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Radiotherapy requires the target area and the organs at risk to be contoured on the CT image of the 
patient. During the process of organs‑at‑Risk (OAR) of the chest and abdomen, the doctor needs 
to contour at each CT image. The delineations of large and varied shapes are time‑consuming and 
laborious. This study aims to evaluate the results of two automatic contouring softwares on OARs 
definition of CT images of lung cancer and rectal cancer patients. The CT images of 15 patients with 
rectal cancer and 15 patients with lung cancer were selected separately, and the organs at risk were 
manually contoured by experienced physicians as reference structures. And then the same datasets 
were automatically contoured based on AiContour (version 3.1.8.0, Manufactured by Linking MED, 
Beijing, China) and Raystation (version 4.7.5.4, Manufactured by Raysearch, Stockholm, Sweden) 
respectively. Deep learning auto‑segmentations and Atlas were respectively performed with 
AiContour and Raystation. Overlap index (OI), Dice similarity index (DSC) and Volume difference  (Dv) 
were evaluated based on the auto‑contours, and independent‑sample t‑test analysis is applied to 
the results. The results of deep learning auto‑segmentations on OI and DSC were better than that 
of Atlas with statistical difference. There was no significant difference in  Dv between the results of 
two software. With deep learning auto‑segmentations, auto‑contouring results of most organs in 
the chest and abdomen are good, and with slight modification, it can meet the clinical requirements 
for planning. With Atlas, auto‑contouring results in most OAR is not as good as deep learning auto‑
segmentations, and only the auto‑contouring results of some organs can be used clinically after 
modification.

In recent years, the incidence of thoracic and abdominal tumors is getting higher and higher, and most are Lung 
and Rectum  tumors1–3. In order to improve the cure rate, about 70% of patients with malignant tumors need to 
receive radiation therapy. Radiotherapy has gradually become the second largest cancer treatment technology 
after  surgery4,5. Radiotherapy requires the target area and the organs at risk to be contoured on the CT image of 
the patient. During the process of organs-at-Risk (OAR) of the chest and abdomen, the doctor needs to contour 
at each CT image. The delineations of large and varied shapes are time-consuming and laborious. Moreover, the 
OARs contours of the same patient by different doctors are subjectively different.

If automatic contouring of organs at risk is implemented, the efficiency of the doctors can be improved, 
and the subjective differences of contours by different doctors can be reduced. The efficiency and consistency 
of treatment are of great  significance6–9. With the development of science and technology, the accuracy and 
efficiency of radiation therapy need to be improved. From automatic contour softwares available on the market, 
we have selected AiContour (version 3.1.8.0, Linking MED, Beijing, China) intelligent contouring system and 
Raystation (version 4.7.5.4, Research, Stockholm, Sweden) automatic delineating system to analyze the results 
of shape similarity compared to the contour from experience doctor. Index (Dice Similarity Coefficient, DSC), 
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overlap index (OI) and volume difference  (Dv) were evaluated to analyze the accuracy of automatic contouring 
of thoracic and abdominal organs. Finally, independent sample t-test proofreading was performed with SPSS.

Materials and methods
General information
We select 15 patients with lung cancer and 15 patients with rectal cancer who were treated in Zhejiang Provincial 
People’s Hospital from March 2019 to November 2019 randomly. The ethics institutional review board of Zhe-
jiang provincial people’s Hospital approved the protocols for data collection and analyses. All patients imaging 
data applied for exemption from informed consent and approved by the ethics institutional review board of 
Zhejiang provincial people’s Hospital. All patients were placed in supine position during CT simulation, and a 
thermoplastic masks and vacuum cushions were selected based on clinical needs. The body position is fixed, 
and the scanning slice thickness is 5 mm. The patients’ CT were selected as target images, and the data template 
libraries of the two software were used for automatic sketching.

Software tools
Using the Atlas Based segmentation function in Raystation and the artificial intelligence automatic cloud delin-
eating software AiContour. Raystation uses an algorithm based on interactive information to select template from 
the Atlas library. Contour the best matching case of CT, deform the outline of the case, and map the result of the 
deformation to the CT to be delineated to form an automatically delineated  outline10. The AiContour system is 
based on the segmentation network training of  UNet11, forming recognition ability, so as to achieve the ability 
of automatic contour drawing. Except, The AiContour system available for any radiotherapy treatment panning 
system. The target CT images automatically contour by the two sets of software are from the scanning of the 
large-aperture four-dimensional CT simulator (version Discovery CT590, GE, Wisconsin USA).

Contour content
For lung cancer patients, pancreas, spleen, stomach, liver, esophagus, heart, left lung, right lung, and spinal cord 
were selected as the contouring OARs. For rectal cancer patients, the OARs are left kidney, right kidney, spinal 
cord, left femoral head, right femoral head, left leg bone, right leg bone, pelvis, rectum, and bladder. The organs at 
risk manually contoured by the doctor on the Raystation planning system was selected as the standard structure, 
and the results of the automatic contours created by two auto-contouring software were respectively imported 
into the planning system and compared.

Data analysis
Using the OAR outline manually contoured by the experienced doctor as a reference, the results from two 
software were assessed with the cross-reference OI, shape similarity index DSC, and volume difference  Dv 
respectively.

Among them, Va represents the volume  (cm3) automatically contoured by the software, and  Vm represents 
the volume  (cm3) manually contoured by the doctor. Among them, the closer the OI index and the DSC index 
are to 1, and the closer the  Dv value is to 0, the better the delineating result.

Statistical methods
SPSS 23.0 was used to perform independent sample t-test statistical analysis on the results contoured by the two 
software. The difference was statistically significant with P < 0.05, and the analysis was plotted by using Origin 
8.0. (As shown in Figs. 1 and 2).

Ethics approval and consent to participate
This study was approved by the ethics institutional review board of Zhejiang provincial people’s Hospital and 
conducted in accordance with the ethical standards of the Declaration of Helsinki.

Results
We have analyzed OI, DSC, and  Dv for patients with lung cancer and rectal cancer.

The results of OAR delineation with deep learning auto-segmentations in Lung cancer cases show that the 
average values of OI and DSC delineations of most organs are better than 0.8, and the mean  Dv of most deline-
ated organs are < 0.1. Among them, the right lung has the best OI, DSC and  Dv, and the mean OI is > 0.97. The 
average DSC is > 0.98, and the average  Dv is − 0.003. The worst OI and DSC mean is the pancreas. The mean OI 
is less than 0.67, the mean DSC is less than 0.66, and the biggest difference between  Dv is the esophagus, and the 
mean  Dv is greater than 0.3. Compared with lung cancer, the OAR contour of rectal cancer is more stable. Both 
OI and DSC are greater than 0.8, and  Dv are less than 0.1. In the spinal cord delineation of patients with lung 
and rectal cancer, rectal cancer delineation results are better in terms of various values.

(1)OI = (Va ∩ Vm)/Vm

(2)DSC = 2(Va ∩ Vm)/(Va + Vm)

(3)Dv = (Va − Vm)/Vm
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Atlas results in lung cancer patients’ OAR delineation show that the delineation results of different organs 
are quite diverse, and the delineation results of some organs are poor. Among DSC and OI, the best results of 
OI and DSC are left and right lungs. The mean OI and DSC values are both greater than 0.95. The best result of 
 Dv is the right kidney. The mean value of  Dv is 0.003. The lowest OI and DSC is the pancreas, with OI less than 
0.32, DSC less than 0.28, and the worst  Dv is the bladder, with an average  Dv > 0.84. The interval of some data of 
Atlas is relatively large. It may be that in some patients, the library does not have a good CT case with the CT to 
be outlined, and the deformation registration ability is insufficient, resulting large differences in the results. The 
comparison results of the two softwares are shown in Tables 1 and 2.

Discussions
This paper was a comparative contouring between two deep learning auto-segmentations and Atlas. The results 
of this study that contouring of artificial intelligence is better than Atlas. The deep learning auto-segmentations 
is more similar to clinicians manual sketch’s OARs, and greatly saves the physician’s working time.

In the design of radiation treatment plans, the accuracy of organ at risk contour often affects the dose distribu-
tion in patients and affects the actual target area and the dose of organ at risk, then impacts the treatment quality 
 ultimately12,13. Under the development of science and technology, the automatic delineating performance has also 
been continuously optimized and improved. Due to the high precision of the automatic delineating technology, 
doctors can use it for clinical purpose with only slight modifications, reducing unnecessary workload for clini-
cians. It also greatly improves the treatment efficiency.

During the manual delineation of the organs in the chest and abdomen, the time of manual delineation of 
one patient’s OAR is about 1.5 h. deep learning auto-segmentations is usually about 40 s while Atlas takes about 
5 min. These are consistent with the results of Lustberg T et al.’s  studies14, the median time of manual contouring 
is 20 min, that the total median time saved is 7.8 min when using atlas-based contouring and 10 min for deep 
learning contouring. The delineating time is different due to different software and contouring organs. Deep 
learning auto-segmentations greatly saves time, because deep learning auto-segmentations is a model estab-
lished by artifical intelligence. Due to its own database of convolution neural network learning, a good contour 
of organ at risk is  achieved15. In terms of Atlas, the target image and database image deformation registration 
technology is implemented clinically, that the algorithm is not excellent enough, leading the result of the contour 
is not always satisfied.

Figure 1.  Comparison of OAR results of rectal cancer patients using two software. [(A) is the traverse plane, 
(B) is the sagittal plane, (C) is the coronal plane].
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As shown in Figs. 3, 4, 5, 6, 7, and 8, deep learning auto-segmentations has a relatively concentrated distribu-
tion value in the data distribution, and the density of the upper and lower bounds are not much different. When 
there is obvious difference in density in the automatic delineating process, the results have a good match with 
the "gold standard" manually delineated by the  doctors16–19. Due to the obvious difference between the density 
of leg bones and lungs and the density of surrounding tissues, there is not much difference between Atlas and 
deep learning auto-segmentations in the delineation of the leg bones and the bilateral lungs. Both areas have 
reached a comparative level (DSC > 0.7) because of the contrast between bones and soft tissue, which can be used 

Figure 2.  Comparison of OAR results of lung cancer patients using two software. [(A) is the traverse plane, (B) 
is the sagittal plane, (C) is the coronal plane].

Table 1.  Comparison of OI and DSC for OAR automatic delineation of rectal cancer by two software.

Left kidney Right kidney Spinal Left femur head Right femur head Left leg bone Right leg bone Pelvis Rectum Bladder

OI

AiContour 0.971 0.964 0.972 0.936 0.945 0.963 0.969 0.942 0.870 0.836

Raystation 0.492 0.631 0.715 0.896 0.904 0.891 0.884 0.881 0.528 0.592

t 7.630 5.929 4.465 1.867 1.810 3.391 3.743 3.617 4.779 2.284

P 0 0 0.001 0.072 0.081 0.003 0.002 0.002 0 0.030

DSC

AiContour 0.952 0.956 0.943 0.926 0.937 0.975 0.974 0.957 0.874 0.805

Raystation 0.492 0.632 0.687 0.878 0.883 0.877 0.870 0.895 0.439 0.448

t 8.198 6.042 5.156 3.808 3.262 5.777 5.762 5.907 7.599 4.057

P 0 0 0 0.001 0.003 0 0 0 0 0

Dv

AiContour 0.039 0.017 0.061 0.022 0.017  − 0.026  − 0.011  − 0.031  − 0.012 0.081

Raystation  − 0.015 0.003 0.056 0.041 0.049 0.036 0.037  − 0.033 0.390 0.843

t 0.577 0.217 0.051 0.554  − 1.081  − 1.284 0.020 0.083  − 2.583  − 1.473

P 0.569 0.831 0.960 0.584 0.289 0.219 0.984 0.935 0.021 0.163
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clinically with only partial  modification20. However, limited by the differences of eating, drinking, digesting and 
physical health among peoples, the target contouring for digestive organs, such as rectum, bladder, stomach, 
pancreas et al., become more hard. The worst results from the two softwares were showing in the pancreas. The 
low contrast in the boundary between the pancreas and the surrounding tissue under ordinary CT scans may 

Table 2.  Comparison of OI and DSC for OAR automatic delineation of lung cancer by two software.

Pancreas Spleen Stomach Liver Esophagus Heart L Lung R Lung Spinal

OI

AiContour 0.664 0.916 0.836 0.972 0.860 0.916 0.973 0.979 0.944

Raystation 0.315 0.670 0.459 0.886 0.573 0.816 0.959 0.955 0.671

t 6.094 4.121 7.167 5.414 4.558 2.766 1.972 4.155 7.972

P 0 0.001 0 0 0 0.010 0.059 0 0

DSC

AiContour 0.650 0.920 0.832 0.965 0.751 0.925 0.977 0.981 0.896

Raystation 0.277 0.492 0.471 0.800 0.398 0.858 0.956 0.960 0.583

t 7.139 8.804 6.899 14.214 10.194 2.486 3.476 4.345 9.565

P 0 0 0 0 0 0.019 0.002 0 0

Dv

AiContour 0.066  − 0.010 0.010 0.015 0.301  − 0.019  − 0.010  − 0.003 0.107

Raystation 0.544 0.824  − 0.033 0.222 0.832  − 0.109 0.007  − 0.010 0.355

t  − 1.292  − 2.794 0.514  − 4.029  − 2.278 2.224  − 1.078 1.309  − 2.179

P 0.214 0.014 0.614 0.001 0.037 0.034 0.290 0.204 0.046

Figure 3.  Comparison results of OI between two software in automatic delineation of rectal cancer OAR 
(Notation: LK means left kidney, RK means right kidney, SP means spinal cord, LFH means left femoral head, 
RFH means right femoral head, LLB means left leg bone, RLB means right leg bone).

Figure 4.  Comparison results of DSC between two software in automatic delineation of rectal cancer OAR.
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cause the boundary not to be defined clearly, resulting in poor results. The  Dv value of most of the contour results 
may not be statistically significant due to the difference between the positive and negative  data21.

The spinal cord is contoured in CT images of lung cancer and rectal cancer, and independent samples are 
tested. The two results are statistically different (P < 0.05). The difference between the two groups of data is 
probably due to the small volume of the spinal cord itself. Individual and statistical differences caused by the 
data of the contour results are more significant. According to the OI and DSC of results from deep learning 
auto-segmentations, the delineation results of different positions of the spinal cord is relatively close. Although 
the delineation results are different, the data distribution remains relatively centralized, which shows that deep 
learning auto-segmentations delineating results are stable. From the theory of auto-contouring, Atlas needs to 
match the best case in the database for deformation registration. The U-net network is a CNN (Convolutional 
Neural Network) -based image segmentation network. It uses a computer to input two-dimensional or three-
dimensional images to the image pixels. Each image pixel is assigned a weight coefficient and weight quality. By 

Figure 5.  Comparison results of  Dv between two software in automatic delineation of rectal cancer OAR.

Figure 6.  Comparison results of OI between two software in automatic delineation of lung cancer OAR.

Figure 7.  Comparison results of DSC between two software in automatic delineation of lung cancer OAR.
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translation and frequency conversion, it is trained to find a feature template suitable for classification, and can 
quickly filter and match feature pixels on the grid of the image during  reading22–25. Atlas, due to the inconsist-
ency of organs as different ages and shapes, it is difficult to establish a universal map. The registration process 
is deformable, which is time consuming. The accuracy of deep learning auto-segmentations is based on the 
raw data of delineating accuracy results, and the output accuracy is not necessarily the optimal solution of the 
delineating results, and optimization learning is required. Compared with the contouring method of Atlas, deep 
learning auto-segmentations is more stable in the speed and accuracy of the chest and abdomen organs and has 
certain advantages.

Conclusions
Both methods can be used for automatic contouring. Deep learning auto-segmentations achieves better contour-
ing results on OARs delineate of lung cancer patients and rectal cancer patients. Atlas the delineation is good 
for lung and heart, and the result for the femoral head is good in patients with rectal cancer. However, deep 
learning auto-segmentations is better in both scenario and can be used clinically. Both software are not ideal for 
the contour of the pancreas, so the algorithm of image segmentation needs to be optimized on the less obvious 
parts of tissues and organs to have two software used in the automatic delineation of chest and abdomen organs. 
Limited by the differences of eating, drinking, digesting and physical health among peoples, the OARs become 
more hard. Clinicians should be reviewed and confirmed OARs before it be used in clinical practice. Finally, 
this study did not add the evaluation of parameters such as normalized surface dice, Hausdorff distance, etc. The 
author will evaluate these parameters in subsequent studies.

Data availability
The data are not available for public access because of patient privacy concerns, but are available from the cor-
responding author on reasonable request.
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