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An integrated method 
for optimized identification 
of effective natural inhibitors 
against SARS‑CoV‑2 3CLpro
Qi Liao1,2, Ziyu Chen1,2, Yanlin Tao1, Beibei Zhang1, Xiaojun Wu1, Li Yang1*, 
Qingzhong Wang1* & Zhengtao Wang1

The current severe situation of coronavirus disease 2019 (COVID‑19) caused by severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has not been reversed and posed great threats 
to global health. Therefore, there is an urgent need to find out effective antiviral drugs. The 
3‑chymotrypsin‑like protease (3CLpro) in SARS‑CoV‑2 serve as a promising anti‑virus target due to its 
essential role in the regulation of virus reproduction. Here, we report an improved integrated approach 
to identify effective 3CLpro inhibitors from effective Chinese herbal formulas. With this approach, 
we identified the 5 natural products (NPs) including narcissoside, kaempferol‑3‑O‑gentiobioside, 
rutin, vicenin‑2 and isoschaftoside as potential anti‑SARS‑CoV‑2 candidates. Subsequent molecular 
dynamics simulation additionally revealed that these molecules can be tightly bound to 3CLpro and 
confirmed effectiveness against COVID‑19. Moreover, kaempferol‑3‑o‑gentiobioside, vicenin‑2 and 
isoschaftoside were first reported to have SARS‑CoV‑2 3CLpro inhibitory activity. In summary, this 
optimized integrated strategy for drug screening can be utilized in the discovery of antiviral drugs to 
achieve rapid acquisition of drugs with specific effects on antiviral targets.

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which can lead to various symptoms including fever, cough, fatigue, shortness 
of breath, and loss of smell and  taste1. Up to September 10, 2021, more than 223.2 million persons have been 
infected into COVID-19 across 192 countries or regions which resulted into 4,605,789  deaths2. Thus it will be 
urgent to seek for the effective treatment against COVID-19.

Since the outbreak of SARS-CoV-2, various antiviral compounds have been developed to treat COVID-193. 
At present, mainstream antivirus research has been conducted on the mechanism of virus replication, and 
many effective compounds have been discovered. A series of antivirals being tested against SARS-CoV-2 such 
as PF-073048144,  remdesivir5,  GC3766,  apilimod7,  nelfinavir8 and  quinacrine9, displayed high antiviral activity 
in vitro. Some of them, such as  remdesivir10,  favipiravir11 and PF-07304814 are also under clinical investigation. 
However, no drugs have shown outstanding therapeutic effects in clinical trials. As the epidemic situation remains 
grim, there is still an urgent need for effective methods to discover valid antiviral drugs.

In addition to the mentioned chemical compounds, another important treatment approach is antiviral natural 
products (NPs) and herbal medicines. These herbal medicines as adjunctive treatment have been used to admin-
istrate the mild and moderate patients with coronavirus infection, including those caused by Middle East res-
piratory syndrome coronavirus (MERS-CoV), SARS-CoV and SARS-CoV-212–14. Traditional Chinese medicine 
(TCM), as a material basis for the application of NPs and herbal medicines under the guidance of theory, have 
been found to be an effective treatment for COVID-19. Previously, the "three-medicines and three-prescriptions 
(TMTP)" strategy was recommended as a prescribed formula by the State Council of China because TMTP has 
exhibited the remarkable therapeutic effects and no side effects, especially against COVID-1915. TMTP mainly 
include Jinhua Qinggan granules, Lianhua Qingwen granules and capsules, Xuebijing injection, Qingfei Paidu 
decoction, Huashi Baidu decoction and Xuanfei Baidu decoction, which have presented good clinical efficacy 
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in the treatment of COVID-1916. This strategy halts the progression of the disease and actively alleviates and 
improves symptoms during the early and middle  stages16,17.

As a combination of several compound medicines, TMTP contains abundant molecules that make the anti-
viral mechanism unclear. It is necessary to apply an efficient method that quickly and effectively finds the basis 
of antiviral substances from this valuable natural molecular library. In recent years, the application of in silico 
technology in drug discovery has achieved prominent  success18,19, supplying sophisticated tools for screening 
promising lead compounds, predicting potential protein catalytic sites or revealing the mode of protein–ligand 
interactions. During this pneumonia epidemic, studies have utilized the favored approaches that target SARS-
CoV-2 with high-throughput screening of large-scale molecular databases and obtaining potential antiviral 
 drugs20,21. With the advancement of computer technology, the combination of computer-aided drug design 
(CADD) and artificial intelligence (AI) research has become a valuable tool to accelerate the slow process of 
drug discovery and restraint the expansion of R&D costs, expand the applicable system and improve the level 
of automation, followed by the development of CADD-based multithreaded in silico screening  technology22–25. 
Within the framework of above idea, we proposed a multimodule integrated approach aimed at improving the 
lead compound screening accuracy and greatly reducing the time cost by fully maximizing the advantages of 
each module to achieve a semiautomatic pipeline.

Based on the above purposes, an integration of CADD, machine learning (ML) and similarity-based clustering 
methodologies and experimental validation was adopted in our study as an accurate and efficient means to filter 
potential anticoronavirus candidates from TMTP database against 3CLpro, the key target of viral  replication26–29. 
We expeditiously discovered 5 NPs inhibitors, which further supports that the integrated strategy can accurately 
and quickly achieve the purpose of obtaining promising lead compounds, suggesting its practicality and worthi-
ness for further optimizing the application form and systems.

Results
Workflow construction and molecular data base constitutions. This integrated screening work-
flow is divided into four parts (Fig. 1). First, a molecular library was constructed, and the affinity ranking was 
obtained through molecular docking. Then, cluster analysis was performed to reveal the molecular characteris-
tics of high-affinity clusters and extract the top clusters. Furthermore, combined with high-throughput methods 
applied to determine the binding affinity and predict the level of activity, the molecules with both excellent 
properties were finally verified experimentally to determine effective compounds.

In the foremost step, we retrieved 49 Chinese medicinal materials involved in the 6 compound herbal formula 
in TMTP (Supplementary Table 1). First, excluding gypsum, which is mainly inorganic salt, 5464 SDF files of 
each chemical ingredient related to 46 Chinese medicinal materials were obtained through TCMSP database, the 
molecules of Herba  Rhodiolae30 and Rhizoma Areactylodis  Lanceae31 were excavated from literature, then 8 and 
13 compounds were added from PubChem respectively. Second, we removing duplicates from 5485 compounds. 
Finally, 3272 compounds were obtained, which is the TMTP molecular database. This library include the Chinese 
herbal compound prescriptions and the representative Chinese medicines from TMTP as well as the main chemi-
cal compositions. On the other hand, we collected 301 of SARS-CoV and 84 of SARS-CoV-2 3CLpro inhibitors, 
which was performed as comprehensively as possible. The former was used to build ML models, and the latter were 
treated as a test set. A complete list of the molecules and related information for 3272 TMTP compounds library, 
compound libraries and SARS-CoV and SARS-CoV-2 3CLpro inhibitors is given in the Supplementary Data 1.

20 clusters divided from the TMTP compound library by cluster analysis. To classify the struc-
tural similarity of high-affinity molecules to further narrow the range of lead compounds, a total of 8 combina-
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Figure 1.  Flowchart represents the workflow of integrated structure-based anti-coronavirus NPs screening.
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tions between similarities of fingerprint maps and different cluster agglomeration methods were individually 
used for cluster analysis. Based on the agglomerative coefficient from agnes, we found that the combination of 
Euclidean and Ward2 exhibited the highest value (agglomerative coefficient = 0.975) compared with that of the 
other groups, and the agglomerative coefficients of the 8 groups are listed in Supplementary Table 2. Thus, we 
adopted the Euclidean and Ward2 combination to plot a clustering that contained 20 clusters (k = 20) (Supple-
mentary Fig. 1, Supplementary Table 3).

Dominant clusters determined by means of molecular docking and ranking. Our molecular 
docking approach was used to obtain the binding ability of the TMTP molecular library (3272 molecules) with 
SARS-CoV-2 3CLpro, as well as the affinity score between positive inhibitors with SARS-CoV (301 of SARS-
CoV 3CLpro inhibitors) or SARS-CoV-2 (301 of SARS-CoV and 84 of SARS-CoV-2 3CLpro inhibitors) 3CLpro 
for ML modeling. Docking analysis was carried out independently using the programs Autodock Vina, Glide, 
and MOE. Then, the exponential consensus ranking (ECR) strategy was implemented to reduce the number of 
false positives. This approach transformed docking scores of a single compound into a decimal number to indi-
cate the comprehensive binding level for the target-ligand complex. Subsequent analyses were performed using 
ranking values instead of docking scores (Supplementary Data 1).

To compare the binding capacity to 3CLpro among clusters, we calculated and ranked the median, mean and 
quantile value, etc. of the molecular ranking in each cluster. Then, the dominant clusters were defined as those 
with a mean ranking value greater than 0.6 (Supplementary Table 4), and 9 dominant clusters were ultimately 
acquired. Among the 9 dominant clusters, the average ranking value of the royalblue cluster and brown cluster 
was greater than 0.7, indicating that these two clusters have higher target affinity.

Combining binding affinity of SPR and inhibitory activity prediction by ML analysis to narrow 
the range of hit compounds. In current study, surface plasmon resonance (SPR) was used to rapidly 
identify molecules in the dominant clusters that have the ability to bind to SARS-CoV-2 3CLpro. As a result, 
21 molecules demonstrated high affinity for 3CLpro (Supplementary Table 5). ML was applied in parallel with 
SPR analysis to predict the 3CLpro inhibitory efficiency of compounds in the dominant clusters and further 
eliminate the molecules that would be nonspecifically bound in the SPR analysis. As previously described, the 
collected information on 3CLpro inhibitors (301 SARS-CoV and 84 SARS-CoV-2 inhibitors), including  IC50, 
 pIC50, SMILES, and CID, is shown in Supplementary Data 2. After the molecular docking process, we acquired 
the docking scores and molecular ranking values between the SARS-CoV 3CLpro inhibitors and 3CLpro of 
SARS-CoV and SARS-CoV-2 using three different software programs. Overall, no significant difference between 
docking scores or molecular ranking values of SARS-CoV and SARS-CoV-2 was observed, which was ascribed 
to the high homology of the SARS-CoV and SARS-CoV-2 3CL  proteins32. We calculated the similarity index 
(0.710) of two proteins binding or activity based on the docking matrix. Then, the predicted  IC50 of SARS-CoV-2 
3CLpro was computed based on the Eq. (2). By means of Rcpi, the molecular descriptors of 301 compounds 
were extracted as the quantitative structure (Supplementary Data 2). Thereafter, we constructed the quantitative 
relationship between structure and activity by random forest (RF) and support vector machine (SVM) training 
classification models. The activity of the 84 compounds for SARS-CoV-2 3CLpro was tested using the train-
ing model. To deal with the imbalance training datasets in the RF and SVM algorithm, we used the method of 
additional sampling that was conducted after resampling (usually to resolve class imbalances). The results of 
comparison among four resampling methods in these two algorithms had shown the area under curve (AUC) 
value of smote method of RF was higher than the other methods (RF: AUC smote = 0.87, AUC down = 0.83, AUC 
regional = 0.85, AUC weight = 0.86; SVM: AUC smote = 0.81, AUC down = 0.79, AUC regional = 0.81, AUC weight = 0.80). Thus, 
we incorporated the smote algorithm and cross-validation methods into the model in the train function. To 
further compare the RF and SVM analysis, the training model was tested with data of SARS-CoV-2 (81) and 
multiple evaluation metrics including the AUC, recall and precision value were calculated. We found that the 
AUC of receiver operating characteristic curve (ROC) in RF was higher than that of SVM (RF: AUC = 0.69, 
Precision = 0.24, Recall = 0.5; SVM: AUC = 0.59, Precision = 0.27, Recall = 0.30). Suggesting that the predicted 
inhibitory value calculated by the RF method was closer to the experimental value than that calculated by the 
SVM method.

Finally, we predicted the activity of 9 dominant clusters; here, a predicted value represented as possibility of 
positive result which have been computed with predict function and the selected type as prob, that greater than 
0.5 was considered to have an inhibitory effect, and vice versa. A total of 156 compounds from 816 compounds 
in the dominant cluster were predicted to be active via ML analysis. A complete list of the predicted values can 
be found in Supplementary Data 3.

We combined the binding ability results from SPR analysis and the predicted activity results from ML analysis. 
The 11 NPs that have shown positive both SPR and ML analysis were considered potential inhibitor candidates 
and utilized for further experiments. Interestingly, these high-activity compounds were enriched in the brown, 
midnightblue and red clusters (Supplementary Table 6). In the above clusters, the brown cluster mainly contains 
flavonoids and their glycosides. The midnightblue cluster is composed of dammarane and oleanane or their 
derivative parent nucleus and corresponding glycosides. The compounds in the red cluster are composed of poly-
hydroxy conjugated systems such as hydroxytyrosol and caffeic acid to connected with sugar units. These types of 
compounds often exhibit a wide range of biological activities and have also been used in the field of anti-virus33,34.

5 NPs identifying as potent inhibitors of SARS‑CoV‑2 3CLpro in vitro. Eleven compounds selected 
by the virtual screening and ML analysis were subsequently tested using the inhibition assay against SARS-Cov-2 
3CLpro. After the initial screening, only five compounds at a concentration of 100 μM demonstrate over 50% 
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inhibitory active against the enzyme. These compounds were able to achieve inhibition at lower concentrations. 
According to results shown in Fig. 2, narcissoside (MOL003686), kaempferol-3-O-gentiobioside (MOL012143), 
rutin (MOL000415), vicenin-2 (MOL001543) and isoschaftoside (MOL004958) presented  IC50 values of 38.142, 
35.892, 31.259, 38.856 and 30.220 μM, respectively. Remarkably, they are all flavonoids. The results of affinity 
screening by SPR showed that flavonoids accounted for 10 of the 21 compounds and their KD values ranged from 
1.525 to 12.46, exhibited strong affinity with 3CLpro (Fig. 3). As demonstrated in Table 1, the KD values are well 
correlated with  IC50 values. Notably, kaempferol-3-o-gentiobioside, vicenin-2 and isoschaftoside were reported 
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Figure 2.  SARS-CoV-2 3CLpro in vitro dose–response inhibition assay and IC50 value detection. (a) 
Narcissoside. (b) Kaempferol-3-O-gentiobioside. (c) Rutin. (d) Vicenin-2. (e) Isoschaftoside.
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Figure 3.  Kinetic binding curve of 5 3CLpro inhibitors measured by SPR experiment. (a) Narcissoside. (b) 
Kaempferol-3-O-gentiobioside. (c) Rutin. (d) Vicenin-2. (e) Isoschaftoside. (f) The dissociation equilibrium 
constant (KD) value of the five natural inhibitors.
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as anticoronavirus candidates for the first time due to their inhibition of 3CLpro of SARS-CoV-2. They are very 
promising for further research to develop compounds with high inhibition efficiency.

Molecular dynamics simulation revealed the stable binding mode of the 5 selected drugs with 
SARS‑CoV‑2 3CLpro. The dynamic binding interactions of the five compounds with inhibitory activity 
were analyzed, and 100 ns molecular dynamics (MD) simulations of ligand–protein complexes were performed. 
The root mean square deviation (RMSD) of the ligand trajectory was analyzed, revealing that the complexes rap-
idly reached equilibrium within the first 5 ns of the simulation (Fig. 4a), with each value lying between 1.5 and 
3.5 Å. Narcissoside and vicenin-2 fluctuated greatly, indicating a flexible bingding to the active site of 3CLpro. 
In contrast, compounds kaempferol-3-O-gentiobioside, rutin, and isoschaftoside are more fixed. On the other 
hand, the degree of configuration change of these compounds in the binding pocket is relatively stable, and the 
RMSD is less than 0.5 (Fig. 4d).

To explore the binding affinity of each ligand to 3CLpro, the binding free energy was calculated based on 
MM/PBSA (Table 2). Van der Waals (ΔEvdW) and electrostatic (ΔEele) interactions make major contributions 
to the binding free energy (Fig. 4e). We observed that rutin exhibited the highest binding affinity to 3CLpro, 
followed by kaempferol-3-O-gentiobioside, isoschaftoside, vicenin-2 and narcissoside. Analysis of the energy 
decomposition results of the five compounds suggested that the residues Thr25, Thr26, Ley27, His41, Cys44, 
Tgr45, Ser46, Met49, Asn142, Gly143, Cys145, His163, His164, Met165, Asp187 and Gln189 mainly contributed 
to hydrophobic and electrostatic interactions in the 3CLpro-ligand complex (Supplementary Table 7).

Table 1.  Summary of ranking, equilibrium dissociation constants (KD) and  IC50 values for SARS-CoV-2 
3CLpro inhibitors.

Compound Molecular weight (Da) Rank KD (µM) IC50 (µM)

Narcissoside 624.544 0.744 9.995 38.142

Kaempferol-3-O-gentiobioside 610.518 0.861 2.694 35.892

Rutin 610.518 0.801 1.525 31.259

Vicenin-2 594.518 0.771 8.583 38.856

Isoschaftoside 564.492 0.765 11.370 30.220

Figure 4.  The RMSD values and contribution of various energy items to binding free energy in drug-3CLpro 
simulation. (a) Root mean square deviation (RMSD) of the 5 3CLpro-ligand complexes from the 100 ns MD 
simulations. Narcissoside (blue), kaempferol-3-O-gentiobioside (red), rutin (black), vicenin-2 (green) and 
isoschaftoside (Violet). (b) Residues with a high contribution to the total binding energy during the MD 
simulation of the 5 protein-inhibitor complexes. Narcissoside (blue), kaempferol-3-O-gentiobioside (red), rutin 
(black), vicenin-2 (green) and isoschaftoside (violet). (c) The general structure of narcissoside, kaempferol-
3-O-gentiobioside and rutin. (d) Root mean square deviation (RMSD) of the 5 ligand from the 100 ns MD 
simulations. Narcissoside (blue), kaempferol-3-O-gentiobioside (red), rutin (black), vicenin-2 (green) and 
isoschaftoside (Violet). (e) The contribution of various energy items to the total binding energy of 3CLpro 
inhibitors. Narcissoside (blue), kaempferol-3-O-gentiobioside (red), rutin (black), vicenin-2 (green) and 
isoschaftoside (violet). f The general structure of vicenin-2 and isoschaftoside.
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Specifically, from the analysis of the binding interactions, narcissoside showed the least electrostatic interac-
tion (− 21.59 kcal/mol), forming hydrogen bonds with Ser46, Gly143, His164, and Glu166. Kaempferol-3-O-
gentiobioside forms multiple hydrogen bonds with Phe140, Leu141, Asn142, Gly143, Ser144, Cys145, Glu166, 
Pro168, and Arg188. Rutin forms hydrogen bond interactions with Thr26, Tyr54, Phe140, Asn142, Gly143, 
Glu166, and Gln189. Vicenin-2 demonstrated the highest number of H-bonds, forming hydrogen bonds with 
Thr26, Phe140, Asn142, Gly143 and Glu166. In the analysis of binding energy with isoschaftoside, the contribu-
tion of electrostatic interactions to the total binding energy was − 66.58 kJ/mol, which was highest among the 
5 compounds, forming H-bond interactions with Thr26, Tyr54, Phe140, Asn142, Gly143 and Glu166, Gln189. 
The above analysis suggested that flavonoid glycosides provided higher flexibility after forming chains with 
sugars because of their rotatable bonds, which can bind into pockets and form abundant hydrogen bonds with 
some key residues. From the perspective of amino acid energy decomposition (Fig. 4b), the compound has a 
strong interaction with His41, Met49, and Cys145. His41 and Met49 are also the active site residues of  3CLpro35. 
To facilitate the analysis, we first colored the region of the residues His41 and Met49, and then divided the five 
flavonoids into two categories according to their structural similarity. The active cavity of 3CLpro presented 
strong hydrophobicity, while the aromatic ring of the flavonoid aglycone provided the main hydrophobic energy 
contribution in the site. For type A (Fig. 4c), narcissoside, as the only inhibitor with methoxy group. The group 
has the function of enhancing hydrophobic action of ligand (-58.32 kcal/mol), making the benzene ring easily 
inserting into the hydrophobic region of the cavity (Fig. 5a,f), resulting in the overall structure extending outside 
of the cavity and reducing the interaction with residues, eventually reducing the contribution of the binding 
free energy. In contrast, the flavonoid skeleton of kaempferol-3-O-gentiobioside is close to the cavity (Fig. 5b,g). 
Furthermore, rutin is inserted into the cavity (Fig. 5c,h), which makes the binding tighter and presents the low-
est binding free energy (Table 2). For type B (Fig. 4f), the overall structure shifted in the active pocket due to 
prolongation of the rigid flavonoid part in vicenin-2 (Fig. 5d,i) and isoschaftoside (Fig. 5e,j), resulting in the 
distance from the active site being farther than that for kaempferol-3-O-gentiobioside and rutin. However, they 
did not demonstrate much difference in their total binding free energies.

Table 2.  The results of molecular MM/PBSA free energy calculation (kcal/mol) and relevant ranking.

Compound ΔEvdw ΔEele ΔEPB ΔESA ΔGTot Rank

Narcissoside − 58.32 − 21.59 69.90 − 6.30 − 16.31 0.744

Kaempferol-3-O-gentiobioside − 47.22 − 58.54 90.81 − 5.89 − 20.84 0.861

Rutin − 45.20 − 43.78 72.26 − 5.59 − 22.31 0.801

Vicenin-2 − 42.68 − 53.40 83.16 − 5.80 − 18.72 0.771

Isoschaftoside − 50.61 − 66.58 103.47 − 5.95 − 19.67 0.765

Figure 5.  Binding mode of 5 NPs inhibitors to SARS-CoV-2 3CLpro. The protein and ligand are shown in 
gray and green, respectively. H-bond interactions are demonstrated by yellow dotted lines and residues forming 
H-bonds are shown in cyan. The surface of the protein is represented in cyan. The residues His41 and Met49 
are highlighted in red to show the binding posture of the inhibitor. (a) Binding interaction of narcissoside. (b) 
Binding interaction of kaempferol-3-O-gentiobioside. (c) Binding interaction of rutin. (d) Binding interaction 
of vicenin-2. (e) Binding interaction of isoschaftoside. (f) Binding posture of narcissoside. (g) Binding posture 
of kaempferol-3-O-gentiobioside. (h) Binding posture of rutin. (i) Binding posture of vicenin-2. (j) Binding 
posture of isoschaftoside.
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Notably, from the analysis of the binding interaction, with the key residues, we observed that the interaction 
strength between His41 and Met49 with the ligand was positively correlated with the affinity of the ligand and 
3CLpro binding. In addition, the total energy (Supplementary Table 8) of residues based on the region of His41 
to Met49 also exhibited this rule. On the other hand, ΔGTot calculated by MM/PBSA also matched the rank 
of the molecule (Table 2). The clear binding pattern and significant inhibitory activity of these five flavonoids 
against 3CLpro indicated that they are promising candidates for anti-SARS-CoV-2 activity. These results prove 
the correctness of our screening strategy.

Discussion
To fight the epidemic and obtain effective antiviral drugs from a reservoir of herbal medicines, we designed an 
integrated pipeline workflow for NP screening. Our integrated strategy combining each submodule into the best 
workflow and fulfilling the optimization of function therefore exhibited a positive impact from rapid and accurate 
acquisition of lead compounds to subsequent structural optimization guidance. It is worth noting that the selec-
tion and optimization of submodules can be flexibly changed; this integrated strategy may not be limited to NPs 
screening. Furthermore, this strategy has the potential to derive automated pipelines from prototype workflows 
to improve the convenience of use while ensuring the accuracy of screening.

The screening pipeline was based on the binding affinity between molecules and targets. To avoid the affin-
ity error caused by limitations of an algorithm of a single software which eliminate compounds that have true 
binding ability, we selected 3 commonly used docking software programs and converted docking scores into 
rankings of affinity trends by means of consensus analysis. Attributed to an "or" condition, the ECR assay can 
reduce the impact of extreme values in software  scoring36, which achieved the fault tolerance of the discrepancy 
from different scoring functions, that it is very suitable for the research strategy of our study.

When confronted with a large compound library, effective cluster analysis can directly reflect the structural 
characteristics of molecules or clusters with high affinity and indicate the types of functional groups with high 
contribution to the corresponding complexes. This helps to guide the subsequent structural optimization and 
quickly eliminate the set of compounds with poor binding ability to the target. Consequently, similarity-based 
compound clustering is crucial in pipelines. Among the hierarchical and nonhierarchical clustering methods, 
Ward’s and Jarvis-Patrick are known to be effective algorithms for chemical structure  clustering37,38. As expected, 
in the course of practice, Jarvis-Patrick produced too many singletons and a small number of large  clusters39, 
which is completely inconsistent with our requirements. For the similarity calculation, Tanimoto coefficients 
and Euclidean distance are the most widely used to evaluate how similar two molecules are to each  other40,41. 
Then, we combined them with 4 commonly used hierarchical clustering algorithms and compare the calculated 
corresponding 8 sets of agglomerative coefficient. Thereafter, we found that Euclidean and Ward2 is the best 
matches to obtain a cluster of uniform internal structure characteristics, and the number of clusters can also be 
optimized for specific systems. In summary, this high-precision clustering is suited for but not limited to natural 
products, and it is worthy of promotion.

As an effective tool for predicting the structure–activity relationship, ML has been widely used in threaded 
 approach42,43. The present ML-based activity prediction was capable of describing active molecules from the 
TMTP database even with a small-volume training set (301 compounds). We calculated the predicted value of 
SARS-CoV-2 3CLpro from the collected SARS-CoV 3CLpro inhibitory activity according to the similarity matrix 
between docking data of two target proteins. To build an effective model, we increased molecular character num-
ber of the training compound as an independent variable and covered the docking data. Moreover, we compared 
the predictive accuracy of the SVM and RF methods integrated into the cross validation analysis and found that 
the AUC value of random forest was higher than SVM, which provided the evidence for the candidates drug 
discovery by RF-based activity prediction.

Current cluster analysis accurately placed flavonoids into a subset and further obtained the 5 compounds 
with inhibitory activity of 3CLpro. As compounds characterized by 2-phenyl-benzyl-γ-pyrone nucleus, fla-
vonoids are particularly valuable NPs that possess anti-inflammatory44,  antioxidant45, anti-microbial46, and 
even antiviral activities. In a study of inhibitors against coronavirus, rhoifolin, pectolinarin,  herbacetin47 and 
 amentoflavone48 were demonstrated to block the function of SARS-CoV 3CLpro. The glycoside derivatives of 
kaempferol also proved to be virus release inhibit agents by blocking the 3a  channel49. During the COVID-19 
outbreak,  narcissoside50 and  rutin29 also exhibited the inhibitory effects on main protease of SARS-CoV-2, which 
is confirmed the practicality of our screening strategy.

The limitations of this study have been presented. First, on account of the few reports of tested compounds, 
a relatively small sample training set in the ML analysis was available. When more positive drugs are involved, 
the accuracy of ML activity prediction can be further improved. Second, the 5 NPs have not been evaluated the 
antiviral activity against SARS-CoV-2 by in vivo experimental and preclinical data due to the powerful invasion 
ability of SARS-CoV-2.

In conclusion, this study successfully employed an integrated screening strategy to identify 5 potential inhibi-
tors of SARS-CoV-2 3CLpro from a NPs library composed of clinically effective herbal medicines. On the basis 
of this research, further research is worth pursuing to produce derivatives that can produce better inhibitors. The 
high efficiency and accurate characteristics of this strategy greatly shorten the hit cycle of lead compounds in the 
process of drug discovery for acute diseases and accelerate the process of drug development. We recommend that 
this integrated screening strategy be applied to other targets that urgently need effective drugs.
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Methods
Construction of TMTP chemical constituent databases. Except for gypsum whose main compo-
nent is inorganic salt, the SDF files of each chemical ingredient related to 46 Chinese medicinal materials were 
obtained through TCMSP database (Traditional Chinese Medicine Systems Pharmacology Database and Analy-
sis Platform, http:// lsp. nwu. edu. cn/ tcmsp. php). By consulting the related literature of Herba Rhodiolae and Rhi-
zoma Areactylodis Lanceae, SDF files were downloaded through PubChem respectively. The TMTP molecular 
database was obtained after the database deduplication. Then, the OpenBabel toolkit was used to convert the 
mol2 file of each molecule into unified SDF, pdbqt and SMILES file formats to prepare for molecular dock-
ing. Subsequently, we retrieved the absorption, distribution, metabolism and excretion (ADME) properties data 
from TCMSP database, containing molecular weight (MW), oral bioavailability (OB), number of hydrogen-
bond acceptors (HBA), number of hydrogen-bond donors (HBD), etc. Other molecular descriptors, including 
atom additive logP (ALogP), atom molar refractivity values (AMR), and topological polar surface area (TPSA), 
were calculated based on the Rcpi in the R platform. All the discriptors were listed in Excle table. After dedupli-
cating the SMILES file, the retained molecular discriptors entries and SDF files constituted a compound library 
for subsequent analysis.

Molecular docking. To  accurately predict docking poses, three different molecular docking programs, 
AutoDock  Vina51 (version 1.1.2), Maestro (version 11.4, Schrödinger, LLC, New York, NY, 2021), and molecular 
operating environment software (MOE, Chemical Computing Group, version 2019.0101), were used to detect 
the binding capability between diverse compounds and SARS-CoV or SARS-CoV-2 3CLpro. The protein and 
ligand were prepared for the docking process. First, the crystal structural file of SARS-CoV and SARS-CoV-2 
3CLpro were downloaded from protein database (PDB ID  3V3M52,  6LU753). For the target protein, the prepara-
tion included carrying out the assign bond orders, hydrogenation, treatment of disulfide bonds, metal ions, and 
removal of water molecules, heteroatoms with default settings in three software. For ligand preparation, apart 
from AutoDock Vina which minimized the compound’s energy in Chem3D software, Maestro and MOE were 
carried out with inner LigPrep and Energy Minimize protocol respectively, to generated the correct form, and 
all the hydrogen atoms and the torsion information were added. To ensure the uniformity of different software 
at the docking position, the binding site box of 3CLpro coincided with binding site of the original inhibitors. 
Docking analysis was conducted with default protocol in AutoDock Vina, the Extra precision (XP) was used 
in GlideScore scoring  functions54, and the Induced Fit module was chosen in MOE. The PyMOL Molecular 
Graphics System (version 2.0, Schrödinger, LLC) was used to visualize the docking posture of compounds at the 
binding pocket of 3CLpro.

Consensus analysis. To combine results from several docking programs, we adopted ECR strategy pro-
posed by Karen Palacio-Rodríguez et al.36 (2019) to assigned a rank to each molecule based on the docking 
scores of the molecules provided by different docking program. As shown in Eq. (1), σ represented the expected 
value of an exponential distribution and was assigned to be 10. sn referd to the compound docking score given 
by each software. The ultimate rank value of each molecule was defined as the sum of all the exponential scores 
p(sn) , which was a positive correlation between the rank value and affinity of compound against target protein.

Cluster analysis. To identify homogeneous and distinct groups, or similar objects in TMTP NPs datasets, 
we performed clustering analysis with the ChemmineR and WGCNA packages. First, we collected the SDF file 
of each molecule produced by the OpenBabel software. By means of readMolFromSDF, we converted the SDF 
files into mol files. The SDF files were loaded into the ChemmineR for calculating atom pair fingerprints (APfp) 
of all compounds, which were used for calculate the structural similarity between the different  compounds55,56. 
We adopted the Tanimoto coefficients and Euclidean distance for computing distance or dissimilarity metrics 
based on the fingerprint of TMTP natural products. In this proccess, we mainly utilized the sdf2ap and fpSim 
function from ChemmineR package. Firstly, we extracted atom pair fingerprints from 3272 NPs sdf files through 
sdf2ap function. Then, we calculated pairwise compound structure comparisons from fingerprint dataset using 
fpSim function. The fingerprint-based Tanimoto or Euclidean similarity matrix were computed and the other 
parameters were set as default values. To classify the different compounds into a series of the relative number of 
clusters, we concentrated on single, complete, average, and Ward’s algorithms to map the strength of the cluster-
ing results. Additionally, the dendrograms of 8 hclust approaches were plotted, and the agnes from dendextend 
computing the agglomerative coefficient was used to measure the amount of clustering structure found (values 
closer to 1 suggest a strong clustering structure). To clearly delineate the different clusters, we integrated the 
WGCNA, which can effectively assign different modules and are represented as visualized colors. The functions 
of cutreeDynamic and labels2colors were further used to investigate the best clustering results.

Surface plasmon resonance analysis. The binding studies were performed at 25 °C on a Biacore T200 
instrument at a flow rate of 30 μL/min in running buffer composed of PBS (pH 7.4) and 3 mM EDTA. CM7 chips 
activated in a 10 min injection procedure with a mixture of EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodi-
imide)/NHS (Nhydroxysuccinimide) (0.2 M/0.05 M) and immobilized with anti-histone antibody until levels of 
immobilization were between 15,000 and 20,000 RU. The chip was then deactivated with a 7 min injection of 1 M 
ethanolamine (pH 8.0). The 3CLpro-his protein was then applied on the chip to reach typically levels between 
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4000 and 5000 RU. The binding activity and stability of proteins to ligands were tested at the end of each com-
pound injection. The association and dissociation phases of tested ligands were monitored for 120 s each. The 
final binding experiment with small molecule ligands was performed in the above running buffer supplemented 
with 5% DMSO. PBS, EDTA, CM7 chip, EDC, NHS and ethanolamine were obtained from GE, 3CLpro-his was 
obtained from Kangma- Healthcodea.

Machine learning analysis. 3CLpro Positive inhibitors of SARS-CoV and SARS-CoV-2 for individual 
modeling and validation via ML were acquired from the literature, related  IC50 were collected, and the SDF 
files was downloaded from Pubchem or generated by ChemDraw, as well as SMILES files. Then, each 3CLpro 
inhibitor of SARS-CoV was docked with the 3CLpro of SARS-CoV and SARS-CoV-2 separately, as described in 
the docking procedure above, rank of a molecule was constructed from the docking score matrix. To eliminate 
the inconvenience of calculation and data comparison caused by the orders of magnitude difference between 
the data,  pIC50 was applied in calculation instead of  IC50. After that, the inhibitory efficiency in the data set 
was converted to two classes: active  (pIC50 ≥ 6) and inactive  (pIC50 < 6). Then, the similarity index (SI) between 
docking score of compound and 3CLpro complex in SARS-CoV and SARS-CoV-2 was calculated via SMI from 
MatrixCorrelation57. To build the predicted model, we proposed the Eq. (2) to transform the SARS-CoV  IC50 to 
predicted  IC50 of the SARS-CoV-2 inhibition efficiency. Subsequently, a classification model based on the quan-
titative structure and activity relationship of SARS-CoV-2 was constructed.

The inhibitory compounds targeting SARS-CoV-2 3CLpro and the related  IC50 were validated as a test data 
set. By means of Rcpi, we extracted the molecular descriptors of the validated compounds, including ALogP, 
square of AlogP (ALogp2), AMR, atomic polarizabilities (apol), eccentric connectivity index (ECCEN), topo-
logical polar surface area (TopoPSA), MW, weiner path number (WPATH), weiner polarity number (WPOL) 
and the sum of the squares of atom degree over all heavy atoms (ZagrebIndex). The molecular descriptors and 
docking value of the training data sets were input as independent variables, and the predicted  IC50 values were 
input as dependent variables. We selected the random forest (RF) and support vector machine (SVM), which are 
widely used ML  methods58,59. We established the machine learning analysis by the caret package. Repeated cross 
validation (times = 5, fold = 10) were used as the cross-validation strategies. And we optimized the important 
parameters including sigma, C and weight which were used to select the optimal model. The main hyperparam-
eters of SVM contain sigma (sigma = 0.1), cost (C = 1) and weight (weight = 3) while the hyperparameters of RF 
include mtry (mtry = 2). Meanwhile, considering that the imbalanced training dataset, we explored different 
algorithms, including original, weighted, down and smote algorithms, in the training stage. The accuracy of two 
classification model was evaluated by the AUC value of ROC. The recall and precision values were calculated with 
confusionMatrix function. Based on the AUC value, we selected the optimal methods to predict the inhibition 
efficiency of natural products from dominant clusters.

SARS‑CoV‑2 3CLpro inhibition assay. The inhibition assay of SARS-CoV-2 3CLpro was carried out 
based on the reported  method60. In the initial step, 0.5 µg of SARS-CoV-2 3CLpro was preincubated with 100 
µL of 200 µM test compound at room temperature for 15 min. Then, the reaction was triggered after the addi-
tion of 10  µM Dabcyl-KTSAVLQSGFRKME-Edans (GL Biochem). The fluctuation of fluorescence intensity 
was monitored on a GENios microplate reader (Tecan), where the excitation wavelength was 340 nm and the 
emission wavelength was set to 490 nm. Control reactions were performed under the same condition, but the 
compounds or enzymes were excluded from the reaction system. The median inhibitory concentration  (IC50) 
values against SARS-CoV-2 3CLpro was calculated by nonlinear regression analysis via GraphPad Prism 7.03 
(GraphPad Software, San Diego, CA, USA).

Molecular dynamics simulation and binding free energy calculation. MD simulations of the 
screened natural inhibitors of 3CLpro were performed with  Amber1461 to evaluate their binding interaction pat-
terns with 3CLpro. The protein–ligand complexes were used as the initial structure for subsequent MD simula-
tions. The ligand and protein were treated with General Amber Force Field  (GAFF62) and  FF14SB63 respectively. 
For the amino acid residues of the protein, the default protonation state in Amber14 was adopted, and the hydro-
processing was carried out using tleap module. By means of the Gaussian09 software  package64, the Lee–Yang–
Parr correlation functional (B3LYP)/6-31G** was carried out to optimized all inhibitors. The restrained electro-
static potential (RESP) charges as partial charges for molecules were calculated by fitting with the standard RESP 
procedure implemented in the Antechamber module of the Amber14. And molecular dynamics simulations for 
all complexes employ the PMEMD program in Amber14. After adding counter ions to each complex to maintain 
the neutrality of the system, the entire system was contained to a TIP3P rectangular water box. Furthermore, 
energy minimization was performed by steepest descent method of 2500 steps and conjugate gradient method 
of 2500 steps. Subsequently, same methods were used to optimize the unconstrained system. The Particle mesh 
Ewald (PME) was performed in the MD simulation to deal with the long-range electrostatic interaction, and the 
SHAKE algorithm was used to constrain all the bonds connected to the hydrogen atom and the time step was set 
to 2 fs. Then set a cutoff value of 10 Å for non-bonding interactions. The constrained whole system was heated 
from 0 to 300 K in 60 ps at a constant volume, subsequently, the solvent density was balanced in a constant pres-
sure and thermostatic system (T = 300 K, P = 1 ATM). Followed by 100 ns of MD simulations control at constant 
pressure and frames were saved at 1 ps intervals (50,000 frames totally) for subsequent MM/PBSA analysis at 
last. In order to obtain the RMSD, the trajectory was generated from MD simulation via cpptraj module then 

(2)pIC50pre=SI × pIC50SARS−CoV
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analyzed with the VMD (1.9.3)  program65. OriginPro (Version 2021 Learning Edition. OriginLab Corporation, 
Northampton, MA, USA.) was used for plot.

Data availability
The authors declare that all data supporting the findings of this study are available within the paper and its sup-
plementary information files.
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