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Cluster analysis and profiling 
of airway fluid metabolites 
in pediatric acute hypoxemic 
respiratory failure
Jocelyn R. Grunwell1,2*, Milad G. Rad3, Susan T. Stephenson2, Ahmad F. Mohammad2, 
Cydney Opolka1, Anne M. Fitzpatrick2 & Rishikesan Kamaleswaran4,5

Hierarchal clustering of amino acid metabolites may identify a metabolic signature in children with 
pediatric acute hypoxemic respiratory failure. Seventy-four immunocompetent children, 41 (55.4%) 
with pediatric acute respiratory distress syndrome (PARDS), who were between 2 days to 18 years 
of age and within 72 h of intubation for acute hypoxemic respiratory failure, were enrolled. We used 
hierarchal clustering and partial least squares-discriminant analysis to profile the tracheal aspirate 
airway fluid using quantitative LC–MS/MS to explore clusters of metabolites that correlated with 
acute hypoxemia severity and ventilator-free days. Three clusters of children that differed by severity 
of hypoxemia and ventilator-free days were identified. Quantitative pathway enrichment analysis 
showed that cysteine and methionine metabolism, selenocompound metabolism, glycine, serine and 
threonine metabolism, arginine biosynthesis, and valine, leucine, and isoleucine biosynthesis were 
the top five enriched, impactful pathways. We identified three clusters of amino acid metabolites 
found in the airway fluid of intubated children important to acute hypoxemia severity that correlated 
with ventilator-free days < 21 days. Further studies are needed to validate our findings and to test our 
models.

Pediatric acute respiratory distress syndrome (PARDS) occurs in six percent of mechanically ventilated  children1. 
Although the overall mortality for children with PARDS is 17%, children with the most severe hypoxemia have a 
mortality of close to 33%1. There are no targeted therapies for children with PARDS due to a poor understanding 
of the underlying immunologic derangements and pathobiology. Two clinical phenotypes, a hyperinflamma-
tory (reactive) and a hypoinflammatory (uninflamed), have been identified in adults with ARDS using latent 
class analysis and unsupervised hierarchal  clustering2–4. Although ARDS phenotypes have been described using 
plasma cytokine targets combined with clinically available data, several adult studies have used metabolomic 
approaches to understand underlying ARDS heterogeneity, identify ARDS biomarkers, and discover metabolic 
subgroups of patients with ARDS with different mortality  rates5,6. In children, endotype identification has focused 
on sepsis-triggered ARDS cytokine responses and whole blood differential gene expression using microarray 
 technology7–9.

Metabolic subtyping of children with and without PARDS is a strategy to understand underlying metabolic 
dysregulation of PARDS and to determine whether these responses are associated with PARDS severity and 
fewer ventilator-free days. Stratification on metabolic and biologic responses defining a PARDS phenotype may 
aid in predictive and prognostic enrichment of clinical trials of targeted interventions for PARDS. The primary 
objective of this study is to determine whether unsupervised hierarchal cluster analysis would identify groups 
of children distinguished by differences in concentrations of amino acid metabolites that would be associated 
with the degree of hypoxemia and a primary outcome of VFD < 21 days. We hypothesized that an unsupervised 
approach would identify clusters of children predicted by distinguishing patterns of airway fluid amino acid 
metabolite concentrations that would correlate with a primary outcome of VFD < 21 days.
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Methods
Study design and clinical characterization. Children who were endotracheally intubated within the 
prior 72 h for acute respiratory failure were enrolled between 2018 and 2020 at the Emory University/Children’s 
Healthcare of Atlanta Egleston Hospital with informed consent obtained from a parent or legal guardian prior to 
any procedures. The Emory institutional board approved the study protocol (IRB 00034236 and IRB 00113035). 
All methods were carried out in accordance with relevant guidelines and regulations (Declaration of Helsinki). 
Children were excluded if they were immunocompromised as previously  described10,11. Hypoxemia thresholds 
were defined using the Pediatric Acute Lung Injury and Consensus Conference (PALICC) criteria and included 
a group of intubated children with a level of hypoxemia that did not meet the mild PARDS  threshold12. Study 
participants have been  described11. Twenty-eight-day VFD was the primary outcome and was dichotomized 
as VFD < 21 days and VFD ≥ 21  days7,11,13. Overall severity of illness was quantified using the Pediatric Risk of 
Mortality-III (PRISM-III) score within four hours of PICU  admission14. Organ failures were quantified using the 
Pediatric Logistic Organ Dysfunction-2 (PELOD-2)  score15.

Sample collection and preparation. Tracheal aspirates were obtained within 72 h of intubation using 
inline suctioning with up to 10 ml of sterile saline lavage and sample collection in a sterile Lukens trap as pre-
viously  described10,11. Sample were immediately placed in ice and immediately brought to lab for processing. 
Airway fluid was transferred to a sterile conical tube, mucus plugs and debris were dispersed by passage of the 
airway sample through an 18-gauge needle, followed by centrifugation in a swinging bucket rotor centrifuge at 
800× G for 15 min at 4 ◦ C. Cell free supernatant was aliquoted into Eppendorf tubes in 250–500 µl aliquots and 
stored at −80 ◦ C until analysis.

Amino acid metabolite analysis of airway fluid. Amino acids were measured by solid phase extraction 
followed by derivatization and liquid/liquid extraction (EZ:faast Kit, Phenomenex, Torrance, CA). The extrac-
tion and derivatization procedures were performed according to the manufacturer’s instructions. Samples were 
mixed with internal standards (homoarginine, methionine-d3 and homophenylalanine), extracted, and deri-
vatized with propyl chloroformate. The organic phase was evaporated at room temperature under a stream of 
nitrogen and re-dissolved in mobile phase. Samples were analyzed using a Thermo Vanquish UHPLC coupled 
to a Thermo TSQ Quantis triple quadrupole mass spectrometer (Thermo Scientific, Waltham, MA). Using an 
autosampler at 4 °C, a volume of 1 µL was injected onto a 250 × 2.0 mm × 4 µ AAA-MS column (Phenomenex) 
at a flow rate of 0.25 mL/min. The column was held at 35 °C. Mobile phase A was 10 mM ammonium formate 
in water, and mobile phase B was 10 mM ammonium formate in methanol. Samples were separated using an 
18-min gradient, from 68 to 83% of mobile phase B, with a 7-min re-equilibration between samples. The ion 
transfer tube and vaporizer were maintained at 275 °C and 225 °C respectively. Positive electrospray ionization 
mode at 5000 V was used to monitor selected reaction transitions as outlined in the EZ:faast manual. Transitions 
were optimized for the mass spectrometer using derivatized standards, and quantitation of amino acids was 
performed using TraceFinder software (Thermo Scientific).

Cluster analysis, partial least squares-discriminant analysis, and pathway analysis. Forty-two 
metabolites for seventy-four patient samples were used in the cluster analysis. A total of 88 (2.9%) of the data 
were missing. By default, missing values were replaced by 1/5 of the minimum positive values of their corre-
sponding variables. Metabolite concentrations were normalized by median, log transformed, and scaled by mean 
centering in MetaboAnalyst 5.016,17. Clustering was performed using the unweighted pair group method with 
arithmetic mean (UPGMA)18. A cluster heatmap was generated using the python package  seaborn19. Patient 
were visually assigned to one of three cluster groups, and a partial least squares-discriminant analysis (PLS-DA) 
was performed using the cluster assignment to identify metabolites contributing the most variability amongst 
clusters using a variable importance projection. The predictive ability of the PLS-DA model was tested using 
leave-one-out cross-validation20.

One-way analysis of variance (ANOVA) was performed to identify significant metabolites from the three clus-
ters using the Fisher Least Significant Difference (LSD) test and a false discovery rate (FDR) of < 0.05. Significant 
metabolites were used in a hypergeometric over-representation analysis test to determine metabolic pathways of 
importance. The importance measure for topological analysis was the relative betweenness centrality measure.

Pathway enrichment, topology analysis, and metabolic set enrichment analysis. Quan-
titative pathway enrichment analysis was performed using the binary classification of the primary outcome 
VFD < 21 days (Yes versus No) and the median normalized, log transformed, and mean center scaled metabolite 
concentrations using the Globaltest method. The node importance measure for topological analysis was relative 
betweenness centrality. The pathway impact value was calculated from pathway topology analysis. Statistical 
significance was determined using FDR < 0.05. Metabolic set enrichment analysis was performed using quan-
titative enrichment analysis using both the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Small 
Molecule Protein Database (SMPDB) metabolic pathway associated metabolite sets in separate  queries21–23. The 
enrichment analysis is performed using the R package globaltest using a generalized linear model to estimate a 
Q-statistic for each metabolite set, which describes the correlation between the compound concentration pro-
files and the primary outcome, VFD < 21 days (Yes vs. No)24.
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Univariate analysis of metabolites associated with VFD. Univariate analysis of metabolites for chil-
dren with VFD < 21 days (Yes vs. No) was performed. Volcano plots were created and metabolites with a fold-
change threshold of 2 and a FDR < 0.05 using the Wilcoxon Rank Sum Test.

Statistical analysis. Participant characteristics were described using median and 25th–75th interquartile 
ranges or number and percent. A Mann–Whitney-U test was used for univariate analysis for the binary out-
come VFD < 21 days (Yes vs. No). One-way analysis of variance (ANOVA) was used for continuous variables 
and a chi-square test was used for proportions to identify significant differences amongst the three clusters. A 
p-value < 0.05 was statistically significant.

Results
Clinical characteristics. There were seventy-four participants in this study. Demographic and clinical fea-
tures of participants in this study have been  described11. Clinical features stratified by degree of hypoxemia, and 
low (no or mild PARDS) or high (moderate or severe PARDS) severity are shown in sTable 1.

Cluster identification. We performed an unsupervised hierarchal clustering of forty-two amino acid 
metabolites. Three clusters were seen by visual inspection of the heatmap (Fig. 1). Demographic and clinical 
characteristics of participants by cohort are show in Table 1. There were no differences in age, sex, race, ethnicity, 

Figure 1.  Hierarchal cluster analysis of metabolites into three patient clusters. Children with and without 
pediatric acute respiratory distress syndrome (PARDS) are in blue (no PARDS) and in orange (with PARDS). 
Children with low hypoxemia (no or mild PARDS) are in yellow and those with high hypoxemia (moderate or 
severe PARDS) are in magenta. Children with no, mild, moderate, or severe PARDS are shown in green from 
lightest (no PARDS) to darkest (severe PARDS). Children with ventilator-free days (VFD) < 21 days (more than 
7 days on a ventilator or death) are in dark purple and those with VFD ≥ 21 days are in light purple. Cluster 
assignments are denoted by the green (cluster 1), blue (cluster 2), and orange (cluster 3) bar to the left of the 
participant dendrogram.
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or respiratory infection. Children in cluster 1 had more severe PARDS than children in clusters 2 and 3. Children 
in cluster 2 had more overall severity of illness (higher PRISM III) than children in clusters 1 and 3. Children in 
clusters 2 and 3 spent a longer median time of seven days versus 3.5 days on a ventilator compared with children 
in cluster 3 (Table 1). Increased frequency of high severity of hypoxemia (magenta bars) and a higher proportion 
of children with VFD < 21 days (dark purple bars) for children in clusters 1 and 2 are shown on the side of the 
heatmap in Fig. 1.

Partial least squares—discriminant analysis. We next used the cluster assignments to perform a 
partial least squares-discriminant analysis (PLS-DA) to describe the amount of variability and to identify the 
metabolites contributing the most to cluster variability. Variability explained by the top five components are 
shown in Fig.  2A. Component 1 and component 2 explain 33% and 13.8% of the variability in the clusters 
(Fig. 2A,B). There are two outliers in cluster 1 that are misclassified in the other clusters. Both of these patients 
had severe PARDS and were placed on extracorporeal life support (ECLS) for an Influenza A infection. One 
child was coinfected with methicillin-resistant Staphylococcal aureus and died after fourteen days supported 
by ECLS. The child who survived was supported by ECLS for nine days and was hospitalized in the pediatric 
intensive care unit (PICU) for 36 days.

The metabolites contributing the most variability to each cluster are shown by the variable importance of 
projection (VIP) score plot of normalized metabolites by cluster (Fig. 2C). Classification performance of the 
PLS-DA model were assessed by accuracy, goodness of fit (R2), and predictive ability (Q2) for the top eight 
components (Fig. 2D). The second component best classifies the model shown with the red asterisk using leave-
one-out cross-validation with an accuracy of 0.95, an R2 of 0.79, and a Q2 of 0.76 (Fig. 2D, sTable 2). Boxplots 

Table 1.  Demographic and clinical characteristics of children by cluster.

Characteristic

Cluster

1 2 3 p-value

n = 27 (36%) n = 11 (15%) n = 36 (49%)

Age (years), 1.06 1.67 0.58 0.0739

Median (IQR) (0.4, 2.5)) (0.78, 2.8) (0.12, 1.7)

Sex, n (%)

Female 12 (44%) 2 (18%) 16 (44%) 0.2619

Male 15 (56%) 9 (82%) 20 (56%)

Race, n (%)

Black 15 (56%) 8 (73%) 15 (42%) 0.4985

White 9 (33%) 3 (27%) 16 (44%)

Unknown 0 (0%) 0 (0%) 3 (8%)

Multiple 3 (11%) 0 (0%) 2 (6%)

Ethnicity, n (%)

Hispanic or Latino 1 (4%) 0 (0%) 2 (6%) 0.7111

Non-Hispanic or Latino 26 (96%) 11 (100%) 34 (94%)

Severity of Illness Scores, median (range)

PRISM III 15 (9, 16) 23 (12, 26) 12.5 (8, 18) 0.0125

PELOD 6 (5, 7) 7 (4, 11) 6 (4, 8) 0.4333

PARDS severity

Low (No/Mild) 13 (48%) 7 (64%) 30 (83%) 0.0122

High (Moderate/Severe) 14 (52%) 4 (36%) 6 (17%)

Ventilator Days, median (Q1-Q3) 7 (3, 11) 7 (6, 19) 3.5 (2, 6) 0.0024

28 day Ventilator-free Days, median (Q1-Q3) 21 (16, 25) 21 (9, 22) 24.5 (22, 26) 0.0026

Extracorporeal Life Support, n (%) 3 (11%) 2 (18%) 2 (5.6%) 0.4462

Length of Stay, median (IQR)

PICU (days) 8 (5, 14) 10 (9, 21) 6.5 (3.25, 10) 0.0269

Hospital (days) 11 (8, 22) 16 (10, 22) 11 (7, 16.25) 0.3668

28-day Mortality, n (%)

Dead 2 (7.4%) 1 (9.1%) 0 (0)% 0.1256

Respiratory Culture, n (%)

No Growth 2 (7.4%) 1 (9.1%) 9 (25%) 0.4169

Viral Only 7 (26%) 4 (36.4%) 5 (14%)

Bacterial Growth only 3 (11%) 1 (9%) 3 (8%)

Virus + Bacterial Co-detection 15 (55%) 5 (45%) 19 (53%)
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of the normalized concentrations of the top nine metabolites shown in the VIP score plot in Fig. 2C are shown 
by cluster (group) in Fig. 3A–I.

Pathway analysis of clusters. Thirty out of forty-two metabolites were significantly different from 
each other amongst the three clusters (sTable 3). Over-representation analysis testing was used to explore the 
metabolic pathways important to distinguishing the three clusters. Significant metabolic pathways with an 
impact ≥ 0.1 and a FDR < 0.05 for children in the cohort are shown in sFig. 1. A two-cluster solution was also 
explored and did not reveal meaningful differences in the results (sFigs. 2 & 3).

Pathway analysis by primary outcome. We next performed pathway analysis combining results from 
a pathway enrichment analysis with a topology analysis using the KEGG database to identify the most relevant 
metabolic pathways involved in distinguishing children with VFD < 21 days (Yes vs. No) (Fig. 4A)21-23. Pathways 

Figure 2.  Partial least squares-discriminant analysis (PLS-DA) defined by three clusters. (A) Pairwise score 
plots for the first five components of the PLS-DA analysis. The first component explains 33% of the variability 
in the three groups. The second and third component explains 13.8% and 8.9% of the variability in the three 
groups. (B) The scores plot for the first two components labeled by the three clusters: cluster 1 (red), cluster 2 
(green), and cluster 3 (blue). (C) Variable importance of projection (VIP) score plot of normalized metabolites 
by cluster. Higher concentrations are red. Intermediate concentrations are yellow. Lower concentrations are blue. 
(D) Values of the classification performance assessed by accuracy, goodness of fit (R2), and predictive ability 
(Q2) for the top six components. Two components best classify the model shown with the red asterisk using 
leave-one-out cross-validation.
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Figure 3.  Normalized concentration of the top nine metabolites explaining the variable importance 
of projection (VIP) in the partial least squares-discriminant analysis (PLS-DA) by cluster or group. (A) 
Methionine, (B) Tryptophan, (C) Threonine, (D) Valine, (E) Homoserine, (F) Tyrosine, (G) Citrulline, (H) 
4-aminobutyric acid, and (I) β-aminoisobutyric acid.
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Figure 4.  Quantitative pathway enrichment analysis using the compound concentration values to explore 
the metabolic differences between children with ventilator-free days (VFD) < 21 days (more than 7 days on a 
ventilator or death; Yes) versus those with VFD ≥ 21 days (No). (A) Significant metabolic pathways with an 
impact ≥ 0.1 for children with VFD < 21 days (Yes vs. No). (B) Quantitative metabolic set enrichment analysis 
using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database for children with VFD < 21 days (Yes vs. 
No) using normalized metabolic concentrations from airway  fluid21–23. Significant pathways are red and orange. 
The enrichment ratio is calculated as the observed hits/expected hits in the pathway.
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with the highest impact and enrichment ratios include: cysteine and methionine metabolism, selenocompound 
metabolism, glycine, serine and threonine metabolism, arginine biosynthesis, and valine, leucine, and isoleucine 
biosynthesis (Fig.  4A-B). We also performed a metabolic set enrichment analysis using an alternative data-
base, the Small Molecule Protein Database (SMPDB), using the compound concentration values to explore the 
metabolic differences between children with VFD < 21 days (Yes vs. No) and found similarly enriched pathways 
(sFig. 4A). Network analysis of the quantitative pathway enrichment analysis is shown in sFig. 4B. We performed 
two sensitivity analyses using only samples collected within thirty-six hours of intubation (61/74, 82% of all sam-
ples) and forty-eight hours of intubation (70/74, 95% of all samples). There were four pathways with a FDR < 0.05 
for the analysis performed using only the tracheal aspirate samples collected within forty-eight hours of intuba-
tion, and these top four pathways were the same as the whole cohort (sTable 4). There were no pathways with a 
FDR < 0.05 for the analysis performed using only the tracheal aspirate samples collected within thirty-six hours 
of intubation likely due to sample size; however, the top three pathways were the same as the whole cohort (sTa-
ble5). To identify individual metabolites that were significantly different between children with VFD < 21 days 
(Yes vs. No) we performed a univariate analysis. Metabolites with a fold change of 2 or more and a FDR < 0.05 are 
shown in the volcano plot are shown (sFig. 5A). Boxplots of the normalized concentrations of the six significant 
metabolites alanyl-alanine, citrulline, homoserine, methionine, selenomethionine, and threonine are shown in 
sFig. 5B-G.

Discussion
We used a targeted amino acid metabolite strategy along with unsupervised hierarchal clustering and PLS-DA 
to discover metabolic airway fluid signatures in children with acute hypoxemic respiratory failure within 72 h 
of endotracheal intubation. We identified three clusters in our cohort that were defined by differences in thirty 
metabolites with the most significant and impactful pathways including arginine biosynthesis, glycine, serine, 
and threonine metabolism, and cysteine and methionine metabolism using over-representation analysis. Chil-
dren with no or mild acute hypoxemic respiratory failure predominated in Cluster 1; Clusters 2 and 3 were 
metabolically distinct endotypes made up predominantly of children with moderate or severe acute hypoxemic 
respiratory failure who spent a median of a week or more on invasive mechanical ventilation. A quantitative 
metabolic set enrichment analysis identified pathways important for distinguishing children with versus without 
VFD < 21 days (death or 7 or more days of invasive mechanical ventilation) identified pathway important for 
oxidative stress (cysteine and methionine metabolism), substrates for one-carbon metabolism (glycine, serine 
and threonine metabolism), branched-chain amino acids (isoleucine, leucine, and valine metabolism), and the 
arginine biosynthesis pathways.

There are several studies that have compared the metabolic profiles of plasma, pulmonary edema fluid, bron-
choalveolar lavage fluid (BALF), and non-bronchoscopic alveolar lavage (mini BALF or mBALF) in adults with 
acute respiratory distress syndrome (ARDS) to healthy controls using various untargeted and targeted techniques 
including 1H-nuclear magnetic resonance (1-H NMR), gas chromatography-mass spectrometry (GC–MS) and 
liquid chromatography-mass spectrometry (LC–MS)5,6,25,26. Others have used metabolomic analyses to aid diag-
nosis, stratify ARDS patients by severity, and predict survival  outcome5,27–29. Pathways distinguishing survivors 
from non-survivors with ARDS included glutamine and glutamate metabolism, phenylalanine, tyrosine, and 
tryptophan biosynthesis, and phenylalanine  metabolism6,29. Adult endotyping studies using mBALF showed dif-
ferences in lysine, arginine, tyrosine, threonine, and branched chain amino  acids6. The findings and limitations of 
these adult studies have been  reviewed30. No definitive diagnostic metabolic pattern of ARDS has emerged due 
to small sample sizes, variability in technique used (1H-NMR, GC–MS, LC–MS/MS) and fluid sampled (plasma, 
BALF, mBALF), lack of an external validation cohort, and the use of non-mechanically ventilated  controls30.

Airway fluid obtained from readily accessible tracheal aspirate sampling of intubated children represents the 
metabolic derangements of the injured lung compared with plasma metabolites due to the proximity of the airway 
fluid to the damaged alveolar epithelial lining of the lung. We focused on amino acid based metabolic pathways 
because many of the predominant signatures from prior adult studies found significant differences in amino acid 
metabolic, degradation, and biosynthetic pathways in their analyses as previously  reviewed30.

Increased amino acid cellular uptake and biosynthesis drive cell proliferation and control energy-generating 
metabolic switches by regulating glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation 
(OXPHOS)31. Branched-chain amino acids provide acetyl-CoA and succinyl-CoA substrates for energy and 
reducing equivalent production via the TCA  cycle31. Sulfur-containing amino acids, such as cysteine and methio-
nine, and their metabolic pathways are central regulators of cellular and extracellular redox  status31. Amino 
acids supply methyl and acetyl groups to accomplish post-translational modification of proteins and epigenetic 
modification of histones to regulate gene expression, acute immune responses and immune cell  memory31. For 
example, leucine-supplied acetyl-CoA acetylates and activates mTORC1, a key intermediate in the nutrient-
sensing mTOR pathway, increasing  glycolysis32.

Amino acids support protein synthesis and metabolic programming critical for immune cell  activation31. T 
cell proliferation, activation and survival depends on rapid one-carbon metabolism, or the transfer of a methyl 
group to various substrates, for the biosynthesis of purine nucleotides, amino acid homeostasis of glycine, ser-
ine and methionine, epigenetic maintenance, and reduction–oxidation (redox) defense. Glycine is a precursor 
for many essential biosynthetic pathways including glutathione, purine, creatine, and heme synthesis. When 
glycine supply is unavailable, serine is metabolized to glycine to fuel purine and glutathione  synthesis33. One-
carbon reactions use and create redox equivalents, such as NADPH, that are important to mitochondrial redox 
 homeostasis33,34.

Cysteine is one of the amino acid precursors of glutathione, and cysteine’s metabolism and redox state is 
altered during acute lung injury and  inflammation35. The uptake of cystine, the oxidized form of cysteine, is 
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needed for T cell activation, proliferation, and DNA  synthesis31,36–38. The requirement for sulfur amino acids 
increases during trauma, sepsis, and other critical  illnesses39. T cell proliferation is impaired and activation is 
reduced with a deficiency of cysteine and intracellular  glutathione40. Selenoproteins play an important role in 
antioxidant defense and oxidative metabolism and modulation of reactive oxygen species and inflammatory 
signaling pathways affecting the ability to respond to viral infections such as  influenza41,42.

Reduced levels of arginine result in a failure of T cells to  proliferate43. Activated neutrophils recruited to the 
airways of children with PARDS deplete arginine from the airway environment due to degranulate and release 
arginase  144–47. Arginase 1 metabolism of arginine results in the synthesis of polyamines such as spermidine 
that limit inflammatory activity of M1-like macrophages and enhance to function of wound-healing M2-like 
 macrophages31. Increased arginine metabolism by macrophages and myeloid-derived suppressor cells restricts 
arginine supply to T cells limiting T cell activation and interferon-γ  production31,48. Similar to arginine, trypto-
phan also promotes T cell proliferation and catabolism of tryptophan by macrophages inhibits T cell activation, 
proliferation and cytokine production in response to  infection49.

The pediatric acute respiratory distress incidence and epidemiology (PARDIE) study shows that many chil-
dren with mild hypoxemia at onset will progress to meeting the Berlin criteria within seventy-two hours of 
meeting PARDS  criteria1. It is not known how supportive treatment over the first seventy-two hours following 
the initiation of mechanical ventilation influences metabolic pathways in the lung environment. It is likely that 
some metabolites reflect treatment including the introduction of enteral and parenteral nutrition and the effect 
this likely has on amino acid, lipid and glucose-containing products. Significant resuscitation measures, including 
ventilator setting manipulation, fluid resuscitation, and initiation of antibiotics, analgosedation, and neuromus-
cular blockage, are likely to be ongoing within the first twenty-four to forty-eight hours following intubation and 
diagnosis of acute hypoxemic respiratory failure. We performed sensitivity analyses that included only samples 
collected within thirty-six hours and forty-eight hours after intubation. The top four pathways were the same and 
remained significant between the samples collect within forty-eight hours versus seventy-two hours. Due to a 
smaller sample size, the samples collected within thirty-six hours had the same top 3 pathways identified, but did 
not reach a FDR < 0.05. Severity stratification following twenty-four hours of resuscitation and stabilization may 
more accurately represent the true degree of lung injury due to improvement in ventilation/perfusion mismatch 
and lung recruitment with positive pressure  ventilation50; however, there is little data on the temporal changes 
of metabolites, protein, or transcriptional biomarkers within the first days to week after onset of pediatric acute 
hypoxemic respiratory failure or PARDS.

There are several limitations to our single-center study. We sampled the tracheal aspirate fluid without meas-
uring paired plasma analytes. While the majority of our samples were collected within twenty-four hours of 
intubation, we extended the sampling window to seventy-two hours to increase enrollment into our study. We 
acknowledge that the first seventy-two hours following intubation is a dynamic period where pathophysiology 
is evolving due to underlying the disease process, changes in ventilator settings, fluid balance, development of 
other organ dysfunctions, and ongoing resuscitation and clinical interventions, including blood transfusions, 
pressor requirements and changes in medications could confound the interpretation of our observations. Despite 
these limitations, in the largest multi-institutional, international epidemiologic study of PARDS, the prediction 
of mortality stratified by severity of hypoxemia was relatively stable from 6 to 48 h after an intubated child met 
PARDS  criteria1. We did not collect serial time-points to correlate metabolite levels with clinical trajectory, and 
this should be a focus of future studies. While an accepted and validated non-pulmonary multiple organ dysfunc-
tion score does not exist, we acknowledge that other organ dysfunctions influence global metabolism and could 
impact our study findings in unknown ways despite our sampling of tracheal aspirate fluid rather than serum or 
plasma. We used a targeted metabolomic approach that focused on amino acids and dipeptide analytes limiting 
the metabolites measured. Lipid metabolites are an important component of surfactant and signaling pathways 
in the lung that we were unable to capture using our approach. While this is the only metabolomic study to date 
in intubated children with and without acute hypoxemic respiratory failure, the sample size is small, although it 
is larger than several adult ARDS  studies30. There is no external validation cohort, and replication of our findings 
in a larger independent cohort of children at risk for and with varying severity of PARDS is needed.

In summary, we identified three patient groups using an unsupervised clustering method and explored the 
amino acid metabolites and pathways important to acute hypoxemic respiratory failure. We then identified 
metabolites and pathways that differentiated children with and without ventilator-free days < 21 days. Further 
studies are needed to validate our findings and to test our models.
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