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Trajectory of body mass index 
and height changes from childhood 
to adolescence: a nationwide birth 
cohort in Japan
Naomi Matsumoto1*, Toshihide Kubo2, Kazue Nakamura2, Toshiharu Mitsuhashi3, 
Akihito Takeuchi2, Hirokazu Tsukahara4 & Takashi Yorifuji1

To investigate the dynamics of body mass index (BMI) and height changes in childhood leading to 
obesity in adolescents. BMI Z-scores were calculated using the LMS (lambda–mu–sigma) method 
based on yearly height and weight information (age 1.5–15 years) from a nationwide Japanese birth 
cohort that started in 2001 (n = 26,711). We delineated the trajectories of BMI and height changes 
leading to obesity at age 15 years using mixed effect models. Children who became obese at the age of 
15 years kept relatively high BMI z-scores through childhood for both genders, and had an increasing 
trend over time as opposed to the normal weight group, with an increasing slope during puberty. 
Early adiposity rebound was associated with overweight or obesity at the age of 15 years. Age at peak 
height velocity (APHV) occurred earlier in the obese/overweight group at age 15 years than in the 
normal weight group, and occurred later in the underweight group. Obese adolescents experienced 
early adiposity rebound timing and maintained a serial BMI z-score increase throughout childhood, 
with a greater slope at puberty. An earlier peak in height gain during puberty may have contributed to 
the observed patterns of BMI change.

The prevalence of obesity has been increasing worldwide and is considered to represent a pandemic situation 
requiring urgent  action1–3. In 2016, more than 1.9 billion adults aged 18 years or older (corresponding to 39% of 
adults) were overweight and more than 650 million (corresponding to 13% of adults) were  obese4. The risk of all-
cause mortality increases even in overweight adults: every 5 unit increase in body mass index (BMI) above 25 kg/
m2 is associated with an approximately 31% higher risk of  mortality5. Thus, interventions are urgently needed 
to reduce the prevalence of overweight and obesity. The most important intervention for obesity is prevention 
(especially during childhood) rather than  treatment6–8. Simmons et al. showed that about 55% of obese children 
remained obese during adolescence and about 80% of obese adolescents remained obese in adulthood. Therefore, 
interventions to reduce and prevent obesity during childhood and adolescence are needed. Understanding BMI 
trajectories during development can provide useful information for prevention efforts.

The BMI trajectory during development has been evaluated in many previous studies. However, most studies 
focused on BMI trends in children during segmented periods such as preschool, school age, or preadolescence. 
Only a few large cohort studies have evaluated BMI trends longitudinally from birth to  adolescence9. In addi-
tion, although BMI is defined as weight (in kilograms) divided by height (in meters squared), few studies have 
considered the role of height changes in defining BMI  trajectories10,11. Because puberty has been reported to 
occur earlier in obese children, accelerated height changes during puberty should be taken into consideration 
to understand BMI trends during that  period12.

Moreover, there have been considerable racial differences observed in obesity studies based on  BMI13. Thus, 
BMI trajectories in various racial groups must be delineated based on large longitudinal birth cohort stud-
ies. Obese Asian individuals have been found to have higher risks of hypertension and cardiovascular disease 
compared with obese white Europeans as well as higher risks of early death from cardiovascular disease or any 
 cause14,15. However, few studies have characterized the BMI trajectories of Asian children and their relationships 
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with obesity during  adolescence16,17. The Lancet World Report 2007 already highlighted the growing epidemic of 
obesity in Japan: obesity is a critical concern for understanding future national patterns of disease. One in four 
men aged 20–69 years in Japan was obese in 2000, whereas this figure had risen to one in three men by  200718. 
Investigating the long-term BMI trends during childhood that lead to adolescent obesity is of major public health 
significance in Asia, especially in Japan.

The Longitudinal Survey of Newborns in the 21st Century is a national birth cohort study that has low suscep-
tibility to cohort effects because it has been conducted for all births in Japan during specific weeks of  200119. In 
the present study, we investigated BMI trajectories from childhood to adolescence by BMI status at adolescence 
using data from this large nationwide birth cohort in Japan. We examined associations between the timing of 
puberty (age at peak height velocity, APHV) and obesity status in adolescence.

Methods
Participants. The Ministry of Health, Labour, and Welfare of Japan has been conducting The Longitudinal 
Survey of Newborns in the 21st Century since 2001 to establish strategies to counter the declining birthrate in 
Japan. The survey targeted all babies born in Japan between January 10 and 17 or between July 10 and 17 of 2001. 
Baseline questionnaires were sent to a total of 53,575 families when eligible babies reached the age of 6 months 
and 47,015 families initially completed the baseline questionnaire (88% response rate). These respondents were 
mailed follow-up questionnaires to investigate medical conditions and behaviors when children reached the ages 
of 1.5, 2.5, 3.5, 4.5, 5.5, 7, 8, 9, 10, 11, 12, 13, 14, and 15  years20–23. Birth record data from Vital Statistics of Japan 
are also linked for each child participating in the study. The current study included data for children/families 
who responded both to the baseline questionnaire and the fifteenth questionnaire at age 15 years.

The baseline survey at age 6 months included questions regarding children’s perinatal status as well as house-
hold and socioeconomic factors such as parental academic attainment, parental smoking status, and daycare 
attendance. The subsequent annual surveys starting at age 1.5 years included questions regarding each child’s 
height, weight and health status. We excluded 2382 children born before 37 weeks of pregnancy and one child 
with responses only for the baseline survey and the survey at age 15 years. A total of 26,778 children (315,581 
data points) were included in the final analysis. A total of 11,141 children (41.61%) had responses to all 15 
questionnaires between the ages of 6 months and 15 years, and responses to more than 12 questionnaires were 
available for the majority (91.94%) of children (Fig. 1, Table S1).

Measures. We calculated BMI based on each participant’s reported annual height and weight. Each partici-
pant’s annual BMI was converted to a BMI Z-score using smoothed L, M, and S values for BMI standards from 
a representative population of Japanese  children24. Briefly, the LMS (lambda–mu–sigma) method is a method 
proposed by Cole et al. to monitor changes in the skewness of the distribution during childhood as a way of con-
structing normalized growth  standards25. Participants were then classified into four BMI categories based on the 
World Health Organization (WHO)  criteria26: underweight (BMI standard deviation [SD] score of − 5 or more 
but less than − 2), normal weight (BMI SD score of − 2 or more but less than 1), overweight (BMI SD score of 1 
or more but less than 2), and obese (BMI SD score of 2 or more but less than 5). The definitions of overweight 
and obesity were different for children under 5 years of age: a BMI Z-score of 2 SD or more was categorized as 
overweight and a BMI Z-score of 3 SD or more was categorized as obese. BMI category at age 15 years was the 
main outcome of interest in the current study.

All babies born between 10 to 17 January or 10 to 17 July 2001 in Japan: n=53575

Questionnaires returned at the first survey: n=47015

Eligible children for whom answers to the fifteenth questionnaire at age 15 years 
were available: n=26779

Excluded because of absence of responses to 
questionnaires between the ages of 1.5 and 14 years: n=1

Children included in the analyses at age 15 years: n=26778 representing 315581 data points
(n=1087 underweight; n=23715 normal weight; n=1760 overweight; n=216 obese)

Lost to follow-up: n=17854

Excluded because of birth before 37 weeks of pregnancy: 
n=2382

Figure 1.  Flowchart of study participants.
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We also calculated annual height growth for each participant by subtracting the height reported at the previ-
ous survey from that reported in the current survey. For annual height growth between 5.5 and 7 years of age, 
this value was multiplied by 2/3 because of the 1.5-year interval between surveys.

Statistical analyses. We first compared baseline characteristics among the four BMI categories (under-
weight, normal weight, overweight and obese) at age 15 years. To evaluate potential selection bias resulting from 
losses to follow-up, we also compared the baseline characteristics of children included in the analysis and those 
of children lost to follow-up through to the fifteenth survey (at age 15 years).

We retrospectively examined annual aggregate categorical changes in individuals of the four BMI categories 
(groups) at age 15 years. For each group, the proportion of each BMI category at each survey between the ages of 
1.5 and 14 years was calculated. In addition, we prospectively calculated the proportion of children in each BMI 
category at each survey between the ages of 1.5 and 14 years who eventually became underweight, normal weight, 
overweight, or obese at age 15 years. Note that these analyses were based on aggregate data and do not describe 
individual BMI changes and were performed using only the data obtained without imputation of missing values.

Under the assumption that missing data were missing at random, mixed effect models with natural cubic 
regression splines were applied to calculate the trajectories of BMI Z-scores and annual BMI Z-score changes 
through age 15 years for participants of each BMI category at age 15 years. Knots at seven locations were placed 
in percentiles of age to yield a sufficient number of measurements between each consecutive knot (age 1.5, 3.5, 
5.5, 8.5, 11, 13 and 15 years), as recommended by  Harrell27. The mixed effect model is useful for describing 
population average growth trajectories and individual growth trajectories even when data are not available for 
all children at all  ages28–31. Briefly, the population average growth trajectory was modeled with fixed effects, while 
the individual variability is represented as random effects.

After fitting individual BMI trajectories using a mixed-effects model with natural cubic spline function, we 
estimated individual adiposity rebound timing as the age where the first derivative of the trajectory reached 
its minimum and the second derivative was  positive32. Children were then classified into five categories 
(1.5–2.5 years, 3.5–4.5 years, 5.5–7 years, 8–10 years, and 11 years or older) for analysis of adiposity rebound 
 timing33,34. The distribution of adiposity rebound timing was calculated for individuals of each BMI status at 
age 15 years overall and by gender.

Finally, we modelled annual height change and its associations with BMI status at age 15 years separately for 
each gender using mixed-effects models with natural cubic regression splines.

All statistical analyses were performed using Stata version 16 (StataCorp LLC, College Station, TX, USA). 
This study was approved by the Institutional Review Board at Okayama University Graduate School of Medicine, 
Dentistry, and Pharmaceutical Sciences (No.1506-073) and was conducted in accordance with the 1964 Helsinki 
Declaration and Ethical Guidelines for Medical and Health Research Involving Human Subjects. Informed 
consent was obtained by the opt-out method on the university’s website.

Results
Demographic characteristics. Participants’ demographic characteristics according to BMI status at age 
15 years are shown in Table 1. Obese adolescents tended to be boys, to be large for gestational age at birth, to live 
in towns or villages, to have parents with lower academic attainment, and to have mothers who smoked. During 
the follow-up period, 17,854 children were lost to follow-up by the fifteenth survey (at 15 years of age). Children 
lost to follow-up tended to have younger mothers, mothers who smoked, and mothers with lower academic 
attainment (Table S2).

Categorical aggregate changes in each BMI status group. Figure 2A shows the results of a retrospec-
tive analysis whereby we calculated the percentages of children in the four BMI categories (underweight, normal 
weight, overweight, or obese) every year during childhood according to their BMI group at age 15 years. Chil-
dren with normal weights at age 15 years mostly maintained normal weights throughout childhood. Although 
83.1% of the children who were obese at age 15 years had normal weights at age 1.5 years, the proportion of 
overweight or obese children increased annually, with a large percentage of children becoming obese after age 
13 years. Figure 2B shows the results of a prospective analysis whereby we calculated the proportion of children 
in each BMI category at each survey (from ages 1.5–14 years) who subsequently became underweight, normal 
weight, overweight, or obese at age 15 years. Overall, 31.0% of 7-year-old obese children had normal weights 
at age 15 years. The proportion of overweight/obese children who returned to normal weights by age 15 years 
gradually decreased, and markedly decreased after the age of 12 years. Only a small proportion of underweight/
normal weight children in earlier surveys became overweight/obese at 15 years of age.

BMI status and BMI changes during childhood. The average trajectories of BMI Z-scores for boys 
and girls are shown in Fig. 3A. These trajectories depict the fixed effects component using mixed effects models 
with natural cubic splines. The average BMI Z-score trajectories of children with normal weights at age 15 years 
remained stable around 0 throughout childhood, whereas children who were overweight/obese at age 15 years 
already had relatively high BMI Z-scores by 1.5 years of age. The average trajectory for BMI Z-scores in par-
ticipants who were overweight/obese at age 15 years showed a continuous increase in both genders throughout 
childhood, with a greater slope during puberty. Children who were underweight at age 15 years already had 
relatively low BMI SD scores at 1.5 years of age and, in contrast to the trajectory for participants who were obese 
at age 15 years, showed a marked decline in slope after puberty. Comparing the average trajectories of annual 
change in BMI Z-scores (Fig. 3B), participants of both genders who were obese at age 15 years showed a less pro-
nounced dip around age 5 years than the other groups, a continuous increase in BMI Z-scores across ages, and a 
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greater slope at puberty. By contrast, the average trajectory of annual change in BMI Z-score in participants who 
were overweight at age 15 years was similar to that of participants who had normal weights at age 15 years, albeit 
with relatively larger changes in the overweight group compared with the normal weight group.

Table 1.  Demographic characteristics of children included in the analysis at age 1.5 years by BMI status at age 
15 years (N = 26,778). Five participants had missing birth weight information, 273 participants had missing 
daycare attendance information, 131 participants had missing maternal smoking information, 385 participants 
had missing maternal educational attainment information, and 569 participants had missing paternal 
educational attainment information.

BMI status at 15 years of age

Underweight Normal weight Overweight Obese

(n = 1087) (n = 23,715) (n = 1760) (n = 216)

Gender, n (%)

Boys 582 (53.5) 11,926 (50.3) 1022 (58.1) 133 (61.6)

Girls 505 (46.5) 11,789 (49.7) 738 (41.9) 83 (38.4)

Birth weight, n (%)

< 2500 g 89 (8.2) 1278 (5.4) 81 (4.6) 7 (3.2)

2500–4000 g 994 (91.4) 22,176 (93.5) 1649 (93.7) 200 (92.6)

≥ 4000 g 3 (0.3) 258 (1.1) 29 (1.7) 9 (4.2)

Singleton or multiple birth, n (%)

Singleton birth 1068 (98.3) 23,491 (99.1) 1744 (99.1) 214 (99.1)

Multiple birth 19 (1.8) 224 (0.9) 16 (0.9) 2 (0.9)

Birth order, n (%)

1 (no older siblings) 556 (51.2) 11,564 (48.8) 872 (49.6) 116 (53.7)

2 390 (35.9) 8838 (37.3) 609 (34.6) 72 (33.3)

≥ 3 141 (13.0) 3313 (14.0) 279 (15.9) 28 (13.0)

Daycare attendance at age 18 months, n (%)

No 957 (88.0) 19,820 (83.6) 1436 (81.6) 169 (78.2)

Yes 122 (11.2) 3660 (15.4) 296 (16.8) 45 (20.8)

Maternal age at delivery, n (%)

< 25 years 81 (7.5) 2107 (8.9) 203 (11.5) 23 (10.7)

25–35 years 841 (77.4) 18,200 (76.7) 1259 (71.5) 146 (67.6)

≥ 35 years 165 (15.2) 3408 (14.4) 298 (16.9) 47 (21.8)

Maternal smoking status, n (%)

No 982 (90.3) 20,841 (87.9) 1461 (83.0) 177 (81.9)

< 10/day 68 (6.3) 1921 (8.1) 180 (10.2) 16 (7.4)

≥ 10/day 30 (2.8) 843 (3.6) 105 (6.0) 23 (10.7)

Maternal educational attainment, n (%)

University or higher 172 (15.8) 3850 (16.2) 202 (11.5) 35 (16.2)

Junior college 503 (46.3) 10,375 (43,8) 689 (39.2) 61 (28.2)

High school 366 (33.7) 8372 (35.3) 733 (41.7) 90 (41.7)

Junior high school or others 30 (2.8) 791 (3.3) 97 (5.5) 27 (12.5)

Paternal educational attainment, n (%)

University or higher 459 (42.2) 9611 (40.5) 538 (30.6) 64 (29.6)

Junior college 172 (15.8) 3644 (15.4) 275 (15.6) 34 (15.7)

High school 372 (34.2) 8617 (36.3) 724 (41.1) 86 (39.8)

Junior high school or others 65 (6.0) 1352 (5.7) 169 (9.6) 27 (12.5)

Residential area, n (%)

Wards 287 (26.4) 5080 (21.4) 340 (19.3) 42 (19.4)

Cities 625 (57.5) 14,191 (59.8) 985 (56.0) 124 (57.4)

Towns or villages 175 (16.1) 4444 (18.7) 435 (24.7) 50 (23.2)

Infant feeding practices, n (%)

Formula feeding only 19 (1.8) 309 (1.3) 20 (1.1) 5 (2.3)

Partial breastfeeding 835 (76.8) 17,714 (74.7) 1327 (75.4) 182 (84.3)

Exclusive breastfeeding 228 (21.0) 5554 (23.4) 398 (22.6) 27 (12.5)
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Impact of adiposity rebound timing. We compared adiposity rebound timing by BMI status at age 
15 years overall and by gender (Table 2 and Table S3). Adiposity rebound occurred earlier in participants who 
were overweight/obese at age 15 years (prior to age 4.5 years) than in those who had normal weights at age 
15 years. Moreover, more than 95% of participants who were obese at age 15 years, had experienced adiposity 
rebound before 2.5 years of age. In contrast, adiposity rebound tended to occur later in participants who were 
underweight at age 15 years.

BMI status at age 15 years and APHV. Of the 26,778 participants included in the analysis, we excluded 
eight children whose annual height gain was never measured (i.e., no two consecutive responses). We used 

Figure 2.  Annual categorical body mass index (BMI) changes by BMI category at age 15 years. (Panel A) 
Retrospective tracking of BMI status during childhood (age 18 months to 14 years) according to BMI status 
at age 15 years: underweight (A), normal weight (B), overweight (C) and obese (D). (Panel B). Prospective 
tracking of annual BMI status [underweight (A), normal weight (B), overweight (C), and obese (D)] from 
childhood (age 18 months to 14 years) to adolescence (age 15 years). BMI status categorization was based on the 
WHO definitions (under 5 years: overweight ≥ 2 SD, obese ≥ 3 SD; over 5 years: overweight ≥ 1 SD, obese ≥ 2 SD).
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mixed-effects models with natural cubic regression splines to calculate the fixed-effects portion of the trajectory 
of annual height gain for participants of each obesity status at age 15 years, by gender (Fig. 4). Among boys, the 
APHV occurred earliest in participants who were obese at age 15 years, followed by those who were overweight, 
normal weight, and underweight at age 15 years. A similar trend was observed for girls with no marked differ-
ences between those who were obese and overweight at age 15 years.

Figure 3.  Dynamics of BMI Z-scores (A) and annual BMI Z-score changes (B) through age 15 years by gender.

Table 2.  Timing of adiposity rebound and BMI status at age 15 years.

BMI status at age 15 years Adiposity rebound timing

Total 1.5–2.5 years (%) 3.5–4.5 years (%) 5.5–7 years (%) ≥ 8 years (%)

Underweight 1087 0 (0) 0 (0) 641 (58.97) 446 (41.03)

Normal weight 23,715 362 (1.53) 4236 (17.86) 18,737 (79.01) 380 (1.60)

Overweight 1760 249 (14.15) 1509 (85.74) 2 (0.11) 0 (0)

Obese 216 208 (96.30) 8 (3.70) 0 (0) 0 (0)
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Discussion
In the present study, we delineated the BMI trajectories leading to obesity in adolescents and examined asso-
ciations between BMI status in childhood and obesity at age 15 years using data from a large birth cohort of 
all Japanese children born during specific weeks of 2001. The role of annual height gain on BMI trajectories in 
children and adolescents was also evaluated.

Our data regarding changes in BMI during childhood are partially consistent with the findings of a German 
population-based study examining BMI trends from childhood to adolescence (age 15–18 years). Mandy et al. 
reported that BMI acceleration (i.e., a rapid increase in BMI) during childhood increased the risk of obesity in 
adolescence and that almost 90% of children who were obese at 3 years of age remained overweight or obese in 
 adolescence35. In the present study, we found that adiposity rebound timing occurred earlier in participants of 
both genders who were overweight/obese at age 15 years; this difference was especially marked in those who 
were obese at age 15 years. The population average trajectories of BMI Z-score change among participants who 
were obese at age 15 years also showed an increase in BMI Z-scores over time, with no dip observed at preschool 
age in either gender. In our study, only 17.5% of children who were obese at age 5.5 years remained obese at 
the age of 15 years, and more than half of participants who were obese at age 15 years were overweight at age 
13 years. Analysis of the population average trajectory for participants of each BMI status at age 15 years showed 
that unlike those who had normal weights at age 15 years, participants of both genders who were obese at age 
15 years maintained relatively high BMI Z-scores throughout childhood, with an increasing trend over time and 
an increasing slope during puberty. This rapid increase in BMI Z-score during adolescence (age 14–15 years) 
was not observed in a previous German study. Unlike some prior studies, we included participants from a large 
nationwide population-based study for whom data were collected annually. In contrast with a previous German 
study, in which data were available for 13 or more time points in only 1% of participants, in our study the majority 
of children (91.74%) had responses for more than 12 surveys and 11,093 children (41.53%) had responses for all 
15 surveys between the ages of 6 months and 15 years. On the basis of these comprehensive data, we were able 
to model BMI trajectories using multilevel models with natural cubic splines and depict the increases in BMI 
characteristic of obese adolescents.

Racial differences between study populations may explain some of the discrepancy observed between studies 
of BMI trajectories and obesity. For example, a follow-up study conducted in northern China identified a sub-
group of children with a rapid increase in BMI after the onset of  puberty36 These findings suggested that Chinese 
adolescents with overweight or obesity experienced BMI acceleration at two time points: at preschool ages and 
during puberty. Although several studies of BMI trajectories have included Asian participants, few studies have 
examined childhood BMI trajectories by BMI status in adolescence in a large cohort of children followed from 
birth until puberty. Liang et al. assessed the BMI trajectories of children aged 2–18 years using group-based 
trajectory modeling with random sampling from five cohorts in China. Their study mainly focused on social 
factors related to obesity and BMI trajectories could not be compared by BMI status in adolescence because the 
study included children from various ages and backgrounds. Haga et al. followed 1644 children born during an 
8-year period in a district of Japan until age 12 years and identified five latent class patterns in boys and six latent 
class patterns in girls using latent class growth modeling. However, few large studies have longitudinally tracked 
BMI from birth to adolescence. The methodology used in our study would be expected to be less susceptible to 
cohort effects because children were born around the same  time9.

In study of BMI, Sheila et al. assessed the influence of height gain on early adiposity rebound. BMI during 
puberty is expected to be affected by height gain. Several studies have shown that early adiposity rebound indi-
cates faster growth, more advanced development, and earlier  puberty37–40. In fact, puberty has been reported to 
occur earlier in obese individuals, and differences in the timing of puberty may have accentuated the increase in 
BMI Z-scores observed after age 13 years in obese  children10,11. Adolescence, characterized by changes in body 
composition, physical fitness, and decreased insulin sensitivity during puberty, is a critical period for preventing 

Figure 4.  Dynamics of annual height growth (cm) through age 15 years.
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the onset and continuation of obesity throughout the  lifespan41–43. Ohlsson et al. showed that increased BMI 
through puberty and adolescence, but not in childhood, was associated with risk of adult  stroke44. Further 
long-term studies are needed to assess the impact of BMI acceleration in adolescence on obesity and disease 
risk; at the time of BMI assessment, differences in acceleration of height growth based on childhood BMI status 
should be considered. Therefore, we analyzed the trajectory of annual height gain in this study. The population 
average trajectories for annual height gain by BMI status at age 15 years showed that APHV occurred earlier in 
participants who were obese/overweight at age 15 years and later in participants who were underweight at age 
15 years compared with those who had normal weights at age 15 years. This phenomenon may partially explain 
why BMI Z-score trajectories in adolescence diverge by BMI status at age 15 years.

To date, few studies have considered the role of height when examining BMI  trajectories10–12, especially in 
studies of Asian  children16,17. Japan has been noted as a country with a rapidly growing obesity epidemic. We 
expect that our report will provide valuable insights for the prevention of  obesity18.

Our study had several limitations. First, information on maternal history of obesity was unavailable. Since 
individual genetic predisposition and dietary habits can affect the risk of  obesity45,46, future studies that include 
these data may identify additional group traits contributing to adolescent obesity. Second, we did not consider 
fat mass index and focused only on BMI, which may have resulted in misclassification of adiposity rebound 
 timing47. However, this misclassification would likely be non-differential and bias effect estimates toward the 
null. Third, information on height and weight was obtained on the basis of parental reports rather than clinical 
measurement, which may have introduced measurement errors. Self-reported BMI may overestimate BMI in 
underweight individuals and underestimate BMI in overweight/obese  individuals48. Fourth, some participants 
were lost to follow-up, which may have introduced selection bias. Children lost to follow-up (who tended to have 
younger mothers, mothers who smoked, and mothers with lower academic attainment) may have been at higher 
risk for overweight/obesity, and thus selection bias might have reduced the number of overweight/obese children 
in our study. Finally, we targeted Japanese children, which might limit generalizability to other populations.

In conclusion, our study using data from a Japanese national birth cohort showed that obese adolescents 
experienced early adiposity rebound timing and maintained serial BMI Z-score increases throughout childhood, 
with a greater slope during puberty. An earlier peak in height gain during puberty may have contributed to the 
observed patterns of BMI change.

Data availability
The data that support the findings of this study are available from the Ministry of Health, Labour, and Welfare 
of Japan. Restrictions apply to the availability of these data, which were used under license for the current study 
and are not publicly available. The data used in this study are available from the authors upon reasonable request 
and with permission from the Ministry of Health, Labour, and Welfare of Japan.

Received: 21 April 2021; Accepted: 17 November 2021

References
 1. Chooi, Y. C., Ding, C. & Magkos, F. The epidemiology of obesity. Metabolism https:// doi. org/ 10. 1016/j. metab ol. 2018. 09. 005 (2019).
 2. Prevalence and Trends Across the World Ebook.Ecog-Obesity.Eu/Chapter-Epidemiology-Prevention-across-Europe/

Prevalence-Trends-across-World.
 3. Ogden, C. L. et al. Trends in obesity prevalence among children and adolescents in the United States, 1988–1994 through 2013–

2014. JAMA J. Am. Med. Assoc. 315(21), 2292–2299. https:// doi. org/ 10. 1001/ jama. 2016. 6361 (2016).
 4. Vereen, R. J. et al. Longitudinal growth changes from birth to 8–9 years in preterm and full term births. J. Neonatal Perinatal Med. 

https:// doi. org/ 10. 3233/ NPM- 190219 (2019).
 5. Di Angelantonio, E. et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective 

studies in four continents. Lancet 388(10046), 776–786. https:// doi. org/ 10. 1016/ S0140- 6736(16) 30175-1 (2016).
 6. Pandita, A. et al. Childhood obesity: Prevention is better than cure. Diabetes Metab. Syndr. Obes. Targets Ther. 9, 83–89. https:// 

doi. org/ 10. 2147/ DMSO. S90783 (2016).
 7. Al-Khudairy, L. et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents 

aged 12 to 17 years. Cochrane Database Syst. Rev. https:// doi. org/ 10. 1002/ 14651 858. CD012 691 (2017).
 8. Mead, E. et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese children from the 

age of 6 to 11 years. Cochrane Database Syst. Rev. https:// doi. org/ 10. 1002/ 14651 858. CD012 651 (2017).
 9. Evensen, E., Wilsgaard, T., Furberg, A.-S. & Skeie, G. Tracking of overweight and obesity from early childhood to adolescence in 

a population-based cohort—The Tromsø study, fit futures. BMC Pediatr. 16(1), 64. https:// doi. org/ 10. 1186/ s12887- 016- 0599-5 
(2016).

 10. Aksglaede, L., Juul, A., Olsen, L. W. & Sørensen, T. I. A. Age at puberty and the emerging obesity epidemic. PLoS ONE https:// doi. 
org/ 10. 1371/ JOURN AL. PONE. 00084 50 (2009).

 11. Chen, L. K. et al. Trajectory of body mass index from ages 2 to 7 years and age at peak height velocity in boys and girls. J. Pediatr. 
230, 221-229.e5. https:// doi. org/ 10. 1016/J. JPEDS. 2020. 11. 047 (2021).

 12. Li, W. et al. Association between obesity and puberty timing: A systematic review and meta-analysis. Int. J. Environ. Res. Public 
Health https:// doi. org/ 10. 3390/ IJERP H1410 1266 (2017).

 13. Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass 
index/body fat per cent relationship. Obes. Rev. 3(3), 141–146. https:// doi. org/ 10. 1046/J. 1467- 789X. 2002. 00065.X (2002).

 14. Pan, W.H. et al. Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for 
definitions of overweight and obesity for Asians. Am. J. Clin. Nutr. 79(1), 31–39. https:// doi. org/ 10. 1093/ AJCN/ 79.1. 31 (2004).

 15. Wen, C. P. et al. Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public 
Health Nutr. 12(4), 497–506. https:// doi. org/ 10. 1017/ S1368 98000 80028 02 (2009).

 16. Mattsson, M. et al. Group-based trajectory modelling for BMI trajectories in childhood: A systematic review. Obes. Rev. 20(7), 
998–1015. https:// doi. org/ 10. 1111/ OBR. 12842 (2019).

 17. Aris, I. M. et al. Body mass index trajectories in the first two years and subsequent childhood cardio-metabolic outcomes: A 
prospective multi-ethnic Asian cohort study. Sci. Rep. https:// doi. org/ 10. 1038/ S41598- 017- 09046-Y (2017).

https://doi.org/10.1016/j.metabol.2018.09.005
https://doi.org/10.1001/jama.2016.6361
https://doi.org/10.3233/NPM-190219
https://doi.org/10.1016/S0140-6736(16)30175-1
https://doi.org/10.2147/DMSO.S90783
https://doi.org/10.2147/DMSO.S90783
https://doi.org/10.1002/14651858.CD012691
https://doi.org/10.1002/14651858.CD012651
https://doi.org/10.1186/s12887-016-0599-5
https://doi.org/10.1371/JOURNAL.PONE.0008450
https://doi.org/10.1371/JOURNAL.PONE.0008450
https://doi.org/10.1016/J.JPEDS.2020.11.047
https://doi.org/10.3390/IJERPH14101266
https://doi.org/10.1046/J.1467-789X.2002.00065.X
https://doi.org/10.1093/AJCN/79.1.31
https://doi.org/10.1017/S1368980008002802
https://doi.org/10.1111/OBR.12842
https://doi.org/10.1038/S41598-017-09046-Y


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:23004  | https://doi.org/10.1038/s41598-021-02464-z

www.nature.com/scientificreports/

 18. McCurry, J. Japan battles with obesity. Lancet 369(9560), 451–452. https:// doi. org/ 10. 1016/ S0140- 6736(07) 60214-1 (2007).
 19. Fuse, K., Nishi, N. & Ikeda, N. Cohort profile: 2001 of the longitudinal survey of newborns in the 21st century. Int. J. Epidemiol. 

https:// doi. org/ 10. 1093/ ije/ dyx104 (2017).
 20. Matsumoto, N. et al. Breastfeeding and risk of food allergy: A nationwide birth cohort in Japan. Allergol. Int. https:// doi. org/ 10. 

1016/j. alit. 2019. 08. 007 (2019).
 21. Yamakawa, M., Yorifuji, T., Inoue, S., Kato, T. & Doi, H. Breastfeeding and obesity among schoolchildren. JAMA Pediatr. 167(10), 

919. https:// doi. org/ 10. 1001/ jamap ediat rics. 2013. 2230 (2013).
 22. Kato, T. et al. Associations of preterm births with child health and development: Japanese population-based study. J. Pediatr. 163(6), 

1578-1584.e4. https:// doi. org/ 10. 1016/j. jpeds. 2013. 07. 004 (2013).
 23. Kikkawa, T. et al. Birth order and paediatric allergic disease: A nationwide longitudinal survey. Clin. Exp. Allergy 48(5), 577–585. 

https:// doi. org/ 10. 1111/ cea. 13100 (2018).
 24. Kato, N., Takimoto, H. & Sudo, N. The Cubic functions for spline smoothed L, S and M values for BMI reference data of Japanese 

children. Clin. Pediatr. Endocrinol. Case Rep. Clin. Investig. Off. J. Jpn. Soc. Pediatr. Endocrinol. 20(2), 47–49. https:// doi. org/ 10. 
1297/ cpe. 20. 47 (2011).

 25. Cole, T. J. The LMS method for constructing normalized growth standards. Eur. J. Clin. Nutr. 44(1), 45–60 (1990).
 26. BMI-for-age (5–19 years). Accessed September 29, 2021. https:// www. who. int/ toolk its/ growth- refer ence- data- for- 5to19- years/ 

indic ators/ bmi- for- age.
 27. Harrell, F. E. Jr. Regression Modeling Strategies—With Applications to Linear Models, Logistic Regression, and Survival Analysis 2nd 

edn. (Springer, 2015).
 28. Andrade, M. A. P. Statistical Analysis of Human Growth and Development Vol. 42 (Taylor & Francis, 2015). https:// doi. org/ 10. 1080/ 

02664 763. 2014. 989465.
 29. Elhakeem, A. et al. Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitu-

dinal growth trajectories in cohort studies. medRxiv https:// doi. org/ 10. 1101/ 2021. 05. 26. 21257 519 (2021).
 30. Hughes, R. A., Tilling, K. & Lawlor, D. A. Combining longitudinal data from different cohorts to examine the life-course trajectory. 

Am. J. Epidemiol. https:// doi. org/ 10. 1093/ AJE/ KWAB1 90 (2021).
 31. Gadd, S. C., Tennant, P. W. G., Heppenstall, A. J., Boehnke, J. R. & Gilthorpe, M. S. Analysing trajectories of a longitudinal exposure: 

A causal perspective on common methods in lifecourse research. PLoS ONE https:// doi. org/ 10. 1371/ JOURN AL. PONE. 02252 17 
(2019).

 32. Cissé, A. H. et al. Association between perinatal factors, genetic susceptibility to obesity and age at adiposity rebound in children 
of the EDEN mother–child cohort. Int. J. Obes. 45(8), 1802–1810. https:// doi. org/ 10. 1038/ s41366- 021- 00847-w (2021).

 33. Ip, E. H. et al. Determinants of adiposity rebound timing in children. J. Pediatr. 184, 151. https:// doi. org/ 10. 1016/J. JPEDS. 2017. 
01. 051 (2017).

 34. Baldassarre, M. E. et al. Premature birth is an independent risk factor for early adiposity rebound: Longitudinal analysis of BMI 
data from birth to 7 years. Nutrients 12(12), 1–11. https:// doi. org/ 10. 3390/ nu121 23654 (2020).

 35. Geserick, M. et al. Acceleration of BMI in early childhood and risk of sustained obesity. N. Engl. J. Med. 379(14), 1303–1312. 
https:// doi. org/ 10. 1056/ NEJMO A1803 527 (2018).

 36. Yuan, Y. et al. Body mass index trajectories in early life is predictive of cardiometabolic risk. J. Pediatr. 219, 31–37 (2020).
 37. Kang, M. J. The adiposity rebound in the 21st century children: Meaning for what?. Korean J. Pediatr. 61(12), 375–380. https:// doi. 

org/ 10. 3345/ kjp. 2018. 07227 (2018).
 38. Luo, Z. C., Cheung, Y. B., He, Q., Albertsson-Wikland, K. & Karlberg, J. Growth in early life and its relation to pubertal growth. 

Epidemiology 14(1), 65–73. https:// doi. org/ 10. 1097/ 00001 648- 20030 1000- 00016 (2003).
 39. German, A., Shmoish, M. & Hochberg, Z. Predicting pubertal development by infantile and childhood height, BMI, and adiposity 

rebound. Pediatr. Res. 78(4), 445–450. https:// doi. org/ 10. 1038/ pr. 2015. 129 (2015).
 40. Marakaki, C. et al. Early adiposity rebound and premature adrenarche. J. Pediatr. 186, 72–77. https:// doi. org/ 10. 1016/j. jpeds. 2017. 

03. 058 (2017).
 41. Alberga, A. S., Sigal, R. J., Goldfield, G., Prud’homme, D. & Kenny, G. P. Overweight and obese teenagers: Why is adolescence a 

critical period?. Pediatr. Obes. 7(4), 261–273. https:// doi. org/ 10. 1111/j. 2047- 6310. 2011. 00046.x (2012).
 42. Reinehr, T. & Roth, C. L. Is there a causal relationship between obesity and puberty?. Lancet Child Adolesc. Heal. 3(1), 44–54. 

https:// doi. org/ 10. 1016/ S2352- 4642(18) 30306-7 (2019).
 43. Schwimmer, J. B., Burwinkle, T. M. & Varni, J. W. Health-related quality of life of severely obese children and adolescents. J. Am. 

Med. Assoc. 289(14), 1813–1819. https:// doi. org/ 10. 1001/ jama. 289. 14. 1813 (2003).
 44. Ohlsson, C. et al. BMI increase through puberty and adolescence is associated with risk of adult stroke. Neurology 89(4), 363–369. 

https:// doi. org/ 10. 1212/ WNL. 00000 00000 004158 (2017).
 45. Lake, J. K., Power, C. & Cole, T. J. Child to adult body mass index in the 1958 British birth cohort: Associations with parental 

obesity. Arch. Dis. Child. 77(5), 376–381. https:// doi. org/ 10. 1136/ adc. 77.5. 376 (1997).
 46. Dotson, C. D., Babich, J. & Steinle, N. I. Genetic predisposition and taste preference: Impact on food intake and risk of chronic 

disease. Curr. Nutr. Rep. 1(3), 175–183. https:// doi. org/ 10. 1007/ s13668- 012- 0021-3 (2012).
 47. Plachta-Danielzik, S. et al. Adiposity rebound is misclassified by BMI rebound. Eur. J. Clin. Nutr. 67(9), 984–989. https:// doi. org/ 

10. 1038/ ejcn. 2013. 131 (2013).
 48. Stommel, M. & Schoenborn, C. A. Accuracy and usefulness of BMI measures based on self-reported weight and height: Findings 

from the NHANES & NHIS 2001–2006. BMC Public Health https:// doi. org/ 10. 1186/ 1471- 2458-9- 421 (2009).

Acknowledgements
We are grateful to Dr. Yoshiya Ito, professor of Department of Clinical Medicine, Hokkaido Red Cross College 
of Nursing, for his valuable advice in converting to Z-scores using the LMS method. We also thank Yoko Oka 
and Saori Irie, Okayama University, for help with data collection. This work was supported by JSPS KAKENHI 
Grant Number JP20K10498. We thank Edanz (http:// jp. edanz. com/ ac) for editing a draft of this manuscript.

Author contributions
N.M. designed the study, interpreted the data, and wrote the initial draft of the manuscript. T.K. designed the 
study, contributed to data collection and interpretation of data, and assisted in preparation of the manuscript. 
K.N., A.T., and H.T. contributed to interpretation of data and critically reviewed the manuscript. T.M. assisted 
in conducting the analysis using mixed effects models, and critically reviewed the paper. T.Y. contributed to data 
collection and interpretation of data and assisted in preparation of the manuscript. All authors approved the 
final version of the manuscript and agree to be accountable for all aspects of the work in ensuring that questions 
related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

https://doi.org/10.1016/S0140-6736(07)60214-1
https://doi.org/10.1093/ije/dyx104
https://doi.org/10.1016/j.alit.2019.08.007
https://doi.org/10.1016/j.alit.2019.08.007
https://doi.org/10.1001/jamapediatrics.2013.2230
https://doi.org/10.1016/j.jpeds.2013.07.004
https://doi.org/10.1111/cea.13100
https://doi.org/10.1297/cpe.20.47
https://doi.org/10.1297/cpe.20.47
https://www.who.int/toolkits/growth-reference-data-for-5to19-years/indicators/bmi-for-age
https://www.who.int/toolkits/growth-reference-data-for-5to19-years/indicators/bmi-for-age
https://doi.org/10.1080/02664763.2014.989465
https://doi.org/10.1080/02664763.2014.989465
https://doi.org/10.1101/2021.05.26.21257519
https://doi.org/10.1093/AJE/KWAB190
https://doi.org/10.1371/JOURNAL.PONE.0225217
https://doi.org/10.1038/s41366-021-00847-w
https://doi.org/10.1016/J.JPEDS.2017.01.051
https://doi.org/10.1016/J.JPEDS.2017.01.051
https://doi.org/10.3390/nu12123654
https://doi.org/10.1056/NEJMOA1803527
https://doi.org/10.3345/kjp.2018.07227
https://doi.org/10.3345/kjp.2018.07227
https://doi.org/10.1097/00001648-200301000-00016
https://doi.org/10.1038/pr.2015.129
https://doi.org/10.1016/j.jpeds.2017.03.058
https://doi.org/10.1016/j.jpeds.2017.03.058
https://doi.org/10.1111/j.2047-6310.2011.00046.x
https://doi.org/10.1016/S2352-4642(18)30306-7
https://doi.org/10.1001/jama.289.14.1813
https://doi.org/10.1212/WNL.0000000000004158
https://doi.org/10.1136/adc.77.5.376
https://doi.org/10.1007/s13668-012-0021-3
https://doi.org/10.1038/ejcn.2013.131
https://doi.org/10.1038/ejcn.2013.131
https://doi.org/10.1186/1471-2458-9-421
http://jp.edanz.com/ac


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23004  | https://doi.org/10.1038/s41598-021-02464-z

www.nature.com/scientificreports/

Competing interests 
Naomi Matsumoto received grants from Japan Society for the Promotion of Science during the conduct of the 
study. Dr. Kubo, Dr. Nakamura, Dr. Mitsuhashi, Dr. Takeuchi, Dr. Tsukahara, and Dr Yorifuji declare no potential 
conflicts of interest.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 02464-z.

Correspondence and requests for materials should be addressed to N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-02464-z
https://doi.org/10.1038/s41598-021-02464-z
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Trajectory of body mass index and height changes from childhood to adolescence: a nationwide birth cohort in Japan
	Methods
	Participants. 
	Measures. 
	Statistical analyses. 

	Results
	Demographic characteristics. 
	Categorical aggregate changes in each BMI status group. 
	BMI status and BMI changes during childhood. 
	Impact of adiposity rebound timing. 
	BMI status at age 15 years and APHV. 

	Discussion
	References
	Acknowledgements


