8.9) 0.713 (0.023) 0.742 (0.022)
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to + 9% sensitivity, and − 2% to + 5% specificity for 3 × 3  mm2 OCTA images, and − 0.04 to − 0.06 AUC, − 1% to 
− 7% sensitivity, and − 0% to − 2% specificity for 6 × 6  mm2 OCTA images (Table 4).

Figure 2 illustrates examples of OCTA images with the class activation maps (CAM) obtained using the 
proposed model for detecting DR and referable DR cases. In the case of no DR, the whole image was weakly 
activated, with the exception of the foveal avascular zone (FAZ) and the region around the large blood vessel 

Figure 1.  Receiver operating characteristic (ROC) curves illustrating classification performances for the 
prediction of onset and referable status of diabetic retinopathy (DR): (A) ROC curve using a deep learning-
based classifier, and (B) ROC curve using a machine learning-based classifier. The dotted line represents the 
tradeoff resulting from random chance, and the solid curved line represents the tradeoff of the model. This 
figure was created using Photoscape (http:// photo scape. co. kr/ ps/ main/ index. php).

Table 2.  Performance of classification task on external dataset for detecting diabetic retinopathy using 
the proposed deep learning- and machine learning-based classifiers. AUC  area under the curve, CNN 
convolutional neural network, SD standard deviation.

Accuracy, % Sensitivity, % Specificity, % AUC 

3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2

CNN-based classifier

Superficial capillary plexus layer 90.8 93.3 92.5 93.8 87.5 92.5 0.931 0.949

Deep capillary plexus layer 89.2 94.2 91.3 95.0 85.0 92.5 0.918 0.956

Full-thickness retina layer 87.5 90.8 87.5 88.8 87.5 95.0 0.903 0.928

All 90.8 95.0 88.8 95.0 95.0 95.0 0.928 0.962

Machine learning-based classifier

All 70.8 70.0 73.8 88.8 65.0 32.5 0.771 0.798

Table 3.  Performance of classification task for detecting referable status of diabetic retinopathy using 
the proposed deep learning- and machine learning-based classifiers. AUC  area under the curve, CNN 
convolutional neural network, SD standard deviation.

Accuracy, % (SD) Sensitivity, % (SD) Specificity, % (SD) AUC (SD)

3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2

CNN-based classifier

Superficial capillary 
plexus layer 90.8 (4.9) 97.1 (2.6) 86.3 (6.5) 95.0 (10.6) 93.1 (5.4) 98.1 (4.7) 0.919 (0.054) 0.975 (0.024)

Deep capillary plexus 
layer 95.4 (1.9) 97.1 (4.1) 91.3 (5.4) 93.8 (9.4) 97.5 (4.8) 98.8 (6.5) 0.967 (0.005) 0.975 (0.020)

Full-thickness retina layer 94.2 (2.2) 97.5 (3.0) 87.5 (2.5) 95.0 (7.4) 97.5 (3.7) 98.8 (1.8) 0.942 (0.029) 0.970 (0.018)

All 94.2 (2.7) 97.5 (2.6) 88.8 (7.5) 96.3 (10.6) 96.9 (5.7) 98.1 (2.8) 0.940 (0.022) 0.976 (0.021)

Machine learning-based classifier

All 79.6 (2.7) 84.2 (4.2) 66.3 (8.9) 76.3 (15.6) 86.3 (7.2) 88.2 (3.7) 0.795 (0.031) 0.837 (0.092)

http://photoscape.co.kr/ps/main/index.php
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being occasionally activated. On the other hand, in the case of referable DR, the overall area around the FAZ and 
vicinity of the large blood vessels were strongly activated. The activation increased in regions where the density 
of blood vessels significantly changed compared to regions of even spread, which is related to the non-uniformity 
in the blood vessel region. As the activation map visualizes areas where the network is used for decision making, 
rather than the specific abnormal area, the activated area was not the same for the 3 × 3  mm2 images and 6 × 6 
 mm2 images.

Discussion
In this study, we designed an end-to-end deep learning-based classification system for DR and referable DR 
diagnoses using OCTA, based on ground truths determined clinically using UWF FA. The proposed CNN 
classifier produced good results with an accuracy of 90 to 95%, a sensitivity of 91 to 98%, a specificity of 85 to 
93%, and an AUC of 0.93 to 0.97 for detecting the onset of DR; moreover, an accuracy of 91 to 98%, a sensitivity 
of 86 to 96%, a specificity of 93 to 99%, and an AUC of 0.94 to 0.98 was obtained for detecting referable DR. In 
the external validation, overall similar performances were also achieved. Thus, the proposed classifier showed 
consistently reliable performance for all OCTA slabs (whether individually or combined) including all evaluated 
scan sizes.

Table 4.  Performance of classification task on external dataset for detecting referable status of diabetic 
retinopathy using the proposed deep learning- and machine learning-based classifiers. AUC  area under the 
curve, CNN convolutional neural network, SD standard deviation.

Accuracy, % Sensitivity, % Specificity, % AUC 

3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2 3 × 3  mm2 6 × 6  mm2

CNN-based classifier

Superficial capillary plexus layer 94.2 94.2 85.0 87.5 98.8 97.5 0.907 0.909

Deep capillary plexus layer 95.8 95.0 95.0 87.5 96.3 98.8 0.938 0.921

Full-thickness retina layer 93.3 94.2 85.0 87.5 97.5 97.5 0.895 0.907

All 95.8 95.8 97.5 95.0 95.0 96.3 0.940 0.938

Machine learning-based classifier

All 80.0 77.5 82.5 72.5 78.8 80.2 0.733 0.682

Figure 2.  Representative Class activation map (CAM) images highlighting pathologic regions, shown in pairs 
of original optical coherence tomography angiography (OCTA) images (left) and corresponding CAM overlaid 
on the original images (right) of representative cases. CAM images were generated using the superficial capillary 
plexus, deep capillary plexus, and full-thickness retinal slabs from 3 × 3  mm2 to 6 × 6  mm2 macular OCTA scans. 
(A) CAM images of normal (left) and mild non-proliferative DR (right) cases for DR detection, accompanied 
by the corresponding original image. (B) CAM images of mild non-proliferative DR (left) and proliferative DR 
(right) for referable DR detection, accompanied by the corresponding original image. This figure was created 
using Photoscape (http:// photo scape. co. kr/ ps/ main/ index. php).

http://photoscape.co.kr/ps/main/index.php
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Recently, researchers have focused on automated solutions for the diagnosis and classification of retinal 
diseases. However, previous studies used medical records or fundus photographs with limited field of views to 
diagnose the stages of DR in the training set for automated models. This technique is relatively subjective which 
has limitations, as it cannot reflect the diabetic changes based on the entire retina. Although models based on 
conventional fundus photographs can be trained with large amounts of data owing to easy accessibility, there is 
an inherent potential for misclassification of DR. Therefore, it is uncertain whether these models will function 
effectively with other devices in the clinical setting. Through this study, we were able to reflect diabetic changes 
from the entire retina based on UWF FA for accurate diagnosis of DR in all cases, which is one of the significant 
advantages of this study.

In this study, a deep CNN algorithm using OCTA achieved comparable accuracy to previous CNN-based DR 
grading algorithms using fundus photographs with less than 250  samples11–15. OCTA visualizes microvascular 
structures in different retinal layers, enabling comprehensive quantitative analysis of pathological vascular 
changes relative to diabetes. As DR is primarily a disease of the retinal vasculature, OCTA can provide more 
instructive information than fundus photographs and perhaps a more suitable imaging modality for the 
automated classification of DR. This result is consistent with those of previous deep learning classification studies 
using OCT and OCTA, which demonstrated that the detailed information of the macular region extracted 
through OCT/OCTA images is sufficient to diagnose DR at a level similar to fundus photographs, although 
they provide limited field of view than fundus  photographs23,24. Further studies are required to directly compare 
the results of deep learning algorithm using OCTA and traditional fundus photography, respectively, based on 
accurate ground truth using UWF FA.

Since DR can cause extensive and full-depth damages to the retinal microvasculature, we investigated the 
ability of the CNN algorithm across different image sizes and retinal slabs to identify which images are most 
appropriate for DR classification. Several cross-sectional studies have compared the diagnostic performance 
of DR assessment based on OCTA scan size or slab depth using quantitative microvascular metrics of OCTA, 
but the results are still  debatable30–39. As those studies depended on handcrafted feature extraction for DR 
characterization, results may be affected by parameters of image acquisition; including oversampling density, 
filters and algorithms used for quantification of vascular  metrics40,41. Moreover, though algorithms using 
handcrafted features may perform well on singular OCTA datasets; it can be difficult to generalize to other 
datasets due to overfitting on the original  samples42,43. However, as OCTA contains more unlabeled information, 
a fully automated CNN algorithm can process heterogeneous images quickly regardless of the size and slab for 
accurate and objective DR classification, potentially alleviating the requirement for resource-intensive manual 
analysis and thus guiding high-risk patients for further treatment. Interestingly, we observed that the obtained 
results were similar regardless of the size and depth of the OCTA images. Our results showed that DR, including 
pathological changes of the entire retina, could be satisfactorily classified even with images comprising an area 
of 3 × 3  mm2 of the macular region and a single image slab of SCP or DCP.

The highlighted regions in the CAM images accurately correspond to the local features such as the foveal 
avascular zone (FAZ) area, blood vessel density, skeletal vessel density, and/or fractal dimension. In the case of 
no DR, the whole image was weakly activated, but only FAZ and the region around the large blood vessel were 
activated. Conversely, in the case of referable DR, an overall strongly activated region appeared, including the 
area around the FAZ and vicinity of the large blood vessels. The activation of the CAM increased in regions 
where the density of blood vessels significantly changed compared to regions of even spread, which is related to 
the non-uniformity in the blood vessel region. Based on this observation, we hypothesize that FAZ and blood 
vessel density played an important role in the classification of DR using CNN. As we used CAM to check how 
predictions are made in this study and its application to clinical practice is still a matter to be considered in the 
future work.

This end-to-end CNN classifier showed better efficacy than the machine learning classifier using local 
features extracted after the vessel and FAZ segmentation. This further indicates that traditionally known human 
parameters used in this study are insufficient for DR characterization and the missing critical features can be 
effectively extracted through end-to-end deep learning. Although it is difficult to compare the performance due 
to the different experimental settings, the machine-learning model in this study showed lower performance 
than previous  studies16–18. The performance of the machine-learning model can be improved by increasing the 
dataset, but improvements may be limited even with the aforementioned features. As deep learning leverages 
unlabeled information to achieve the best accuracy in most cases, it can produce good results even with a small 
training dataset.

Though we report comparable performance in this study, a notable limitation is that the number of patients 
employed is still relatively small. However, the number of patients in this study is comparable to others employing 
OCTA 16–18, considering that this technology is still not ubiquitous in ophthalmology practices. Additionally, the 
absence of FA in normal subjects may affect the reliability of the ground truth label as a whole. Although FA could 
not be performed in the normal subjects due to ethical issues, the presence of systemic and ophthalmic diseases 
was checked and excluded through detailed history taking and medical records confirmation. Lastly, although 
we performed external validation using additional data, it remains to be proven on a fully independent, larger, 
de novo set of images that also contains images with macular edema, artifacts, or low-quality for application to 
real-world clinical practice of this system. However, this study supports an important first step in an end-to-end 
deep learning models for DR classification using OCTA images. Moreover, the ground truth for classification of 
DR stages based on UWF FA is another strength of this study as UWF imaging involves diabetic changes from the 
entire retina with a wider field of view than conventional FA and fundus photography. Next, it will be necessary 
to elucidate the ability of the deep learning algorithm using OCTA to identify not only eyes with referrable DR 
but also eyes with peripheral dominant lesions or eyes with PDR.
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In this work, we introduced a fully automated deep CNN DR classification method using only OCTA images. 
Although OCTA is rapidly adapted to the new modality in a clinical routine, the interpretation of OCTA data 
remains limited. If OCTA can provide comparable diagnostic value to UWF FA, invasive FA can be avoided 
even when diagnosis or referral decisions are difficult. In this way, the OCTA-based automated classification 
framework can perform more accurate DR screening than using conventional fundus photography. This system 
on a clinical basis is expected to drastically reduce the rate of vision loss attributed to DR, improve clinical 
management, and create a novel diagnostic workflow for disease detection and referral. For proper clinical 
application of our method, further testing and optimization of the sensitivity metrics such as genetic factors, 
hemoglobin A1C, duration of diabetes, and other clinical data may be required to ensure a minimum false-
negative rate. Combining the data from various imaging modalities such as fundus photography or FA can 
reinforce the performance value, thereby further improving accuracy. Future work should include the extension 
of the algorithm to classify the detailed severity levels of DR with a larger number of patients.

Methods
Dataset. This cross-sectional study was conducted in accordance with the Declaration of Helsinki and 
approved by the Institutional Review Board (IRB) of Yeungnam University Medical Center (approval number: 
2020-02-003). The requirement for written consent was waived by the IRB because of the retrospective nature 
of the study. Data were collected between January 2018 and January 2019. Data between February 2019 and 
January 2020 were additionally collected to validate our method on external dataset.

Subjects who had visited the hospital for visual floater and ocular discomfort, and who had undergone 
detailed examination including OCTA (Optovue RTVue XR AVANTI, Optovue Inc., Fremont, CA, USA), but 
had no systemic disease or ocular disease were retrospectively included. Subjects who had previously been 
diagnosed with diabetes mellitus (DM) and undergone comprehensive ophthalmic examinations including UWF 
FA (Optos California, Optos plc, Dunfermline, UK) and OCTA were also included. UWF FA was performed 
limitedly after explaining possible side effects if the patient desires a full-examination in spite of absence of DR. 
A small number of diabetic patients without DR wanted FA examination, accounting for less than 10% of those 
diabetic patients without DR who visited our clinic during the year.  Only diabetic patients underwent fluorescein 
angiography, but not the healthy control participants. As the normal control group, patients without systemic 
disease who had undergone several ophthalmic examinations including mydriatic examination and OCTA for 
health-screening purposes, but had no definite ocular diseases were included. In the case of diabetes without 
retinopathy, only cases where FA was performed were included. This is retrospective study, hence, no patients 
received FA to participate this study. Indication of FA is not related with the protocol of this study. Exclusion 
criteria included the presence of glaucoma or retinal disorders affecting retinal capillary changes other than 
DR. Eyes with macular edema were excluded because it can obscure retinal microvasculature on OCTA. Images 
with low signal strength (≤ 6), excessive motion artifacts, and projection artifacts caused by media opacities 
were also excluded. OCTA images were obtained as volume scans of 3 × 3  mm2 and 6 × 6  mm2 sizes centered on 
the macula, and images of the SCP, DCP, and full-thickness retina slab were used for analysis. The ground truth 
for determining the accuracy of each diagnosis and grading DR was determined by two masked expert retinal 
specialists (G.H. and D.P.) reviewing all phases of central/axial UWF FA images, which were recorded up to 
15 min after dye injection. Grading was performed based on the International Clinical DR Severity  Scale44, which 
was adapted by means of extending the grading quadrants to the periphery of the entire image while maintaining 
the original grading nomenclature for  simplicity29,45. When there was a disagreement between the graders, the 
supervising grader (M.S.) confirmed the final decision.

Convolutional neural network-based classifier using raw images from OCTA . The overall 
structure of the proposed method for detecting early signs of DR and referable DR is shown in Fig. 3. SCP, DCP, 
and full-retina OCTA images were concatenated and used as input of the CNN. Using the ResNet101  model46, 
images were passed through residual blocks with 101 layers, which repeatedly performed a summation of the 
input and output feature maps from the convolution layers each with batch normalization, rectified linear unit 
(ReLU) activation functions, and max pooling. After the residual blocks, each feature map was averaged in 
the global average pooling (GAP) layer with the probability of each stage obtained through a fully connected 
layer with a softmax function. CAM were derived from the GAP layer by summating the feature maps with the 
weights from the last layer in order to visualize regions that show high correlation with the task of interest. It 
is worth nothing that parameters of the network were initially transferred from the pre-trained parameters of 
the ImageNet dataset, excluding the first and last layer parameters. Subsequently, all parameters were retrained 
using our OCTA dataset, which was optimized based on the cross-entropy loss with an Adam optimizer and a 
learning rate of 0.000147.

Machine learning-based classifier using local features extracted from OCTA images. The 
machine learning-based classifier consisted of three stages: segmentation, feature-extraction, and classification 
stages (Fig. 4).

In the segmentation step, U-Net48 was used to segment the blood vessels and FAZ from the OCTA images. The 
combined data from each layer of the OCTA image was used as input, given that prior machine learning based 
studies demonstrated that the best DR classification results were obtained when local features from the combined 
data was used i.e. both SCP and  DCP16–18. In the U-Net model, a contracting path extracts high-level features 
from the input images by repeatedly using convolution layers, batch normalization, ReLU activation function, 
and max pooling; while the expanding path generates a segmentation map of the same size as the input image 
by repeatedly using upsampling, convolution layers, batch normalization, and ReLU activation functions on the 
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extracted high-level features. In the expanding path, intermediate feature maps of the contracting path were 
concatenated with the feature maps of the previous expanding path and used as input in the next expanding path. 
The parameters in the network were optimized using the Adam  optimizer47 with a dice similarity coefficient loss 
and learning rate of 0.0001. In the feature-extraction stage, four local features (blood vessel density, skeletal vessel 
density, fractal dimension, and size of the FAZ) were extracted from the segmented OCTA images. Finally, in 
the classification step, data from these four extracted features were fed into a neural network classifier to classify 
the OCTA images into DR and normal cases as well as referable DR and non-referable states.

Figure 3.  Convolutional neural network-based classifier for DR. This end-to-end classification task was 
performed to detect DR (D; mild non-proliferative DR or worse) and identify referable status (R; severe mild 
non-proliferative DR or worse) from OCTA images using a ResNet model. The OCTA images are passed 
through 16 residual blocks, while increasing the number of filters successively. After the residual blocks, each 
feature map is averaged in the global average pooling layer, and the probability for each stage is then obtained 
through a fully connected layer with softmax function. CAMs are derived from the global average pooling layer 
in the last part of the network to visualize the regions that significantly affect the tasks. This figure was created 
using Office Power Point software 2019 (https:// www. micro soft. com/ ko- kr/ micro soft- 365/ power point).

Figure 4.  Machine learning-based classification networks for DR. Blood vessels and the FAZ were segmented 
from OCTA images using a U-net model. The segmented FAZ and vessels were processed to extract four 
significant retinal features, i.e., FAZ area, blood vessel density, skeletal vessel density, and fractal dimension. 
These features are supplied to a neural network classifier to detect the onset (D) and referable status (R) of DR. 
This figure was created using Office Power Point software 2019 (https:// www. micro soft. com/ ko- kr/ micro soft- 
365/ power point).

https://www.microsoft.com/ko-kr/microsoft-365/powerpoint
https://www.microsoft.com/ko-kr/microsoft-365/powerpoint
https://www.microsoft.com/ko-kr/microsoft-365/powerpoint
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Experimental setting and statistical analysis. To obtain the final predictions for all the data samples, 
we divided the data into four distinct subsets with an even class distribution and performed four-fold cross 
validation. Specifically, a classifier was trained using three subsets and then tested on the remaining subset. 
The above operation was repeated four times with different combinations of subsets so that the DR stages of 
the entire dataset was obtained. The results were then compared to the ground truth determined by retinal 
specialists using the UWF FA images. Accuracy, sensitivity, specificity, and AUC of the system was calculated 
to evaluate overall performance. These metrics were calculated based on the average value obtained by four test 
runs. To validate our CNN method on external dataset, we trained our model using all training data used for 
fourfold cross validation and tested on the external dataset. The machine learning model was also trained with 
the same setup to compare with the CNN model.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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